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Linear response theory of open systems with
exceptional points
A. Hashemi 1,2✉, K. Busch3,4, D. N. Christodoulides 5, S. K. Ozdemir 6 & R. El-Ganainy1,2✉

Understanding the linear response of any system is the first step towards analyzing its linear

and nonlinear dynamics, stability properties, as well as its behavior in the presence of noise.

In non-Hermitian Hamiltonian systems, calculating the linear response is complicated due to

the non-orthogonality of their eigenmodes, and the presence of exceptional points (EPs).

Here, we derive a closed form series expansion of the resolvent associated with an arbitrary

non-Hermitian system in terms of the ordinary and generalized eigenfunctions of the

underlying Hamiltonian. This in turn reveals an interesting and previously overlooked feature

of non-Hermitian systems, namely that their lineshape scaling is dictated by how the input

(excitation) and output (collection) profiles are chosen. In particular, we demonstrate that a

configuration with an EP of order M can exhibit a Lorentzian response or a super-Lorentzian

response of order Ms with Ms= 2, 3,…,M, depending on the choice of input and output

channels.
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Resonance is a universal physical phenomenon that takes
place in a large variety of systems across a wide range of
spatial and time scales. In optics, the rapid progress in

modeling and fabrication has enabled the realization of several
photonic resonator structures that can trap light for very long
times (high-quality factors)1 or confine it in smaller domains
compared with the free-space wavelength (nano-scale mode
volumes)2. These devices have become indispensable components
in almost every field of optical science and engineering including
but not limited to lasers, nonlinear optics, optical communica-
tion, quantum optics, and biophotonics. While the notion of a
completely closed resonator is sometimes used as an idealization
to simplify the analysis and to gain intuition, it is neither realistic
nor desirable. Quite the opposite, it is necessary to have open
channels between the interior of the resonator and its sur-
rounding in order to facilitate the input/output coupling of light.
Thus, even in the absence of material loss, optical resonators are
fundamentally non-Hermitian—a fact that is often overlooked
despite some early works that considered non-Hermitian effects
in optical systems3,4. These studies demonstrated how non-
Hermitian effects in lasers leave their fingerprint on emission
linewidth. Those early works, however, focused on situations
where the system does not exhibit spectral singularities known as
exceptional points (EPs) since this scenario was not relevant to
the experimental setups under study at that time.

In recent years, the interest in non-Hermitian optical structures
has acquired a new dimension following a number of theoretical
studies of parity-time (PT) symmetry in optics5–7 and its first
experimental demonstrations8,9. This in turn has initiated intense
theoretical10–39, and experimental40–58 investigations of non-
Hermitian effects in photonic platforms. In contrast to earlier
studies, the notion of EPs is at the heart of these recent works.
This in turn has initiated feverish efforts seeking to explore the
exotic features of wave dynamics in waveguide and resonator
geometries that exhibit EPs. For recent reviews, see refs. 59–64.
Despite these intense activities on the one hand, and the fact that
the mathematics of non-self-adjoint operators is well developed
on the other, some of the basic features of complex photonic
structures that are pertinent to their non-Hermitian nature are
either underestimated or misunderstood. Particularly, on one side
of the spectrum, the prevailing traditional point of view treats
openness only as a source of energy loss or gain, and hence relies
completely on Hermitian intuition to analyze the system. On the
other side, some works that deal with non-Hermitian systems
exhibiting EPs tend to assume that the linear response associated
with a defective Hamiltonian (i.e., a Hamiltonian whose spectrum
has one or more EPs) can be studied only within the context of
perturbation theory which is conceptually misleading even when
the final results are mathematically correct.

Beyond this fundamental issue, the perturbative analysis can be
cumbersome and complex for non-Hermitian arrangements with
large number of resonant elements, particularly when the spec-
trum contains several EPs, some of which exhibit higher orders.
This situation becomes relevant for example when studying non-
Hermitian topological arrangements65–68, non-Hermitian dis-
ordered media69–71, as well as non-Hermitian spin systems where
the number of EPs scale exponentially with the system’s size72. In
addition, the recent discovery of non-Hermitian systems that
exhibit exceptional surfaces (ESs) rather than EPs introduces
another hurdle for applying perturbation expansions. Figure 1b
illustrates this point. The perturbation analysis used to study a
defective Hamiltonian ĤEP typically starts by introducing a per-
turbation Hamiltonian ϵĤpt that removes the non-Hermitian
degeneracy. The resolvent of the resultant non-defective Hamil-
tonian Ĥtot � ĤEP þ ϵĤpt, defined as Gðω; ϵÞ � ωÎ � Ĥtot

� ��1

where ω is the frequency and Î is the unit operator/matrix, can
be then obtained using the left and right eigenstates. The resol-
vent of the defective Hamiltonian is obtained by evaluating
GEPðωÞ ¼ limϵ!0 Gðω; ϵÞ. Thus, in systems exhibiting exceptional
surfaces, one first has to identify the hypersurface of all EPs and
carefully identify perturbation Hamiltonians that force the system
out of this hypersurface, otherwise the perturbation analysis will
fail since Ĥtot will be also defective (see Fig. 1b). This task is
highly non-trivial since, for systems with large degrees of free-
dom, the exceptional surface is embedded in a space of high
dimensionality. Importantly, taking the above limit involves
cancellations of several infinite terms. As a result, any finitely
small approximation in applying the perturbation analysis can
lead to inconsistent results.

In addition to the above mathematical difficulties in using
perturbative expansions to analyze defective Hamiltonians,
the outcome of this analysis does not provide much insight into
the role of non-Hermiticity in shaping the linear response of the
system, specially when the latter exhibits many degrees of free-
dom and several input and output channels. In order to illustrate
some of the subtleties arising in such systems in an intuitive way,
and in doing so motivates our work, we consider the example
shown in Fig. 2. It consists of three microring resonators that are
coupled sequentially via horizontal waveguides. An additional
vertical waveguide provides access to selectively excite the second
resonator. We neglect the cross talk between the horizontal and
vertical waveguides since it can be minimized using various
design strategies73–76. A similar system was considered in29 and
shown to exhibit a third-order EP in the subspace spanned by the
clockwise (CW) and counterclockwise (CCW) modes of the
resonators R1,2,3. When the input/output channels are selected as
shown in Fig. 2a, light will cross only cavity R3 and hence the
response features a Lorentzian function. On the other hand, for
the channels depicted in Fig. 2b, input light will interact with both
cavities R2,3 in a series fashion before it exists. One thus expects a
super-Lorentzian response of order two. Finally, for the input/
output choice shown in Fig. 2c, light will traverse all three cavities
in series which results in a super-Lorentzian response of order
three (see Supplementary Note 1 for detailed analysis of this
example). This rather intuitive example reveals that a system with
EP of order three can exhibit very different response lineshapes
depending on the choice of the input/output channel configura-
tion—a feature that to the best of our knowledge has not been
identified in non-Hermitian systems. Needless to say that in more
complex structures, identifying the response corresponding to a
given input/output channel configuration is not a trivial task.

The lesson learned from the above simple example is of
extreme importance since many of the exotic and useful features
of non-Hermitian systems with EPs arise due to the modified
spectral lineshape. For instance, the recent work on EP-based
optical amplifiers shows that the gain-bandwidth product of a
resonant optical amplifier can be enhanced by operating at an EP,
provided that the response lineshape features a super-Lorentzian
response, with better results obtained for higher-order super-
Lorentzians29. In other settings, super-Lorentzian response could
lead to narrower lineshapes, and eventually resulting in a stronger
light-matter coupling, which can be utilized to enhance sponta-
neous emission20,31,77 and energy harvesting78 among other
potential applications. At the fundamental level, probing the
quantum noise in non-Hermitian systems requires a proper
characterization of the lineshape response at various output ports
due to vacuum fluctuations-induced noise at the input channels,
including loss and gain ones79. Thus, in light of the above
observation, it will be useful to develop a systematic, generic
approach that establishes a universal relation between the
response function and the input/output channel configuration.
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In this work, we bridge this gap and present a clear and general
analysis of the linear response of any non-Hermitian resonant
system. Figure 3a presents a schematic of one such a generic
system, which consists of large number of coupled non-
Hermitian resonators subject to an arbitrary specific choice of
input/output channels. It is important to reiterate here that we
focus on situations where the eigenvalue spectrum of the system
exhibits EPs. While this situation represents a subset of the more
general non-Hermitian family of Hamiltonians (see Fig. 3b), it is

by now understood that most of the novel behaviors of non-
Hermitian systems arise when the system is at or near these EP
singularities. In addition, in the absence of EPs, the system’s
response can be easily obtained in terms of the left and right
eigenvectors of the Hamiltonian. However, when EPs are present,
the dimensionality of the eigenspace collapses and the analysis
becomes complicated, thus prompting several authors to use
perturbation methods as we described earlier. The main results of
this work can be summarized as follows: (1) The linear response
of resonator geometries that exhibit EPs can be obtained exactly
without the need for perturbative expansions; (2) The Green’s
function expansion can be used to tailor the response of the
system by carefully selecting the input/output channels; (3) The
excitation channels can be classified based on their interference
properties; (4) The most efficient drive of the signal does not
necessarily correspond to mode matching between the input
signal and resonant modes. Importantly, we emphasize that even
though we focus here on optical setups, due to the well-
established mathematical analogy between this latter and other
physical systems our results will be useful in analyzing and
understanding other non-Hermitian platforms such as
electronic80–84, acoustic85–89, mechanical90–92, and thermal78

systems.

Results
High-Q resonators can be strongly non-Hermitian. Before we
proceed to the main topic of this work, it is instructive to first
emphasize an important point that is sometimes overlooked in
the literature, namely that non-Hermitian effects can be sig-
nificant even in optical resonators with high-quality (Q) factors

Fig. 1 Perturbation analysis of defective Hamiltonians (ĤEP) and its subtleties at exceptional surfaces. a Two crucial steps are involved: (1) finding a
perturbation (Ĥpt) that removes the degeneracy, and (2) obtaining the limit when the perturbation vanishes. ĜðϵÞ is the Green operator. The first step can
be straightforward in simple systems. b In systems that exhibit exceptional hypersurfaces in the parameter space23, 104, 125–127, finding such a perturbation
can be a very complex task since any perturbation that shifts the system along the surface will fail. In addition, taking the limit when ϵ→ 0 involves the
cancellation of several singular terms with opposite signs. For complex geometries with a large number of degrees of freedom, this can be a daunting task.
In general, it is not possible a priori to confirm if this approach gives exact answer or approximate response function.

Fig. 2 Subtleties of linear response of non-Hermitian systems having EPs: an illustrative example. a An excitation (P3) and collection (Q2) scheme that
leads to linear responses featuring Lorentzian lineshape. b, c Excitation (P2,1) and collection (Q1) schemes featuring super-Lorentzian responses of order
two and three, respectively. Intuitively the order of the super-Lorentzian response depends on how many cavities the wave has traversed between the input
and output ports. a1,2,3 are cavity modes for ring resonators R1,2,3, respectively.

Fig. 3 Non-Hermitian resonant systems and their responses. a A
schematic of a resonant open system, where non-Hermiticity arises due to
coupling to external channels and the presence of optical loss or gain. As
summarized in (b), the linear response of this system, as described by its
resolvent operator ĜðωÞ can be readily obtained in terms of the right/left
eigenvectors of the associated non-Hermitian Hamiltonian when the
spectrum of the latter does not contain any EPs. On the contrary, to date, a
general expression for ĜEPðωÞ in the presence of EPs has not been yet
developed.
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(see, for instance, refs. 41,93). In general, the degree of non-
Hermiticity can be assessed only by comparing the spatial scale of
any non-Hermitian perturbation and its strength to the wavelengths
of the resonant modes and their spectral separation, respectively.
More specifically, if the non-Hermitian perturbation is spatially
inhomogeneous and varies at a length scale comparable or smaller
than the resonant wavelength, it can result in a measurable dis-
crepancy between the lifetimes associated with different modes. In
addition, the perturbation can also introduce hybridization between
the bare modes. If such a modal mixing is induced by a coupling
strength that is comparable to the frequency difference between the
otherwise unperturbed modes, it could bring the system close to an
EP. In that case, two or more of the eigenvectors of the system
become very close (almost parallel). Obviously, in such a case, non-
Hermitian effects beyond linewidth broadening cannot be neglected.
A simple example that illustrates this point is the archetypal dimer
configuration composed of two resonators having identical resonant
frequency ωo and two different loss factors γ1,2. This system is
described by a 2 × 2 Hamiltonian H with H11,22=ωo− iγ1,2 and
H12=H21= κ (we assume real coupling). If κ=Δγ/2 with Δγ=
(γ2− γ1), the dimer will exhibit an EP. The quality factor associated
with this degenerate mode is Q ¼ ωo

2π�γ ; where �γ ¼ ðγ1 þ γ2Þ=2. The
above formulas do not impose any restrictions on Q, which can be
engineered to be very large. Yet the system is highly non-Hermitian.
The key observation here is that the perturbation Δγ, which
introduces additional loss, is spatially inhomogeneous (affects only
one site) and is comparable to the energy splitting of the unper-
turbed system 2κ. Examining the limit Δγ= 0 reveals that the
eigenstates are orthogonal and the system does not exhibit any
drastic non-Hermitian effect even if Q is designed to have a very
low value. Thus, the important message here is that the degree of
openness alone is insufficient to quantify if the system is highly non-
Hermitian or not. This in turn highlights the need to exercise
extreme caution when dealing with non-Hermitian systems.

Model and preparatory comments. Within the context of tem-
poral coupled-mode formalism94, a complex resonant photonic
structure (see Fig. 4) under linear conditions can be modeled by
the following set of equations:

i
d aðtÞ
�� �
dt

¼ Ĥ aðtÞ
�� �þ iΓ̂ bðtÞ

�� �

vðtÞ
�� � ¼ Ŷ bðtÞ

�� �� Γ̂
T
aðtÞ
�� �

;

ð1Þ

where the kets aðtÞ
�� � ¼ ½a1ðtÞ; a2ðtÞ; ¼ ; aN ðtÞ�T ,

bðtÞ
�� � ¼ ½b1ðtÞ; b2ðtÞ; ¼ ; bLðtÞ�T , and vðtÞ

�� � ¼ ½v1ðtÞ; v2ðtÞ; ¼ ;

vLðtÞ�T represent the modal amplitudes of the resonant modes

and the input and the output channels, respectively. The N ×N
time-independent non-Hermitian matrix Hamiltonian Ĥ char-
acterizes coupling between the different resonant states, whereas
the L × L matrix Ŷ quantifies the direct scattering between
incoming and outgoing channels. Finally, the N × L matrix Γ̂
describes the coupling between the N resonant modes and the L
input/output channels. To simplify the notations, we also define
f ðtÞ
�� � � iΓ̂ bðtÞ

�� �
. The general solution to Eq. (1) that takes into

account the transient response can be obtained by using Laplace
transform. Here, however, we are interested in the steady-state
response AðωÞ

�� �
, which can be expressed in terms of the fre-

quency domain resolvent (sometimes also called Green’s operator

or function) ĜðωÞ � ðωÎ � ĤÞ�1
(i.e., Î is the unit operator) as:

AðωÞ
�� � ¼ ĜðωÞ FðωÞ

�� �
; ð2Þ

where AðωÞ
�� � � FT ð aðtÞ

�� �Þ and FðωÞ
�� � � FT ð f ðtÞ

�� �Þ with
FT ð�Þ denoting the Fourier transform. Before we proceed, we
emphasize that the existence of a finite response (i.e., non-
diverging resolvent) is not always guaranteed as we will discuss in
more detail later.

To keep the discussion focused, we will only consider an
excitation vector f ðtÞ

�� �
with separable time dependence and

spatial profile, i.e., f ðtÞ
�� � ¼ sðtÞ uj i where s(t) is a scalar function

of time and uj i ¼ ½u1; u2; ¼ ; uN �T is a time-independent
excitation profile vector. In the frequency domain, the excitation
vector thus takes the form FðωÞ

�� � ¼ SðωÞ uj i. The eigenvectors of
the non-Hermitian Ĥ defined by the set f ψr

n

�� �
: Ĥ ψr

n

�� � ¼
Ωn ψr

n

�� �
; ψr

njψr
n

� � ¼ 1g have the following two important proper-
ties: (1) The eigenvalues Ωn are in general complex; and (2) The
eigenvectors ψr

n

�� �
do not need to be orthogonal. In the absence of

EPs, the eigenvectors form a complete basis, hence we can
represent any input profile using the expansion
uj i ¼ ∑N

n¼1 cn ψn

�� �
, which in turn reduces Eq. (2) to:

AðωÞ
�� �
SðωÞ ¼ ∑

N

n¼1

cn
ω� Ωn

ψr
n

�� �
: ð3Þ

Note, however, that the expansion coefficients cn cannot be
calculated using the usual projection ψr

nju
� �

. Instead, one
has to employ the left eigenvectors of Ĥ, defined by
f ψl

n

� �� : ψl
n

� ��Ĥ ¼ Ωn ψl
n

� ��; ψl
mjψr

n

� � ¼ δn;mg, to obtain cn ¼
ψl
nju

� �
(see Supplementary Note 2 for more details). This is

known as bi-orthogonal projection. The alerted reader will notice
that we dropped the normalization condition ψl

njψl
n

� � ¼ 1 from
the definition of ψl

n

� ��. In fact, it can be shown that, for non-
normal matrices, the conditions ψl

mjψr
n

� � ¼ δn;m, ψr;l
n jψr;l

n

� � ¼ 1
cannot be satisfied simultaneously4 (see Supplementary Note 3).

By using cn ψr
n

�� � ¼ ψl
nju

� �
ψr
n

�� � ¼ ψr
n

�� �
ψl
nju

� �
, and by assum-

ing that the non-orthogonal basis are complete, we can express
the resolvent as20,91:

ĜðωÞ ¼ ∑
N

n¼1

ψr
n

�� �
ψl
n

� ��
ω�Ωn

: ð4Þ

Even without considering the effect of EPs, the above results
already lead to counterintuitive results. For instance, energy transfer
from an excitation signal to a particular eigenmode of the system
can still take place even when their Hermitian overlap vanishes. In

order to illustrate this, consider an input signal uj i ¼ ψr
mj i

ψr
njψr

mh i �
ψr
n

�� �
with ψr

mjψr
n

� �
≠0 (due to non-Hermiticity). Clearly, ψr

nju
� � ¼

0 yet the signal uj i will excite the state ψr
n

�� �
. The converse is also

Fig. 4 A schematic of an open resonant structure with an EP and multiple
input/output channels. As indicated by the structure of the eigenvectors
f ψn

�� �g, the spectrum of this resonant system is assumed to be of dimension
N and having an EP of order M that arises due to gain/absorption or
coupling to L input/output ports. bi

�� �
is the input signal from ith input port,

and vi
�� �

is the output signal from ith output port.
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true. An input given by uj i ¼ ψr
m

�� �
will excite only the state ψr

m

�� �
even though it may have a finite overlap with other states.

Defective spectrum does not mean defective response. We now
consider the case when the spectrum of the Hamiltonian Ĥ con-
tains an EP. For generality, we assume that the EP is of orderM, i.e.,
formed by the coalescence of M eigenstates. Such a Hamiltonian
operator is said to be defective (i.e., the eigenstates of the Hamil-
tonian do not form a complete basis). In the literature of non-
Hermitian optics, the response of a system described by a defective
Ĥ is sometimes studied using perturbative approaches95 (see, for
instance, ref. 20). While these perturbative expansions eventually
lead to correct conclusions, they complicate the analysis and give
the impression that the resultant formulas are only approximations.
As we describe below, this is actually not the case. On the contrary,
one can use exact, non-perturbative expansions to arrive at the
same final results in a straightforward fashion. In this section, we
focus on the case when the system exhibits only one EP we discuss
the more general case in the Supplementary Material.

To proceed, let us denote the eigenvalue and eigenvector
corresponding to an EP by ΩEP ¼ ΩR

EP þ iΩI
EP and ψr

EP

�� �
,

respectively. In order to avoid any confusion, we will also refer
to the Hamiltonian and its corresponding resolvent in this case by
ĤEP and ĜEPðωÞ. Note that, since the Hamiltonian ĤEP is
defective, ĜEPðωÞ cannot be expressed using a simple expansion
similar to that of Eq. (4). Perturbative methods such as Newton-
Puiseux series95 have been used in the literature to mitigate this
problem and obtain an expansion for ĜEPðωÞ. What is often
overlooked, however, is that even for a defective ĤEP, the operator
ðωÎ � ĤEPÞ can still be invertible. This key observation can
tremendously simplify the analysis in many situations. Particu-
larly, when an optical resonator system operates in the passive
mode (i.e., no optical gain) or even in active mode below the
lasing threshold (i.e., as in amplifiers), the complex eigenvalue lies
in the lower half of the complex plane, i.e., ΩI

EP < 0. On the other
hand, probing the response of such a system is done by using
external excitation that has a real frequency, i.e., along the real
axes. In this case, the corresponding eigenvalue of ĜEPðωÞ, which
is given by μEP ¼ ω� ðΩR

EP þ iΩI
EPÞ

� ��1
, does not diverge even at

resonance when ω ¼ ΩR
EP. As a result, one can evaluate ĜEPðωÞ by

direct matrix inversion for any value of the real frequency ω. In
principle, this information is sufficient for characterizing the
linear response of the resonator, but it does not provide much
insight into the interplay between the excitation profile and the
response. In addition, one may wonder about the fate of the
expansion in (4). As we mentioned earlier, Newton-Puiseux series
is often used to generalize this expression. We now show that this
generalization is in fact exact and does not employ any
perturbation analysis. To do so, we first note that the non-
degenerate eigenvectors of an N ×N matrix ĜEP that has an EP of
orderM span only a reduced N−M dimensional space, call it Dϕ.
We will denote the missing domain by DEP. In order to form a
complete basis, we follow the standard Jordan chain procedure96,
defined by the set of vectors that satisfy the following recursive
equations:

ðĤEP � ΩEP ÎÞ Jr1
�� � ¼ 0

ðĤEP � ΩEP ÎÞ Jr2
�� � ¼ χ2 J

r
1

�� �
..
.

ðĤEP � ΩEP ÎÞ JrM
�� � ¼ χM JrM�1

�� �
:

ð5Þ

In the above, we used the notation Jr1
�� � � ψr

EP

�� �
for clarity. The

constants χ0s are introduced to ensure the consistency of the
physical dimensions, and their values are chosen to achieve
normalization, i.e., JrnjJrn

� � ¼ 1 for any integer n= 1, 2,…,M.
The vectors Jrn

�� �
are generalized right eigenvectors of the operator

ĤEP, i.e., they satisfy the eigenvalue problem
ðĤEP � ΩEP ÎÞ

n
Jrn
�� � ¼ 0 which implies that ψl

mjJrn
� � ¼ 0 for any

n and ψl
m

� ��≠ ψl
EP

� �� (see Supplementary Note 2). Since the vectors
Jrn
�� �

are linearly independent by construction (see Supplementary
Note 2 for a brief proof), it follows that they span the domain
DEP, and thus complete the basis. Note, however, that while Jr1

�� �
is unique (up to a constant), there is a freedom in choosing the set
of other vectors Jrn

�� �
for n > 1. Intuitively, this situation is similar

to fixing the z axis in three dimensions and rotating the x and y
axes in the x–y plane around the origin. Thus, in general extra
normalization conditions are required in order to fix the choice of
the vectors Jrn

�� �
. Here, we will not be concerned with the exact

orientation of Jrn
�� �

. Another important observation is that some
of the Jrn

�� �
vectors are self-orthogonal (see Supplementary

Note 2). Thus, while any arbitrary input can be decomposed
according to uj i ¼ ∑N�M

n¼1 cn ψr
n

�� �þ∑M
m¼1 dm Jrm

�� �
with the con-

stants cn ¼ ψl
nju

� �
evaluated using biorthogonality as before, the

coefficients dm cannot be obtained directly using the same
strategy. However, as we show in Supplementary Note 2, one can

use the vectors of (hJlmj) to define another set of vectors (h~J
l
mj) that

satisfy the relation h~JlmjJrni ¼ δm;n and hence dm ¼ h~Jlmjui.
Next, given the above input signal uj i, we seek a similar

expansion of the output, i.e., in the form:
ĜEP uj i ¼ ∑N�M

n¼1 ~cn ψr
n

�� �þ∑M
m¼1

~dm Jrm
�� �

, or equivalently ðωÎ �
ĤEPÞf∑N�M

n¼1 ~cnjψr
ni þ∑M

m¼1
~dmjJrmig ¼ ∑N�M

n¼1 cnjψr
ni þ∑M

m¼1 dmj
Jrmi. By applying the operator ωÎ � ĤEP to each term inside the
summation and rearranging, we obtain a sum of the form
∑N�M

n¼1 Cn ψr
n

�� �þ∑M
m¼1 Dm Jrm

�� � ¼ 0. By noting that all the vectors
ψr
n

�� �
and Jrm

�� �
are linearly independent, we find that the above

relation can be satisfied if and only if all the coefficients
Cn=Dm= 0 for every n and m. This finally leads to the
expansion (see Supplementary Note 4 for details):

ĜEP ¼ ∑
N�M

n¼1

ψr
n

�� �
ψl
n

� ��
ω�Ωn

þ ∑
M

m¼1
∑
M

k¼m
αðmÞ
k

Jrm
�� ��

~J
l
k

��
ðω�ΩEPÞk�mþ1 ;

ð6Þ

where the coefficients α’s are defined by the recursive relations
αðmÞ
m ¼ 1; αðmÞ

k ¼ αðmÞ
k�1χk for m < k ≤M (see Supplementary

Note 4).
We now pause to make several comments on the above

expression. First, the expansion series is finite and hence no
convergence analysis is needed. Second, due to the same reason
(finite terms in the series), its completeness is guaranteed.
Importantly, the above expression is exact and non-perturbative
despite the fact that the spectrum of Ĥ contains an EP. Another
important observation is that the expansion in Eq. (6) is not
unique: a different choice of the vectors Jrm

�� �
with m > 1 will lead

to a different series (though more complicated one). Third, unlike
previous works that considered small systems97, expressions for
the resolvent that applies only in the vicinity of EPs98 or
expansions of the resolvent as a power series of the Hamiltonian
itself99, the above expansion is valid everywhere in the frequency
domain for any system with arbitrary size and is expressed in
terms of the eigenvector and canonical vectors. Finally, we
emphasize a crucial point: expression (6) for the resolvent is
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evaluated for a system “with” an EP not “at” an EP. This semantic
difference has caused confusion in the literature, mainly
conveying an impression that these systems can be studied only
within the context of perturbation analysis. An EP is a
characteristic of the system itself, not the probe. The former
can contain an EP in its spectrum that lies in the complex plane
away from the real axes and still be probed with a signal that has a
real frequency to obtain finite response without any singularities
or divergences. On the other hand, probing the system at an EP
entails either using a probe with complex frequency100–102 or
supplying enough gain to bring the complex exceptional
eigenvalue to the real axis. In both cases, the resolvent will
diverge, which corresponds to the fact that the amplitude of the
oscillations will grow indefinitely. In reality, however, this does
not happen because nonlinear effects regulate the dynamics
(think of gain saturation in laser systems for instance).

Super-Lorentzian frequency response. In realistic configura-
tions, a resonant structure interacts with its environment via
certain scattering or coupling channels defined by the geometry.
One can either probe the system via individual channels or by
excitation profiles that are superpositions of several channels. At
the abstract level, the concepts of channel and excitation profile
are the same since they are just related by unitary transforma-
tions. In this section, we will focus on channels that directly excite
the vectors ψr

n

�� �
and Jrm

�� �
and analyze their scattering/coupling

characteristics. We begin by rewriting the expression in Eq. (6)
after unfolding the double summation:

ĜEPðωÞ ¼ ∑
N�M

n¼1

ψr
n

�� �
ψl
n

� ��
ω�Ωn

þ ∑
M

k¼1

αð1Þk Jr1
�� ��

~J
l
k

��
ðω� ΩEPÞk

þ ∑
M

k¼2

αð2Þk Jr2
�� ��

~J
l
k

��
ðω�ΩEPÞk�1

þ � � � þ JrM
�� ��

~J
l
M

��
ω�ΩEP

:

ð7Þ
Clearly, an input signal with a profile uj i ¼ ψr

n

�� �
will only

excite the mode ψr
n

�� �
with a Lorentzian response centered at Ωn

as expected. Similarly, an input that matches the exceptional
vector uj i ¼ Jr1

�� �
will excite only the mode Jr1

�� �
, also with a

Lorentzian response. A more interesting situation arises when the
excitation profile coincides with a higher-order Jordan vector, say
uj i ¼ Jrk

�� �
. In that case, according to Eq. (7), the exceptional

eigenvector will be excited with a frequency response that features
an kth order super-Lorentzian lineshape (i.e., a Lorentzian
function raised to the power k). In addition, each of the states
Jrm
�� �

with 1 <m ≤ k (which are not eigenstates of ĤEP) will be also
excited with a frequency response that corresponds to a super-
Lorentzian of order k−m+ 1. At this point, it is important to
reiterate our previous comment on the freedom of choosing the
set Jrm

�� �
. While Jr1

�� �
is unique, the vectors Jrm

�� �
, 1 <m ≤M are not.

The consequences of this observation are not trivial. For instance,
in order to excite the exceptional vector with a certain super-
Lorentzian response, one can choose from a continuous manifold
of excitation profiles. To illustrate this, we consider the excitation
of Jr1

�� �
with a second-order super-Lorentzian response. This can

be done by using the input uj i ¼ Jr2
�� �þ x Jr1

�� �
, where x is a free

parameter. We anticipate that these general results, which are
illustrated schematically in Fig. 5b, will be instrumental in
developing a more comprehensive understanding of the quantum
limits of several non-Hermitian optical devices (such as lasers,
amplifiers, and sensors) operating at EPs. Equally important, the
above analysis provides a complete picture of how the frequency
response of non-Hermitian systems with EPs scales as a function

of the input profile, which can be of great utility in engineering
devices that rely on this feature, such as optical amplifiers with
relaxed gain-bandwidth restrictions29,103. In addition, our
analysis can be also used to classify the input channel according
to their interference effects inside the resonant system as we
explain in detail in Supplementary Notes 5 and 6. Finally, we note
that, so far we have focused on situations where the system has
only one EP. Supplementary Note 7 discusses the case when the
spectrum of the relevant Hamiltonian has multiple EPs.

Connection with experiments. Here we present illustrative rea-
listic examples that demonstrate some of the results discussed in
this work as well as the power and insight provided by our
formalism which expresses the resolvent operator as an exact
expansion series of the right/left canonical vectors.

Our first example is depicted in Fig. 6a. It consists of a
microring resonator evanescently coupled to two identical
waveguides, with one port of, say, W1 terminated by a mirror.
This geometry was introduced in ref. 23 and shown to exhibit an
exceptional surface with potential applications for sensing and
controlling spontaneous emission31. In addition, it has been
recently implemented using an on-chip microsphere resonator
with the feedback realized using a fiber loop mirror104. It is
described by the following set of equations:

i
d
dt

a1ðtÞ
a2ðtÞ

	 

¼ ωo � 2iγ 0

κ ωo � 2iγ

	 

a1ðtÞ
a2ðtÞ

	 

þ i

ffiffiffiffiffi
2γ

p b1ðtÞ
b2ðtÞ

	 


Q1 ¼�
ffiffiffiffiffi
2γ

p
a2

Q2 ¼ P1 �
ffiffiffiffiffi
2γ

p
a2;

ð8Þ

where, ωo is the resonant frequency, γ is the decay rate of the
resonant mode into each waveguide. In addition, κ=− 2iγ∣r∣eiϕ,
where ∣r∣ is the absolute value of the mirror amplitude reflection
coefficient, and ϕ≡ 2βL+ ϕr is a phase factor that quantifies the
phase of the mirror reflectivity, ϕr, and its distance from
the resonator, L, where β is the propagation constant in the
waveguide.

The resolvent in this case, which we will denote by G2 can be
evaluated in closed form and is given by:

G2ðωÞ ¼
1

Δωþ2iγ 0
κ

Δωþ2iγð Þ2
1

Δωþ2iγ

2
4

3
5; ð9Þ

where Δω= ω− ωo. It is straightforward to show that ψr
EP

�� � �
Jr1
�� � ¼ ½0; 1�T and Jr2

�� � ¼ χ
κ ½1; 0�T . Note that Jr1jJr1

� � ¼ 1, while
Jr2jJr2
� �

≠1, i.e., the latter is not normalized. If we now consider the
two normalized inputs

��b1;2� ¼ α1;2
��Jr1;2�e�iωt with α1= 1

and α2 ¼ κ
χ we find that the normalized stored energies are

given by E1

� � ¼ 2γ
Δω2þ4γ2 and E2

� � ¼ 2γ
Δω2þ4γ2 1þ 4γ2jrj2

Δω2þ4γ2

h i
. Thus,

η � E2h i
E1h i ¼ 1þ 4γ2jrj2

Δω2þ4γ2 > 1. At resonance when Δω= 0, we find

that η= 2 when a completely reflecting mirror, r= 1, is used.
To confirm these predictions, we consider a realistic photonic

implementation of the structure of Fig. 6a as explained in detail in
Supplementary Note 8. It is straightforward to show that
excitations from ports P1,2 are mode-matched with jJr1;2i,
respectively. Figure 6b plots the value of η as a function of the
frequency detuning as obtained from the full-wave simulations
(black dots) as well as by direct substitution in the closed-form
expression for η described above (red line). On the other hand,
Fig. 6c, d depicts the steady-state field distribution as obtained by
full-wave analysis (see Supplementary Note 8 for the details of the
optical parameters of the structure used in the simulations) inside
the system under the two different excitations at resonance. In
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Fig. 6 Optical energy inside a photonic resonator with a second-order EP. a A schematic of a photonic structure that exhibits a second-order EP: it
consists of a microring resonator evanescently coupled to two identical waveguides, one of which is terminated with a mirror at port W1. The exceptional
eigenstate

��J r1 � ¼ ��ψ r
EP

�
can be excited through port P1, while the generalized eigenstate

��J r2� can be excited via port P2. b Plot of η (enhancement factor of
stored energy in the microring) when the system is excited by an input that matches

��J r2� compared to an excitation matching ψEP

�� �
as a function of

frequency detuning near resonance as obtained by full-wave simulations (black dots) and the closed-form expression (red line). c, d Distributions of the
electric field amplitudes under excitation either from ports P1 or P2 are plotted. As expected from the analysis, the case when

��u1� ¼ ��ψ r
EP

�
leads to energy

storage in both the CW and CCW modes as evidenced by the standing wave pattern in (d). All simulations were performed by using the finite element
method available from the COMSOL software package. The optical parameters of the structure and the simulations details are discussed in Supplementary
Note 8.

Fig. 5 Structure of the eigenspace and its fingerprint on the linear response. a The underlying vector space associated with the non-Hermitian
Hamiltonian Ĥ can be divided into two subspaces: Dϕ ¼ f ψ r

n

�� �
: n ¼ 1; 2; ¼ ;N�Mg and DEP ¼ f J rm

�� �
: m ¼ 1; 2; ¼ ;Mg. The former is spanned by the

non-degenerate right eigenvectors of Ĥ, while the latter is spanned by the right generalized eigenvectors. Note that in this classification, the degenerate (or
exceptional) vector belongs to DEP. The dual spaces D d

ϕ and D d
EP are defined in a similar fashion for the left ordinary and generalized eigenvectors.

b Pictorial representation of the linear response associated with a non-Hermitian system having an EP. Typical Lorentzian response arises due to coupling
between an input and an output channel that belong to the same modal class. On the other hand, super-Lorentzian responses emerge when the input signal
matches a particular generalized eigenmodes of certain order while the output signal matches a lower order generalized eigenvector (including the
exceptional vector) according to Eq. (6). The arrows, together with the legends, illustrate a few possible responses explicitly. The symbol Lm indicates a
super-Lorentzian response of order m, i.e., a Lorentzian raised to the power m.
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order to study the spectral response of this configuration, we plot
the scattering coefficients j Q1

P1
j2 and j Q2

P2
j2 in Fig. 7a, b, where the

black dots represent data obtained from full-wave simulations
and red line indicates theoretical results. As predicted by our
analysis [see Eq. (8)], j Q1

P1
j2 which corresponds to an excitation

and collection from the exceptional vector features a Lorentzian
response, while j Q2

P2
j2 which corresponds to an excitation

matching Jr2
�� �

and collection matching ψr
EP

�� �
follows a super-

Lorentzian of order two. This simple but intuitive example
demonstrates a subtle property of open systems, namely that their
response lineshape is not unique but rather depends on the input/
output channel configuration. Not only this feature arises
naturally from our analysis, but the exact expansion series for
resolvent operator [see Eq. (6)] allows us to tailor this response at
will by selecting the appropriate coupling channels. Importantly,
we stress that this scenario is different from the previous works in
which a control parameter, such as coupling strength, frequency
detuning, or loss imbalance between resonance modes, is tuned to
feature a Fano, EIT, or an ATS lineshape105–108. In contrast, for
the system studied here, there is no such control parameter: one
can obtain a Lorentzian or a squared-Lorentzian lineshape by
choosing the appropriate input and output channel pairs.

Our analysis extends beyond the simple input/output evanes-
cently coupled channels and can be useful also in understanding
light-matter interaction at EPs. As an example, consider the
geometry depicted in Fig. 8a which consists of a quantum dot
embedded inside a microring-waveguide-mirror system imple-
menting an exceptional surface. This system was investigated
recently and it was shown that it can be used to control the rate of
spontaneous emission and Purcell factor31,36,77. Let us now
assume that two single-photon detectors, D1,2 are located as
shown in the figure. What would be the spectrum of the detected
photon as measured by each detector after repeating the
experiment a large number of times? This question can be
answered only by calculating the Green’s operator matrix
elements. While this task can be done easily by a matrix
inversion in this simple case (see ref. 31 for more details), this
approach does not give any insight into the physics of the system.
On the other hand, by applying our formalism, it is straightfor-
ward to see, based on the photon trajectories, that detector D1 will
report a Lorentzian response while D2 will report a superposition
of Lorentzian and super-Lorentzian of order two. More
rigorously, the system here is described by equations similar to
that presented in Eq. (8) (see ref. 31 for details), where here jb1;2i
represent the emission from the quantum dot and are given by:

b1ðtÞ; b2ðtÞ
� �T ¼ Jee

�iωe t

i
ffiffiffiffi
2γ

p e�iϕE ; eiϕE
� �T

, where ωe is the transition

frequency of the QE, the phase ϕE= βd, and β is the propagation
constant of the modes (see ref. 31 for a detailed derivation). By
using the resolvent in Eq. (9), the response of the system is

calculated as: G2ðωeÞ½Jee�iϕE ; Jee
iϕE �T ¼ Je

Δωþ2iγ ½e�iϕE ; eiϕEþ
κ

Δωþ2iγ e
�iϕE �T . The above expression indicates that the power

spectrum of CW mode associated with the microring structure in
Fig. 8a is Lorentzian while that of the CCW mode features a
superposition of Lorentzian and square-Lorentzian terms. In
addition, by recalling that κ is a function of the mirror reflectivity
and location, it is straightforward to see that the interference
effects associated with the mixed term will vary as a function of
the optical path between the mirror and the emitter Δϕ≡ 2ϕE−
ϕ= 2β(d− L)+ ϕr. Figure 8b depicts the ratio of the stored

energy in the CCW mode to that in the CW mode ηc �
E2h i
E1h i ¼

j1� 2iγjrje�iΔϕ

Δωþ2iγ j2 as a function of the mirror reflectivity ∣r∣ and Δϕ,

which clearly highlights how the response of the intra-cavity
modes depends on the relative position of the mirror with respect
to the emitter. For completeness, we also plot the normalized

output power spectra PD1;D2 ¼ j
ffiffiffiffi
2γ

p
Q1;2

Je
j2 detected by D1,2 as a

function of the normalized frequency detuning Δω
γ as shown in

Fig. 8c, d, respectively. As expected, PD1 ¼ 4γ2

Δω2þ4γ2 is Lorentzian,

while PD2 ¼ 4γ2

Δω2þ4γ2 j1� 2iγjrje�iΔϕ

Δωþ2iγ j2 features an interference

between a Lorentzian and square-Lorentzian terms. While the
above example considers realistic scenarios of a quantum dot
having a small size compared to the wavelength of light, the
notion of controlling spontaneous emission using exceptional
points could be also relevant to other setups involving artificial
atoms with larger size where the dipole approximation fails109, as
well as systems consisting of multiple quantum emitters110.

Having demonstrated the utility of our approach and the
insight it provides using a simple system with one resonant
element, we now consider a more complex system that consists of
a PT-symmetric arrangement and an asymmetric delayed feed-
back as shown in Fig. 9a. In the absence of the mirror, this
structure exhibits two independent EPs, each of which of order
two. The introduction of the mirror causes these two EPs to
coalesce, forming an EP of order four30. Despite the fact that this
system consists of only two ring resonators, the presence of
inhomogeneous gain and loss distribution makes it difficult to
trust intuition in this case. On the other hand, brute-force
analysis by evaluating the scattering coefficients one at a time
does not provide much insight into the scattering profile. To
analyze this system using our formalism, we first consider the

Fig. 7 Illustration of the Lorentzian and square-Lorentzian responses of the system. a An input signal is launched form port P1 (see Fig. 6a) and the

normalized output power j Q1
P1
j2 with Lorentzian distribution is observed at port Q1. b For an input signal from port P2 a square-Lorentzian response for the

normalized output power j Q2
P2
j2 is collected at port Q2. Red solid line shows the theoretical results while black dots show results obtained through simulations.
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Hamiltonian matrix describing this system as written in the
natural basis of the individual, isolated ring resonators
½aCW; bCCW; aCCW; bCW�T :

Ĥ4 ¼

ωo � iγ� iJ J 0 0

J ωo � iγþ iJ 0 0

κ 0 ωo � iγ� iJ J

0 0 J ωo � iγþ iJ

2
6664

3
7775;

ð10Þ
Here, ωo is the resonant frequency, γ is the decay rate of the
resonant mode into each waveguide, J is the coupling rate
between the two rings and also the gain/loss factors in the yellow/
green rings, respectively, i.e., the system respects PT symmetry. In

addition, κ=− 2iγ∣r∣eiϕ, where ∣r∣ is the absolute value of the
mirror reflection coefficient, and the phase factor ϕ quantified the
phase of the mirror reflection coefficient and its distance from the
adjacent resonator. The right (canonical) eigenvectors associated
with this Hamiltonian are given Jr1

�� � ¼ ½0; 0;�i; 1�T ,
Jr2
�� � ¼ ½0; 0; 1; 0�T , Jr3

�� � ¼ ½1; i; 0; 0�T , and Jr4
�� � ¼ ½0; 1; 0; 0�T .

These vectors are calculated based on the following choice for
constant coefficients χ0s [see Eq. (5)]: χ2= χ4= J, χ3= κ. The
corresponding left bi-orthogonal vectors, which satisfy the

relation
�
~J
l
njJrm

� ¼ δnm, are then given by:
�
~J
l
1

�� ¼ ½�i; 1; 0; 0�,�
~J
l
2

�� ¼ ½1; 0; 0; 0�, �
~J
l
3

�� ¼ ½1; i; 0; 0�, and
�
~J
l
4

�� ¼ ½0; 0; 0; 1�. The
scattering profile and spectral response of the system can be

Fig. 9 A PT-symmetric system with unidirectional coupling between the CW/CCWmodes. a A schematic of the studied system, which was introduced in
ref. 30 and shown to exhibit an EP of order 4. J is the gain/loss factor. P1,2,3 are input signals and Q1,2,3 are output signals. aCW,CCW and bCW,CCW are CW
and CCW modes of the cavities. b Pictorial depiction of the systematic approach to obtain the system’s linear response using the formalism presented in
this work. b1

�� �
is the excitation profile expanded with respect to the right eigenvectors f Jrn

�� �g. f�~Jln��g are the corresponding left bi-orthogonal vectors. Ĝ is
the resolvent and P1 is the projection operator assigned to the output channel. Ŷ quantifies the direct scattering between incoming and outgoing channels
and Γ̂ describes the coupling between the resonant modes and the input/output channels.

Fig. 8 Spontaneous emission at exceptional surfaces. a A photonic system consisting of a quantum dot embedded in a microring resonator evanescently
coupled to a waveguide with an end mirror that induces a unidirectional coupling between these modes. The emission from the quantum dot couples to the
CW and CCW modes (a1,2) of the ring and eventually detected by the detectors D1,2. b The ratio ηc of the stored energy in the CCW mode to the stored
energy in the CW wave is plotted for the resonant frequency ω=ωo. c The normalized power detected by D1 has a Lorentzian distribution. d The
normalized power detected by D2 for Δϕ= 0 (red curve) and Δϕ= π (blue curve) are shown for ∣r∣= 1. As explained in the text, the detected power
spectrum at D2 features an interference between a Lorentzian and a square-Lorentzian terms, with the final outcome strongly depending on the relative
position between the mirror and the quantum dot as quantified by the parameter Δϕ.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30715-8 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3281 | https://doi.org/10.1038/s41467-022-30715-8 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


then evaluated by using Eq. (6) and using the following systematic
steps: (1) Write down the excitation profile in the basis of the bare
eigenmodes aCW, aCCW, bCW, and bCCW; (2) Express this vector in
the basis of the right (canonical) eigenvectors; (3) Obtain the
response using Eq. (6); (4) Assign a projection operator to each
output channel. For instance, a unit input signal from port P1 will
directly couple only to the field amplitude bCCW (see Fig. 9a), and
hence we have the input vector b1

�� � ¼ ½0; 1; 0; 0�T ¼ Jr4
�� �

.
Similarly, the vectors b2

�� � ¼ ½0; 0; 0; 1�T ¼ Jr1
�� �þ i Jr2

�� �
and

b3
�� � ¼ ½1; 0; 0; 0�T ¼ Jr3

�� �� i Jr4
�� �

correspond to unit input signals
from ports P2 and P3, respectively. By using Eq. (6), we can now
obtain the Green’s operator, and hence the linear response for
each different excitation. For instance, in the case of P1, we obtain

G4ðωÞ f 1
�� � ¼ G4ðωÞiΓ̂ b1

�� � ¼ i
ffiffiffiffiffi
2γ

p J2k
ðΔωþiγÞ4 Jr1

�� �þ Jk
ðΔωþiγÞ3 Jr2

�� �þh
J

ðΔωþiγÞ2 Jr3
�� �þ 1

ðΔωþiγÞ Jr4
�� ��, where f 1

�� � ¼ iΓ̂ b1
�� �

and
ffiffiffiffiffi
2γ

p
corre-

sponds to the element of the coupling matrix Γ̂ between the input
channels and the interior of the resonator system. Note that this
expression describes the field amplitude inside the resonators. To
calculate the output, one must project this field amplitude on the
output channel. For illustration purpose, let us consider the
output channel Q1, which is directly coupled to the bCW, i.e., it
corresponds to the vector ½0; 0; 0; 1�T ¼

��Jr1�þ i
��Jr2�. Thus one

can assign the projection operator P1 ¼ Jr1
�� ��

~J
l
1

��þ i Jr2
�� ��

~J
l
2

�� to

the output channel Q1. Similarly, the projection operators P2 ¼
Jr4
�� ��

~J
l
4

�� and P3 ¼ Jr2
�� ��

~J
l
2

�� describe output channels Q2 and Q3,
respectively. Finally, the output signal is given by:

Pi Ŷ
��bj�� Γ̂

T
Ĝ
��f j�

h i
, where the matrix Ŷ quantifies the direct

coupling between the input and output channels whereas the

matrix Γ̂
T

describes the coupling between the interior of the
resonators and the output channels. By applying the above-
sketched recipe for an input/output from ports P1 and Q3, we
find: Q3 ¼ �i 2γJk

ðΔωþiγÞ3. In other words, counter-intuitively the

response features a super-Lorentzian of order three, despite the
fact that the system exhibits an EP of order four. This is, however,
fully consistent with our theoretical analysis since P1 corresponds
to Jr4

�� �
and Q3 corresponds to Jr2

�� �
as demonstrated by

mathematical structure of Eq. (6), and also pictorially in Fig. 5b.
Figure 9b summarizes the steps descried in this section.

Discussion
In this work, we have presented a detailed analysis of the linear
response associated with non-Hermitian systems having EPs and
showed that a non-diverging resolvent associated with the sys-
tem’s Hamiltonian can be expressed as an exact series expansion
of the ordinary and generalized eigenfunctions of the Hamilto-
nian, i.e., without resorting to any perturbation approximation.
Importantly, our formalism revealed a feature that escaped
attention in previous studies, namely that the response lineshape
scaling can be engineered by a judicious choice of the input and
output channels. This observation is crucial for tailoring light-
matter interactions at EPs. In order to emphasize this point and
also clarify the application of our formalism, we have considered
and analyzed several realistic photonic examples and we found
excellent agreement between results obtained from full-wave
simulations and our formulas. In doing so, we have also
demonstrated an interesting effect analogous to adjoint coupling
but rather in microring cavity setups. In other words, we have
shown that more optical energy can be stored in a microring
cavity system having an EP when the channel associated with the
input signal matches the generalized eigenmode rather than the

actual ordinary eigenmode of the structure. We emphasize that
although the examples in this manuscript are chosen from the
optical domain, our results are general and applicable to other
physical systems that can be described by similar coupled-mode
formalism. These include electronic, acoustic, mechanical, and
thermal systems. In addition, our framework provides a powerful
tool for understanding the complex interplay between non-
Hermiticity and other physical effects such as topological
invariants12,28,55,65,111,112, optomechanical coupling14,54,113–115

as well as quantum statistics10,24,72,103,116,117, to just mention a
few examples. This in turn may enable the engineering of more
elaborate schemes for controlling energy and information flow in
complex non-Hermitian systems. Finally, we remark that
understanding the linear response of non-Hermitian systems is a
very crucial step toward studying their noise. In this regard, we
expect our formalism to provide more insight into the noise
behavior in non-Hermitian systems and play a positive role in the
active debate on signal-to-noise ratio of EP-based sensors118–124.
We plan to explore some of these interesting directions in
future works.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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