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Relative, local and global dimension in complex
networks
Robert Peach 1,2,4, Alexis Arnaudon1,3,4 & Mauricio Barahona 1✉

Dimension is a fundamental property of objects and the space in which they are embedded.

Yet ideal notions of dimension, as in Euclidean spaces, do not always translate to physical

spaces, which can be constrained by boundaries and distorted by inhomogeneities, or to

intrinsically discrete systems such as networks. To take into account locality, finiteness and

discreteness, dynamical processes can be used to probe the space geometry and define its

dimension. Here we show that each point in space can be assigned a relative dimension with

respect to the source of a diffusive process, a concept that provides a scale-dependent

definition for local and global dimension also applicable to networks. To showcase its

application to physical systems, we demonstrate that the local dimension of structural protein

graphs correlates with structural flexibility, and the relative dimension with respect to the

active site uncovers regions involved in allosteric communication. In simple models of epi-

demics on networks, the relative dimension is predictive of the spreading capability of nodes,

and identifies scales at which the graph structure is predictive of infectivity. We further apply

our dimension measures to neuronal networks, economic trade, social networks, ocean flows,

and to the comparison of random graphs.
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One of the first forays into graph dimensionality originated
with Erdös, when he explored the embedding of graphs
into a minimum finite-dimensional Euclidean space1.

This line of study helped realise the algorithmic importance of
geometric interpretations of graphs2 but was unfortunately no
more than a by-product of the graph embedding process, yielding
little actionable information3. Later, by characterising the fractal
properties of complex networks, a measure of network dimension
was defined in terms of the scaling property of a network topo-
logical volume4–6. Whilst the fractal approach showed that
dimension plays an important role in characterising network
topology and governing dynamical processes such as
percolation7, it was initially limited to global descriptions of
network dimension. Extensions that considered the local scaling
properties of the volume at different topological distances from a
node were introduced in8 and have been used to define a node-
centric dimension that can identify influential nodes9,10 or vital
spreaders in infection models11.

However, methodologies based on fractal approaches assume
that the topological volume follows a power-law distribution, a
strong assumption, not necessarily accurate in real-world net-
works exhibiting heterogeneities5. Similarly, in classic papers such
as12, where the dimension of a node is defined using the decay
rate of diffusion, or in13, where a random walk is used to create
node embeddings, the same assumptions of homogeneity are
required and an intermediate scale of dynamics must be chosen.
As an example, with a diffusive source located at the joining of a
1-d and a 2-d space, by measuring the decay rate we immediately
ignore the heterogeneity of the space and simply find a dimension
somewhere between 1 and 2. In this paper, we posit that the
dimension at a node can, and should be, defined as relative to
another node. Using the solution of diffusion at other nodes
relative to the source we are able to define a relative dimension.

Results
Graph dimension from diffusion dynamics. We start with the
Green’s function of the diffusion equation in d dimensions

GtðxÞ ¼ 4πσtð Þ�d=2 exp �k xk2
4σt

� �
; ð1Þ

which, together with an initial condition as a delta function at
some position x0, provides a solution of diffusion equation as
p(x, t)=Gt(x− x0). From hereon, we refer to the time evolution
of p(x, t) as the transient response. As already considered in our
previous works14,15, these solutions have a maxima in their
transient response at any other location x, at timebt and amplitudebp given as

btðxÞ ¼ xk k2
2dσ

; bpðbtÞ ¼ 4eπσbt� ��d
2; ð2Þ

where, without loss of generality, x0= 0. Then, the dimension at
any point x relative to x0 can be evaluated to yield the definition
of the relative dimension

dðxjx0Þ ¼
�2 lnbp

ln 4eπσbt� � : ð3Þ

Clearly, on the Euclidean space Rd , the relative dimension is
always equal to d, independently of x and x0. However, if we
instead consider a compact subspace Ω � Rd , the diffusion
dynamics will deviate from those prescribed in Equation (1) due
to the presence of boundaries relative to x and x0.

The key property of Equation (3) that allows us to generalise it
to graphs is that the positions x0 and x are not explicit in the
right-hand side but only used as labels to initialise the diffusion
dynamics and measure the transient response. Consequently, the

relative dimension can be seen as intrinsic as it does not rely on
any Euclidean embedding, but only on the existence of a diffusion
dynamics on the original space. In particular, on graphs we can
use the standard diffusion process

∂tpðtÞ ¼ �Lp; ð4Þ
for a time-dependent node vector p(t) with L the normalised
graph Laplacian L= K−1(K−A) (corresponding to Euclidean
diffusion in the continuous limit16), where K is the diagonal
matrix of node degrees. Using a delta function at node i with
mass mi, p(0)= (0, 0,…,mi,…, 0), as our initial condition, the j-
th coordinate of the solution of Equation (4) (the so-called
transient response of j) is given by the heat kernel

pjðtjiÞ ¼ mi e
�tL

� �
ij: ð5Þ

By numerically solving (5), we can measure the time btij and
amplitude bpij at which a maximum appears in the transient
response peak (time evolution) of node j given a delta function
initial condition at node i. In analogy to Equation (3), we can
then compute the full N ×N matrix of relative dimensions with
elements

dij ¼
�2 lnbpij

ln 4eπσbtij
� � : ð6Þ

To illustrate the notion of relative dimension, we used a line
graph (Fig. 1a, b) as a discrete representation of the continuous
1-D interval. We observe that due to the boundaries, a large
fraction of nodes do not have a peak in transient response,
however for nodes near the source, where the boundary has no
influence, the relative dimension is close to the expected d= 1.
We emphasise that the dimension is not derived from a fit to the
data, as is common in measures of fractal dimensions4–6, but
instead is directly observed at the transient response relative to a
source node.

It is then natural to define the local dimension of a node i by
averaging the relative dimension of the nodes displaying a peak in
their transient responses relative to i before a given time τ as

DiðτÞ ¼
∑n

j¼1;j≠i dijðτÞ1btij < τ

∑n
j¼1;j≠i 1btij < τ

; ð7Þ

where 1btij < τ
is the indicator function. Whilst the local dimension

can be likened to a measure of centrality, it also directly captures
the dimension of the local embedding space. In Fig. 1c we observe
the increasing effect of the boundaries on local dimension as we
increase the scale. Near the centre of the line, and when
considering nearby nodes (at short scales), one can expect to
estimate a dimension near 1, or equivalently 2 for the grid shown
in Fig. 1d. We observe in Fig. 1c a central region with Di � 1 that
becomes increasingly smaller as scale τ increases; at short scales,
the central region is insensitive to the boundaries since the
diffusion has not yet reached them. This ‘boundary insensitive
central region’ collapses at τ= 1 (corresponding to the spectral
gap of the graph) when all nodes have aggregated information
about the boundaries of the line graph.

Finally, we can define a graph measure of dimension by
averaging the local dimensions across multiple scales to obtain
the global dimension

DðτÞ ¼ 1
n
∑
n

i¼1
DiðτÞ; ð8Þ

still dependent on τ. In Fig. 1e we display the global dimension
(as a ratio to the expected Euclidean dimension) for the line and
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grid graphs and their periodic equivalents (the circle and sphere
graphs respectively).

Whilst the periodic equivalents do not contain boundaries,
they are still constrained to a compact space that will introduce
topological effects, e.g., on a periodic graph the diffusion will
interact with itself at the opposite side to the initial condition. We
first notice that the non-periodic graphs display a maximum in
global dimension, likely when the effect of the boundaries is
lowest. In contrast, the periodic graphs do not exhibit a peak of
the same magnitude suggesting that the topological effect of a
compact space has less impact on the global dimension than the
presence of a boundary.

In the context of graphs as discrete Euclidean spaces, the
maximum of the global dimension curve (Fig. 1e) can be seen as
an approximation of the Euclidean dimension, whereas the global
dimension at largest scale characterises the effect of the boundary
or topology of the graph. It should be noted that for a non grid-
like graph, what is a boundary or a topological effect is not clear.
By increasing the graph size, and thus reducing the effects of the
boundaries, the global dimension converges towards the expected
Euclidean dimension (Fig. 1f). For the grid, the surface of the
boundary increases with respect to the volume of the space and
results in a slower convergence, whereas the global dimension of
the periodic grid is only affected by the topology, and thus
converges faster.

Delaunay meshes and inhomogeneities. To develop more
intuition for our measure of relative dimension, we consider a
simple constructive example using Delaunay meshes in Fig. 2.
Given a source-node located at the left boundary of a homo-
geneous delaunay mesh, relative dimension displays an inho-
mogeneous distribution radially from the source until nodes do
not have a transient response peak (Fig. 2(a)). Adding nodes near

the centre of the Delaunay grid graph creates local inhomo-
geneities modifying the underlying space, with a clear analogy to
the theory of gravitation and gravitational lensing17. In particular,
the added mass acts as a gravitational lens for the diffusion
process, whereby nodes directly behind the point mass that were
previously ’unreachable’ can be ’reached by the diffusion’ if the
mass is sufficiently large. Small masses are reminiscent of weak
lensing (Fig. 2(b)), whereas larger masses are closer to strong
lensing (Fig. 2(c))18. The behaviour of relative dimension in the
presence of inhomogeneities suggests that diffusion effectively
occurs on a curved geometry induced by the presence of the mass.
Moving the mass towards one boundary (Fig. 2(d)) shows some
coupling between the lensing effect and the presence of the
boundary. All three possible effects, boundaries, topology and
inhomogeneities, are thus important in the notion of dimensions,
but may not be distinguishable in more complex networks.
Nevertheless, our notion of relative dimension is able to capture
them all in one graph-theoretical measure.

Dimensions in protein structure: rigidity and allostery. We
then apply the relative dimensions on a real-world example with
allostery in proteins, a phenomena whereby a subset of a protein
(active site) can be modulated (activated or inactivated) through
binding of a ligand at another subset of the protein (allosteric
site). We examine three well-studied allosteric proteins: HRas
GTPas, Lac repressor and PDK1 in Fig. 3 (for more details on
these proteins, see Methods). In HRas, we find a low relative
dimension at the active site given the allosteric site as the source
(Fig. 3a(i)), but in reverse the allosteric site does not see a tran-
sient peak from the diffusion started in the active site (Fig. 3a(ii)).
Even if an exact statement of allosteric mechanism is not our
purpose here, it is interesting to note that a low relative dimen-
sion suggests a more ‘direct’ or ‘funneled’ communication from

Fig. 1 The relative, local and global dimension. a-c Line graph example with n= 500 nodes representing the interval [0, 1]. a The relative dimension of
nodes given a source located at x= 0.33. The grey lines are the transient responses of the (non-source) nodes and the position of the peaks in the transient
responses are highlighted by dots, coloured by their relative dimension. Top inset, a histogram of transient response peaks where the far right bin
corresponds to nodes where no peak in the transient response was observed, and thus no relative dimension could be calculated. b The relative dimension
as a function of position in [0, 1] shows a plateau near drel= 1 for nodes near the source. The grey region indicates the set of nodes for which no peak was
observed. c The local dimension of each node as a function of scale, where above τ= 1, the stationary state is attained and the local dimension is stable.
d The local dimension of the grid graph (n= 500) at scale τ= 0.1, showing inhomogeneities due to the boundaries similar to the line graph. e The evolution
of the global dimension DðτÞ (normalised by the expected Euclidean dimension) as a function of scale for the same line and grid graph as well as their
periodic equivalent graphs, illustrating differing behaviours emerging from the influence of the boundaries or the topology. f For the same graphs as in e, we
increase the number of nodes in each dimension to measure the convergence rate of maxτDðτÞ to the underlying Euclidean dimension deucl, showing a
faster convergence for lower dimensional spaces and periodic grids.
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the allosteric site to the active site. Moreover, the asymmetry of
this communication may relate to different functions for each half
of the protein.

The lac repressor protein is constructed from two separate
monomers and it is generally understood that binding of both
NPF molecules (one on each monomer) is required to activate the
lac repressor via a cooperative allosteric effect acting on the
hinge region19. Given that the allosteric mechanism is coopera-
tive, we do not expect a direct communication to the active site
from the allosteric site, and instead we examined the change in
relative dimension upon using a single allosteric site as a source
(Fig. 3b(i)) vs. both allosteric sites as sources simultaneously
(Fig. 3b(ii)). We find that when binding NFP to just one
monomer the relative dimension across the entire protein is lower
when compared to using both allosteric sites as sources of
diffusion.

Finally, binding at the PDK1 interacting fragment (PIF) on
PDK1 triggers a signal to start the phosphorylation of the
activation loop of the substrates at the ATP pocket, or active
site20, and thus we would expect direct communication between
the active and allosteric sites. Using the allosteric site as the
source of our diffusion (Fig. 3c), we find that a large region of
PDK1 does not return a relative dimension (grey region in
Fig. 3c). We remind the reader that to calculate relative
dimension we must observe a peak in the transient response.
Of those residues for which relative dimension was computed, the
activation loop displays the lowest relative dimension to the
allosteric site. We hypothesise that a lower dimension pathway
from the allosteric to active site will improve the efficiency of
communication transfer since it becomes more direct.

Whilst the relative dimension provides insights into allostery,
we can leverage the local and global dimension to examine
protein dynamics. In Fig. 4(a), we show a strong correlation
between the local dimension and log10ð1=RMSFÞ of residues for
Fig. 4a(i) an unglycosylated antibody CH2 domain and Fig. 4a(ii)
an Oestrogen Related Receptor g protein. The results here suggest
that a residue with a larger local dimension is associated with a
lower flexibility and thus lower degrees of freedom.

To examine this further, we plotted the Pearson correlation
between local dimension and log10ð1=RMSFÞ for 12 randomly
chosen proteins in Fig. 4(b). We see that at middling to long time
scales of diffusion the correlation plateau with an average at about
σ= 0.55 suggesting that the relationship between local dimension
and protein flexibility is robust. Calculating the global dimension
for the same set of proteins in Fig. 4(c), we find a correlation
(Pearson σ= 0.73) between global dimension and the
log10ð1=hRMSFiÞ of a protein. The global values of dimension
sit between 1.36 and 1.5 for the 12 proteins. These results agree
with studies that show spectral dimension is generally < 2 and
decreases with an increase in flexibility12,21.

We now take a deeper look at Aquifex Adenylate Kinase
(ADK), a dynamical protein with three subdomains: the lid, AMP
and core domains. We find that the closed conformation displays
a higher local dimension due to the presence of stabilising
interactions, not present in the open conformation, creating a
more compact structure (Fig. 4d). The AMP and lid domains are
known to open and close around substrate. We find that both
have a lower local dimension relative to the core domain (Fig. 4e)
and that the AMP domain to have a lower average local
dimension than the lid domain in both conformations. The latter
we validated using experimental fluorescence correlation spectro-
scopy that shows that the AMP domain to open and close at a
faster rate (16.2 μs) than the lid domain (46.6 μs)22,23.

Local dimension as a means to differentiate node roles. To
further explore our measure of dimension in the context of
identifying roles of nodes within the network, we present two
examples of real-world complex networks in Fig. 5 where nodes
have pre-assigned roles. The first example explores the world
trade network (consisting of 80 nodes) of metal manufacturing in
199424, where nodes correspond to countries and directed
incoming edges represent the amount of weighted imports from
another country. A well established concept in economic theory
partitions countries based on their positioning (1. core, 2. semi-
peripheral, 3. peripheral) within the world economy25. For the
largest scale, we find significant differences between distributions
of the local dimension for each of the world partitions (Fig 5b).
There is almost no overlap in local dimension between the two
extreme partitions, core and periphery, but the distribution of
local dimension for semi-peripherical nodes is wider, suggesting
that this class of countries is more diverse.

Our second example is the undirected connectome (N= 377)
of the nematode Caenorhabditis elegans (Fig. 5b(i)) with the
inclusion of muscles, important for examining control26 (https://
www.wormatlas.org/neuronalwiring.html), and where scales
have previously been shown as important27. We compare the
dimension of the three different neuronal types (inter neurons,
sensory neurons, motor neurons) and muscles, at long scales in
Fig. 5b(ii), and find significant differences in their local
dimensions. Inter-neurons are central nodes of neural circuits
that enable communication between sensory and motor
neurons, thus we would expect them to sit in a higher-
dimensional space, where muscles are peripheral as they display
the lowest local dimension, likely aiding with the direct
propagation of signals. In addition, we find the highest
dimensional nodes are the important control motor neurons
AVA/AVB neurons (both left and right), resulting in uncon-
trolled motion if ablated26 (see Supplementary Table 1 for top 40
local dimension neurons).

Fig. 2 Inhomogeneities and lensing. The relative dimension from a point source (pink dot) to other nodes in a Delaunay grid graph (edges not shown).
Grey nodes indicate nodes for which no transient response peak was detected. The regular grid is shown in a, and an additional mass is added in b–d, with
varying mass and position, showing a effect similar to gravitational lensing.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30705-w

4 NATURE COMMUNICATIONS |         (2022) 13:3088 | https://doi.org/10.1038/s41467-022-30705-w |www.nature.com/naturecommunications

https://www.wormatlas.org/neuronalwiring.html
https://www.wormatlas.org/neuronalwiring.html
www.nature.com/naturecommunications


Fig. 3 Relative dimensions in allosteric proteins. Protein residues (amino acids) are coloured according to their relative dimension to the source region,
where grey indicates that no peak in the transient response was identified and thus relative dimension could not be calculated. a The relative dimensions of
all atoms in HRas GTPase (PDB ID: 3K8Y) given (i) the allosteric site and (ii) the active site as the source of diffusion. b Relative dimension in the multi-
allosteric site Lac Repressor protein (PDB ID: 1EFA) given a (i) single allosteric site source and (ii) for both allosteric sites simultaneously. c The relative
dimension give the allosteric site as the source in PDK1 (PDB ID: 3ORX).
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Fig. 4 The relationship between root-mean-square fluctuations (RMSF) of protein residues and their local and global dimension. a The log-inverse
RMSF vs local dimensionality for each residue in i unglycosylated antibody CH2 domain, ii Oestrogen Related Receptor g. b The positive correlation
(0.539) between local dimension and log-inverse RMSF at the residue level across 12 different proteins as a function of scale. c A strong positive
correlation between global dimensionality of 12 proteins against log-inverse RMSF. d The local dimension of each residue mapped onto Aquifex Adenylate
Kinase in the open (PDB ID: 2RH5) and closed (PDB ID: 2RGX) conformations and e plotted by residue id.

Fig. 5 Spatially embedded networks with long range interactions. a i The local dimension (coloured nodes) of the 1994 world trade dataset 24 (τ= 0.57).
Countries are coloured according to their position in the world partition (grey countries not in dataset). ii Comparison of local dimension by world partition
shows a decreasing local dimension as the countries become more peripheral. b The C. elegans connectome consisting of 279 neurons and 98 muscles
coloured by neuron type/muscle are shown in i. In ii, the boxplots of local dimensions at large scale show that the neuron types statistically differ. All
statistical tests were Mann–Whitney–Wilcoxon test two-sided with Bonferroni correction, ****p ≤ 0.0001).
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Local dimension as scale-dependent measure of centrality.
Measures of centrality are some of the most fundamental tools in
network theory. Here, we show that the local dimension can also
be utilised as a scale-dependent centrality measure, such as those
derived in15,28. To illustrate the use of the local dimension as a
centrality measure for complex networks we analysed two data-
sets where the importance of nodes changes substantially
with scale.

First we look at the global network of ocean surface currents
derived from the Global Drifters programme (http://www.aoml.
noaa.gov/phod/gdp/index.php) constructed by29 (https://github.
com/maurofaccin/ocean_surface_dataset). Each node is asso-
ciated with a small region of the ocean, and an edge between
two nodes counts the number of drifters passing from one to
another region in a given time interval T. For short times, such as
T= 16 days, the graph connectivity remains local with respect to
the spatial embedding of the nodes on the earth surface, but with
larger times (T= 208 days) the connectivity becomes long range

and complex (see also the degree distribution in Supplementary
Fig. 1). We can examine both time intervals at short and long
scales of our local dimension (Fig. 6a); the small or large scale
local dimension provide different perspectives on regions of high
dimensions, related to regions where the ocean flow has a more
complex dynamics. At small time intervals and short scales
(Fig. 6a(i) top), we identify locally high dimension regions such as
the Gulf stream or the Pacific garbage patch where drifters remain
trapped and circulate quickly. If we look at long time intervals
(Fig. 6a(ii)), we notice bands of high dimension which represent
the boundaries between main gyres, such as that along the
equator. At short scales, the drifters have lower dimensional
dynamics while they follow these currents. However, at longer
scales the drifters can drift north or south of the equator and be
further transported to widely different regions throughout the
world, and thus the dimension of the boundaries between major
ocean currents is larger. We also note a visual similarity between
the small time interval and long scale (Fig. 6a(i) bottom) and long

Fig. 6 Illustration of local dimension at several scales in two dataset. In a, we considered two graphs extracted from the ocean drifter by ref. 29 where
edges are the number of drifters crossing two regions of the ocean within i T= 16 and ii 208 days. For each, we selected a small and a large scale of local
dimension, each representing various known features of the ocean dynamics, mostly located between the main gyres such as between the north and south
equatorial in the pacific, or along the antarctic circumpolar current. In b, we explored a i social network of scientific collaborations between New Zealand
institutions ii across scales, to find that the top 5 institutions are businesses at small scales, universities at longer scales, and a mix of institutions at
stationarity. From middle scales, the University of Auckland remains the top-ranked node until stationarity.
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time interval and short scale (Fig. 6a(ii) top), whereby the drifter
movements are generally split between north and south. Our
results provide further evidence that a notion of scale in the
analysis of ocean flow is crucial to exploit and interpret the
dynamics29.

Finally, we examine a complex social network of scientific
collaborations between New Zealand institutions (Fig. 6b). Each
node represents an institution which falls into the following
categories: higher education, Government, Private not for profit,
or Business Enterprise. Edges are weighted by the number of
collaborations between two institutions in the time period
2010–2015, measured by co-authored publications on Scopus30.
We compute the local dimension as a function of scale on this
network and identify three main scales (short, medium and long;
Fig. 6b(ii)). On average and across scales, the higher education
institutions displayed the highest local dimension and business
enterprises were lowest. However, if we instead look only at the 5
nodes with the highest local dimension, we find that at short
scales, businesses and government institutions comprised the top
5 local dimension nodes, highlighting their high dimension to a
small neighbourhood. For a wide range of medium time scales, we
find that the universities display the largest local dimension,
reflecting their hub-like role in the network (Fig. 6b(i)). At long
time scales (in the limit close to stationarity) we find a mixture of
nodes from all institutions appear in the top 5 nodes. A previous
study used betweenness and eigenvector centrality to show that
most central institutions were not solely universities, but was also
comprised of other institution types30. Here, we show that the
precise role of each node depends on the choice of scale, as
already discussed in ref. 15.

Dimension in epidemic spreading. What about dynamical
processes on networks? In Fig. 7a, we use an SIR model on Watts-
Strogatz small-world networks31 and by scanning the infection
probability β, we show that the local dimension of a node strongly
predicts its infectiousness. Below the critical regime of large
infectiousness, we find that infection probability is positively
correlated with the scale, i.e. the size of the local neighbourhood
that should be considered grows with the infection probability.
However, near criticality βcrit (a threshold infection probability),
we observe a behaviour similar to a phase transition, whereby the
time scale that local dimension correlates best with node infec-
tiousness diverges towards values near unity, corresponding to
the largest scale of the local dimension.

We further computed the local dimension and SIR dynamics
for small-world graphs whilst varying the probability of rewiring
p parameter, to interpolate between near regular graphs to Erdős-
Réyni random graphs. In Fig. 7b we observe that the relationship
between the optimal scale to determine local dimension and
infectiousness of a node disappears with the randomness of the
network. At low β, node infectiousness is dominated by the
distance from high degree nodes in a small-world graph and, as β
increases, the spreading dynamics accelerates and nodes further
away can be infected. A local dimension at longer time scales τ is
therefore necessary to obtain a better prediction on node
infectiousness. However, in Erdős-Réyni random networks all
nodes are on average at equal distance from high degree nodes
and no meaningful scale exists.

We find similar linear relationships between β and scale in a
Delaunay grid graph (Fig. 7c) and the European powergrid
(Fig. 7d). The decrease in scale for the local dimension to be a
good predictor beyond βcrit for both graphs echoed the results of
high probability re-wiring in small-world graphs, suggesting that
global graph structure becomes less important if the infection
probability is sufficiently high.

Graph classification from distributions of local dimensions.
Random graphs, such as the Watts-Strogatz graph used above, sit
at the intersection of graph theory and probability theory, and are
often used to investigate the properties of ‘typical’ graphs. Various
models of random graphs exist to cover the diversity of complex
networks encountered in the real-world, but the most commonly
discussed are Erdős-Réyni, Watts-Strogatz, and Barabasi-Albert
graphs. To understand whether the distribution of local dimen-
sion differed across these three types random graphs, we gener-
ated a large dataset with various choices of parameters to generate
each type of random graphs of similar sizes (see “Methods”). We
then computed the local dimension of each node of each graph
and extracted three features from the distribution of local
dimension (mean, standard deviation and skewness) and used a
Random Forest model to classify between the random graph
types. The classification model achieved 0.95 ± 0.014 accuracy
with a stratified 10-fold split, suggesting that different random
graphs types display inherently different dimensional properties.
A Shap feature importance analysis revealed that the skewness
and standard deviation of the distributions were most informative
in differentiating the random graph types (Fig. 8(a)). The skew-
ness and standard deviation of Barabasi-Albert graphs were larger

Fig. 7 Dimension and epidemic spreading. a Heatmap of Pearson correlation between local dimension and node infectiousness for small-world graph
(n= 100, average degree k= 10, probability of rewiring p= 0.015). The black line is the average proportion of infected nodes given a single-seed node for a
given infection probability β. The transition from low to high proportion of infected nodes indicates the critical point while the dashed line is the maximum
correlation for each β. b We vary the probability of rewiring edges p of small world graphs and display i the diffusion time that maximises the correlation
between local dimension and infectiousness for varying β, and ii the associated correlation coefficient. The correlation is near one close to criticality and
above 0.8 for a large range of β. We repeat the analysis in a for c a Delaunay grid graph (n= 400) and d the European powergrid network to observe a
similar linear relationships between scale and infection probability β prior to criticality.
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reflecting their extremely broad and non-homogenous degree
distribution. As expected, an overlap in the distribution of
Erdős–Réyni and Watts-Strogatz graphs is observed (Fig. 8(c))
owing to the fact that Watts-Strogatz graphs were designed spe-
cifically to interpolate between lattices and fully disordered states
(similar to, but not exactly Erdős–Réyni32) via a rewiring of edges.
Despite their overlap, Erdős-Réyni graphs display a smaller
standard deviation, likely resulting from a more homogeneous
degree distribution.

Discussion
In this paper we have introduced a new framework to define
notions of dimensions not only on graphs, but on any space
where a dynamical process (from which the Euclidean dimension
can be inferred) can be defined. Our measure of dimension is
defined using consensus dynamics on graphs, which is most
similar to Euclidean diffusion, and naturally links with the
dimension in the d-dimension diffusion equation. In this sense,
our measure is intrinsically defined through the diffusive process
taking place on a discrete system and recovers the intuitive
definition of dimension as the system loses its discreteness. In
doing so, we are also able to give a geometric meaning (through
the notion of dimension) to the effect of boundaries and density
inhomogeneities. We have shown the relevance of this approach
to examine real-world systems such as protein dynamics, neu-
ronal or social networks, ocean currents or epidemic spreading by
examining the underlying graph structure.

Through various detailed studies with the relative dimension,
probing local dimensions at various scales, or characterising
entire graphs with the global dimension, we have provided evi-
dence for the wide applicability of our dimension measures to
both non-complex and complex networks (see SI for character-
isation of degree distributions of graphs used in this paper). There
are a variety of practical applications where probing network
geometry is of great utility33 and are within the scope of these
dimension measures. For example, spatially modulated neurons
(such as place cells or grid cells), whose network architecture
plays a fundamental role in the representation of space and
spatial memory, could be studied with our measures to under-
stand the local and global lattice arrangement of firing fields34.

Alternatively, our measures could be used to provide insights into
the manifestation of material properties. For example, the angle at
which two stacked layers of graphene are oriented relative to each
other dictates the presence of superconductivity and fragile
topology35. Further analysis of graph classification problems
using the distribution of dimension measures (relative or local)
are also promising in view of our preliminary results using ran-
dom generative networks.

Methods
Graph diffusion. A network (or a graph) G is a tuple G ¼ ðV; EÞ, consisting of the
set of nodes N ¼ jVj vertices and M ¼ jEj edges connecting them. The network
can be described by its N ×N adjacency matrix which indicates the existence and
the weight of a connection (edge) between each pair of nodes. On a graph, there are
several non-equivalent definitions of diffusion, which are defined by different
forms of the graph Laplacian. However, only one forms corresponds to the
Euclidean diffusion, described by the normalised Laplacian L= K−1(K− A) where
K is the diagonal matrix of weighted degrees and A the weighted adjacency
matrix16. Using the definition of the Laplacian, we can state the diffusion equation
for a N × 1 time-dependent node vector p(t) as in Equation (4), which is also
known as consensus dynamics36. For an initial condition with a delta function of
mass m at node i, the jth coordinate of the solution of Equation (4) is given by Eq.
(5). For comparability across different graphs, we normalise the times of diffusion
by the second smallest eigenvalue of the graph Laplacian, λ2 (the spectral gap), thus
τ= 1 is the time scale for the diffusion to reach stationarity.

From our choice of Laplacian, the relative dimension matrix d (that we
introduce in the next section) is symmetric if the initial masses m are chosen
inversely proportional to the weighted node degrees.

In addition, to ensure that the stationary state of the diffusion sums to unity, we
take mi ¼ k=ðnkiÞ where k is the mean weighted degree and n is the number of
nodes in the source. This is used in the protein example, where the initial mass are
distributed on all the atoms of the allosteric or active site.

Comparison with fractal dimension. Looking more closely at our definition of
relative dimension of Equation (6), it is proportional to the ratio of natural loga-
rithms of peak amplitude and time, which displays similarities to the fractal based
approaches where an approximate dimension can be derived from the ratio of
natural logarithms of mass at a radius r,

d � logðMÞ
logðrÞ ; ð9Þ

where the mass M is simply the number of nodes within some link distance r7.

Computational aspects. Python code to compute the relative, local and global
dimensions is available at https://github.com/barahona-research-group/DynGDim,
based on the package NetworkX and numpy/scipy standard libraries.

Fig. 8 Comparison of random networks (Erdos Reyni, Watts–Strogatz, Barabasi–Albert) by features derived from the distribution of local dimension
(mean, standard deviation, skewness). For each graph type, 600 graphs with varying choices of parameters was chosen (see Methods). a The shap value
for each feature reveals the importance of each feature in distinguishing random graph types in the trained random forest model. b A density histogram
revealing the distribution of the mean local dimension of each random graph type. c Each graph is plotted by their skewness and standard deviation of local
dimension, coloured by the random graph type and marker size is proportional to the number of nodes. The ellipses indicate a 2 standard deviation
confidence interval using a Pearson correlation for each graph type.
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Delaunay mesh with mass. We apply Delaunay triangulation to a 40 by 40 grid to
return a weighted planar graph for which no point is inside the circumcircle of any
triangle. The size of the grid is one unit of the code distance units. We define the
weights of each edge as the inverse Euclidean lengths between points and thus
obtain a discretisation of the plane. To simulate the gravitational lensing effect, we
added additional nodes sampled from a Gaussian distribution with parameters with
variance 0.05 in the unit square with various positions and number of nodes.

Protein graph construction. The graph representation of the proteins used in this
work are computed using37, an extension of38. In short, from a pdb file, each atom
is represented by a node, and bonds between atoms by an edge weighted by the
energy of the bond. The choice of bonds is key to create a meaningful graph
representation, and is explained in37,38, see39 to access the code.

Root-mean-square fluctuation calculations. Enzymatic proteins are inherently
flexible and known to exhibit motions across a wide range of temporal and spatial
scales. Using simulations, each atom can be assigned a root-mean-square fluc-
tuation (RMSF). We calculate the RMSF using the CABS-flex 2.0 webserver which
simulates protein dynamics using a coarse-grained protein model40.

Protein dataset. We present here more details on the main set of proteins we used
in this work.

HRas. HRas plays an important role in signal transduction during cell-cycle
regulation41. Previous studies have shown that calcium acetate acts as an allosteric
activator and its mechanism of allostery is mediated by a network of hydrogen
bonds, involving structural water molecules, that link the allosteric site to the
catalytic residue Q6142. We treat the allosteric and active sites, that are located at
opposite ends of the protein (PDB ID: 3K8Y), as the source or target nodes in our
relative dimension (since multiple atoms compose the allosteric and active sites, we
use all nodes as the source of the diffusive process with a uniform distribution
on them).

Lactose repressor (lac). As a second example, we examine the well-studied lactose
repressor (lac) (PDB ID: 1EFA) in Fig. 3b, present in E. coli and which binds to the
lac operon, a section of DNA, to inhibit the expression of proteins for the meta-
bolism of lactose when no lactose is present43,44. In its complete form, it consists of
4 monomers, with two binding sites to a single DNA strand, inhibiting the genes
located between them. The combination of two monomers co-operate to form one
of the two binding sites (orange region in Fig. 3b). On each monomer there is an
allosteric site for the binding of NPF molecules that activate the lac repressor.

PDK1. PDK1 is a well-known protein Kinase (PDB ID: 3ORX) that is implicated in
the progression of Melanoma’s45. The allosteric site of PDK1 is a sequence of
amino acids, called the PDK1 interacting fragment (PIF), that binds to a phosphate
on the catalytic domain. This binding triggers a signal to start the phosphorylation
of the activation loop of the substrates at the ATP pocket, or active site20. The
crystallographic structure (PDB ID: 3ORX) used for our analysis has the molecule
BI4 bound at the active site45 via three hydrogen bounds to a region of high relative
dimension, and interacts through hydrophobic forces on a region of low relative
dimension.

Fluorescence correlation microscopy experiments. Protein plasmids of Aquifex
Adenylate Kinase (ID:18092 Plasmid:peT3a-AqAdk/MVGDH) were purchased
from AddGene as deposited by ’Dorothee Kern Lab Plasmids’. The plasmids were
already encoded with two cysteine mutations for maleimide conjugation. ADK was
expressed in a 1 litre culture BL21 (DE3) cells via inoculation with 1 mM IPTG.
BugBuster was used for cell lysis and TCEP and protease inhibitor was added to the
lysate. ADK was purified via HIS-tag with a gravi-trap (GE-healthcare), and a PD-
10 column was used to remove imidazole and exchange into protein buffer (20 mM
TRIS, 50 mM NaCl). TCEP and protease inhibitor were added throughout the
purification process. Alexa 488-labelled ADK was prepared overnight using 20 μM
protein with molar ratio 1:10 of protein:Alexa 488. Excess dye was removed using
HIS-tag purification and a PD-10 column. A Typhoon was used to examine the gel
of the purified-labelled ADK product and showed no excess fluorophore. The label
sites for the FRET experiment were Tyr 52 (AMPbd domain) changed to Cys and
Val 145 changed to Cys (lid domain)46. Samples were diluted to 200 pM in pH 7.5
FRET buffer (20 mM TRIS, 50 mM NaCl) with 0.3 mg/ml BSA to prevent surface
adsorption. Measurements were taken at thermal equilibrium such that all pro-
cesses under analysis are statistical fluctuations around the equilibrium. Freely
diffusing single molecules were detected using a home-built dual-channel confocal
fluorescence microscope. A tunable wavelength argon ion laser (model 35LAP321-
230, Melles Griot, Carlsbad, CA) was set to 514.5 nm to excite Alexa 488. The beam
was focused into the sample solution to a diffraction-limited spot with a high
numerical aperture oil-immersion objective (Nikon Plan Apo TIRF 60x, NA 1.45).
The closer refractive indexes of oil and glass relative to water and glass make oil
immersion preferable due to reduced light reflection. Type FF immersion oil
(Cargille, USA) was used due to its negligible fluorescent properties. The obtained

fluctuations of fluorescence intensity are autocorrelated. We fit the autocorrelation
curves with a global model that includes components for triplet excitation, con-
formational dynamics and diffusion, with the assumption that they differed by a
factor of 1.6 to distinguish the components,

GðτÞ ¼ Gð0Þ 1
1þ τ

τD

� �
1� F þ Fe

τ
τm

� �

1� F2 þ F2e
τ

τconf

� �
;

where τc, τm and τD are the dynamical time scales of the protein conformational
dynamics, mean triplet relaxation and the protein diffusion respectively. F1 is the
fraction of molecules entering the triplet state and F2 is the fraction of molecules
conformationally fluctuating.

Root-mean-square fluctuation analysis. We use the cabs flex 2 server that
generated fast simulations of near-native dynamics. The dynamics uses Monte
Carlo dynamics and an asymmetric metropolis scheme. CABS is a well estab-
lished coarse-grained (i.e. atoms are combined into larger units) protein mod-
elling tool. CABS uses a forcefield derived from statistical regularities seen in
known protein structures, and it includes side-chain-side-chain mean field
potentials, coarse-grained models of main chain hydrogen bonds, and local
peptide-chain geometric preferences. The solvent effect is accounted for in an
implicit fashion through protein structure statistics used in the derivation of the
CABS force field. The dynamics of CABS-based coarse-grained proteins is
simulated by a random series of local conformational transitions (controlled by a
Monte Carlo method). The results show strong similarities with fully atomistic
MD simulations. (Description here http://biocomp.chem.uw.edu.pl/sites/default/
files/publications/ct300854w.pdf) The resulting trajectory from the MD simu-
lation is analysed and clustered to a representative ensemble of protein models
that reflect the flexibility of the input structure. In short, the simulation (like
other MD simulations) examines the dynamic evolution of interacting units
(atoms or coarse-grained units). The trajectories are determined by solving
Newtons equations of motion, where the forces between units are determined by
the proposed forcefield. Therefore, inherently one can study the thermodynamic
properties of a system via a MD simulation.

SIR model. For the example with SIR dynamics, we simulated the standard SIR
model on networks, using the fast approximation of47, with open sourced code
available at https://github.com/springer-math/Mathematics-of-Epidemics-on-
Networksand estimated the infectiousness of each node as the averaged number of
removed nodes when the spread started from this node over 500 realisation of the
dynamics. To estimate the critical value for the infectiousness β, we computed the
average infectability across all nodes for each β and estimated βcrit as the value for
which half of the nodes are infected.

Graph classification dataset. We generated 600 graphs of each of the three
classes, Erdos–Renyi, Barabasi–Albert and Small Worlds. We sampled the number
of nodes with 10 bins from 100 to 1000, and repeated that 3 times with different
random seed. For in each case, we created 20 networks of each types with the
following range of parameters: ER from with probabilities from 0.03 to 0.1, BA with
number of edges per nodes from 1 to 20 and SW with probability from 0.1 to 0.7
and number of neighbours from 5 to 10. Improvements to the random graph
classification results can be made using other graph theoretic features48.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplemental Information files.

Code availability
The code is shared under the GNU General Public License v3.0. It can be found at
https://github.com/barahona-research-group/DynGDim and 10.5281/zenodo.649677849.
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