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Rhodium-catalyzed selective direct arylation of
phosphines with aryl bromides
Dingyi Wang1,4, Mingjie Li1,4, Chengdong Shuang2✉, Yong Liang 1, Yue Zhao 1, Minyan Wang 1✉ &

Zhuangzhi Shi 1,3✉

The widespread use of phosphine ligand libraries is frequently hampered by the challenges

associated with their modular preparation. Here, we report a protocol that appends arenes to

arylphosphines to access a series of biaryl monophosphines via rhodium-catalyzed P(III)-

directed ortho C–H activation, enabling unprecedented one-fold, two-fold, and three-fold

direct arylation. Our experimental and theoretical findings reveal a mechanism involving

oxidative addition of aryl bromides to the Rh catalyst, further ortho C–H metalation via a four-

membered cyclometalated ring. Given the ready availability of substrates, our approach

opens the door to developing more general methods for the construction of phosphine

ligands.
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Phosphines have found numerous applications in all facets of
chemical science1–5. Among them, biaryl monophosphines
have emerged as a class of privileged ligands for transition

metals in a variety of transformations, especially in cross-
coupling reactions6–11. To date, multiple generations of biaryl
monophosphines have been designed by Buchwald12,13 and
other groups14–17, and many of them are now commercialized
(Fig. 1a). Traditionally, these compounds can be produced via a
one-pot protocol through the addition of an aryl metal reagent
to an in situ-generated benzyne, then phosphination of inter-
mediate with a chlorophosphine reagent enabled by a copper
catalyst (Fig. 1b)18. This approach is efficient, but its use in
sensitive organometallic species is often limited, requiring pre-
installation of halides into the substrates and complicated
operating steps. Compared to traditional coupling methods, the
direct arylation strategy through C–H activation has emerged as
a valuable methodology that enables the formation of biaryl
compounds with excellent atom and step economy19–23. We
hypothesized that the catalytic arylation of C–H bond in
phosphines might allow an alternative, but a far easier path to
biaryl monophosphines.

Typically, the assistance of metal-coordinating directing groups
in substrates can lead to excellent regioselectivity24–30. Within
this paradigm, transition metal-catalyzed C–H arylation of
phosphine oxides through O-chelation has been developed to
build biaryl monophosphines31–35. However, this method
requires additional steps for preinstallation and removal of O
atoms. Due to the strong coordination between transition metals
and P(III) atoms, arylphosphines have long been known to form
four-membered chelate rings via ortho C–H metalation, but
catalytic variants represent a critical challenge36. Until recently,

we and Takaya group have respectively reported catalytic ortho
C–H borylation37,38 and silylation39 of arylphosphines. However,
a further palladium-catalyzed Suzuki–Miyaura or Hiyama cross-
coupling with aryl halides needs to be used for construction of
biaryl monophosphines. Therefore, direct arylation of arylpho-
sphines to access diverse biaryl monophosphines in a catalytic
fashion is still in high demand.

Here, we report a rhodium-catalyzed P(III)-directed C–H
activation of arylphosphines with aryl halides to rapidly access a
library of biaryl monophosphines. Notably, onefold, twofold, and
threefold C–H activation can proceed by steric control of aryl
bromides, providing biaryl monophosphine ligands with sterically
encumbered architectures and electronically tuned substituents in
a tunable way (Fig. 1c). In the first C–H arylation, the reaction
proceeds via a four-membered chelate ring of arylphosphines,
and the second and third arylation of the in situ formed biaryl
phosphines via a six-membered chelate ring40–43. Therefore, the
use of sterically hindered aryl bromides only can show one-fold
C–H activation; Treatment of aryl bromides with moderate size
can undergo two-fold C–H activation; The selection of aryl
bromides only with para-substituents can lead to three-fold C–H
activation.

Results
Reaction design. Our investigation began with the direct arylation
of PPh3 (1a) using a sterically hindered aryl bromide 2a (Table 1).
Treatment of [Rh(cod)Cl]2 (2.5 mol%) as the catalyst along with
K2CO3 (2.0 equiv) as the base in THF at 130 °C for 24 h allowed us
to get the desired coupling product 3aa in 21% yield through
onefold C–H activation (entry 1). The solvent effect was then
evaluated, and 1,4-dioxane proved to be the best (entries 2-3).

b Traditional route to synthesize biaryl monophosphines:

c From monophosphines to biaryl monophosphines by direct arylation:

a  Representative examples of biaryl monophosphines:
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Fig. 1 Construction of biaryl monophosphine ligands. a Some commercially available biaryl monophosphines. b Palladium-catalyzed carbon-phosphorus
bond metathesis. c Rhodium-catalyzed tunable direct arylation of phosphines with aryl bromides.
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Further increasing the stoichiometric amount of base to 5.0 equiv is
critical to the high conversion of the reaction (entry 4). It should be
noted that increasing the concentration of reaction components
can enhance the reactivity, affording product 3aa in 77% yield
(entry 5). Other bases such as Na2CO3 and Li2CO3 showed much
lower results for this reaction (entries 6–7), and the use of LiOtBu
also maintained good reactivity leading to compound 3aa in 74%
yield (entry 8). Under these reaction conditions, conducting the
reaction at 110 °C led to a lower conversion (entry 9). Other
rhodium sources, such as [Rh(coe)2Cl]2 and [Rh(OAc)2]2, were
also effective for this transformation, albeit with lower yields
(entries 10–11). However, other transition metals, such as [Ir(cod)
Cl]2 and Pd(OAc)2, failed to trigger this transformation (entries
12–13). In addition to aryl bromide, aryl iodide 2a’ could be
coupled with PPh3 (1a), affording the product 3aa in 62% yield
(entry 14).

Scope of the methodology. With optimized reaction conditions
in hand, we first explored the scope of one-fold direct arylation
between tertiary phosphines 1 and arylbromides 2 (Fig. 2). Using
PPh3 (1a) as the coupling partner, arylbromides 2b-c bearing
sterically hindered benzhydryl and silyl ether groups at the meta
positions formed desired products 3ab-ac with good efficiency.
Less sterically hindered arylbromides 2d-e and bromonaphtha-
lene 2f were also compatible with excellent chemoselectivity, and
twofold C–H activation could be inhibited by shortening the
reaction time and lowering the reaction temperature. Impor-
tantly, the selection of OMe at ortho position of arylbromides had
a strong impact on the reactivity, other functional groups such as
NMe2, SMe, and Ac led to very low conversions under the current
reaction conditions. In addition, the reaction is also amenable to
9-bromophenanthrene (2g) and 3,5-di-substituted arylbromides
2h-i, affording desired products 3ag-ai in 60–75% yields. Sub-
sequently, a variety of triarylphosphines were investigated with
arylbromide 2a. Triarylphosphines are generally competent, with

a diverse range of electron-neutral (3ba-bc), electron-donating
(3da-3ea), and electron-withdrawing (3fa-3ga) groups.

We next sought to evaluate the scope of the two-fold C–H
activation by steric control of aromatic halides (Fig. 3). We were
pleased to find that two molecules of 2-bromoanisole (1j) could
participate in this reaction through tandem C–H activation to
generate product 3aj in 77% yield under slightly modified
reaction conditions. To determine the structure, a crystal of
compound 3aj was generated and subjected to X-ray crystal-
lographic analysis. Bromoanisole analogs 1k and 1l with F and Cl
at the para position also generated desired products 3ak and 3al
in 72% and 61% yields, respectively. Gratifyingly, substrate 1m
with a fluorene motif can be utilized in this transformation as
well, generating product 3am in 62% yield together with a
monoarylation byproduct in trace amounts.

We further turned our attention to direct arylation of
phosphines through threefold C–H activation (Fig. 4). Treat-
ment of the simple bromoarene 2n, PPh3 (1a) could be arylated
with three molecules of 2n, providing compound 3an in 66%
yield. It’s noted that the use of tBuOLi showed much higher
reactivity than that of K2CO3 in these reaction conditions. This
approach has a good substrate scope and is tolerant of a range of
substituents in para positions of the aromatic ring. A broad
range of bromoarenes bearing Me (1o), OMe (1p), F (1q), Cl
(1r), and CF3 (1s) substituents underwent threefold direct
arylation and gave the corresponding products 3ao-at in 51-
73% yield. In addition, bromoferrocene (1t) was successfully
introduced into the phosphine framework, affording the
compound 3at with three ferrocene motifs. The structures of
products 3ap and 3at were respectively confirmed by X-ray
analysis.

We also sought to explore the cascade C–H arylation of
arylphosphines with two different aryl bromides. However, a
mixture of biaryl phosphines was generated, because the excess
amount of aryl halides needs to be employed. To solve this issue,
we conducted the first direct arylation with PPh3 (1a) and aryl

Table 1 Reaction developmenta.

Entry X cat [TM] (mol%) Base (equiv) Solvent Yield of 3aa (%)b

1 Br (2a) [Rh(cod)Cl]2 (2.5) K2CO3 (2.0) THF 21
2 Br (2a) [Rh(cod)Cl]2 (2.5) K2CO3 (2.0) DME 35
3 Br (2a) [Rh(cod)Cl]2 (2.5) K2CO3 (2.0) 1,4-dioxane 42
4 Br (2a) [Rh(cod)Cl]2 (2.5) K2CO3 (5.0) 1,4-dioxane 68
5 Br (2a) [Rh(cod)Cl]2 (2.5) K2CO3 (5.0) 1,4-dioxanec 77 (72)d

6 Br (2a) [Rh(cod)Cl]2 (2.5) Na2CO3 (5.0) 1,4-dioxanec 56
7 Br (2a) [Rh(cod)Cl]2 (2.5) Li2CO3 (5.0) 1,4-dioxanec 15
8 Br (2a) [Rh(cod)Cl]2 (2.5) LiOtBu (5.0) 1,4-dioxanec 74
9e Br (2a) [Rh(cod)Cl]2 (2.5) K2CO3 (5.0) 1,4-dioxanec 65
10 Br (2a) [Rh(coe)2Cl]2 (2.5) K2CO3 (5.0) 1,4-dioxanec 76
11 Br (2a) [Rh(OAc)2]2 (2.5) K2CO3 (5.0) 1,4-dioxanec 27
12 Br (2a) [Ir(cod)Cl]2 (2.5) K2CO3 (5.0) 1,4-dioxanec 0
13 Br (2a) Pd(OAc)2 (5.0) K2CO3 (5.0) 1,4-dioxanec 0
14 I (2a’) [Rh(cod)Cl]2 (2.5) K2CO3 (5.0) 1,4-dioxane 62

aReaction conditions: cat [TM] (2.5–5.0 mol %), 1a (0.2 mmol), 2a (0.6 mmol), base (2.0–5.0 equiv) in solvent (1.0 mL) at 130 °C for 24 h, under argon.
bDetermined by GC.
cReducing solvent to 0.3 mL.
dIsolated yield after chromatography.
eReaction at 110 °C.
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bromide 2f in the presence of rhodium catalyst. The desired
product 3af was isolated in 45% yield, which could be arylated
with another aryl bromide 2o through C–H activation to provide
biaryl phosphine 3afo efficiently (Fig. 5).

Discussion
To gain insight into the reaction pathway, some mechanistic
experiments were performed (Fig. 6). The reaction of [Rh(cod)

Cl]2 with PPh3 (1a) in 1,4-dioxane formed the well-known
Wilkinson’s catalyst, which could further react with aryl bromide
2a to give product 3aa in 67% yield (Fig. 6a). This result indicated
that the complex was a visible intermediate in this catalytic
reaction. In addition, a kinetic isotope effect (KIE) of 2.4 was
observed from five parallel reactions of 1a/d-1a with aryl bromide
2a, suggesting that the C–H cleavage step was rate-determining
(Fig. 6b)44.
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To better understand the selective C‒H direct arylation process,
density functional theory (DFT) calculations45–48 were conducted
with model substrates 1a and 2a (Fig. 7). Initially, the dimer Rh
catalyst is associated with 1a to form Wilkinson’s catalyst, which
then undergoes ligand exchange to generate four-coordinate
complex INT1A. Bromoarene 2a coordinates with the Rh center
to form intermediate INT2A through an energy barrier of

31.4 kcal mol−1, which facilitates subsequent C‒Br bond
cleavage (black line, Fig. 7a). Ortho-C‒H metalation is a com-
petitive pathway for the oxidative addition of the C‒Br bond (blue
line, Fig. 7a). The ortho-C‒H bond undergoes oxidative addition
to the Rh(I) center through transition state TS2B with a free
energy of 41.7 kcal·mol−1, which is 9.3 kcal mol−1 higher than
transition state TS3A (41.7 kcal mol−1 vs 32.4 kcal mol−1). These
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calculated results indicate that the most favorable pathway
involves the oxidative addition of the C‒Br bond to the rho-
dium(I) center, resulting in intermediate INT3A. Then, INT3A
occurs ortho-C‒H metalation to form INT5A through a con-
certed metalation deprotonation (CMD) process49–52 with a
31.5 kcal mol−1 energy barrier (Fig. 7b). This process possesses
very similar high energy to the C-Br bond oxidative addition
(32.3 kcal mol−1 vs. 32.4 kcal mol−1). Furthermore, the calcula-
tion for a deuterated transition state of TS4A was also performed
(see Supporting Information). The energy barrier of C-D meta-
lation is 0.9 kcal mol−1 higher than that of C-H, in consistent
with the experimental KIE results, illustrating that C-H metala-
tion is involved in the rate-determining step. K2CO3 as a base was

found to be indispensable in this transformation, which abstracts
a Br atom and a proton from complex INT4A in a concerted
manner via transition state TS6A with an energy barrier of only
5.0 kcal mol−1. Followed by reductive elimination, the aryl group
connected with Rh(III) center transfers to the ortho-position of
phosphines to deliver intermediate INT7A. The excess amount of
2a then coordinates at the vacant site of INT7A to generate
intermediate INT8A. Finally, the C-Br bond oxidative addition
and further ligand exchanges occur to result in the formation of
the desired product 3aa and the regeneration of catalyst INT3A
to complete the catalytic cycle.

Subsequently, DFT calculations were conducted to investigate
the chemoselectivity of twofold arylation (Fig. 8). Using
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bromoarene 2a with sterically hindered substituents at the meta
positions as the substrate, ligand exchange of INT10A with 1a is
found to be a favorable process, and its barrier height is
11.2 kcal mol−1 lower than the C‒H metalation through six-

membered cyclic transition state TS11A (18.2 kcal mol−1 vs
29.4 kcal mol−1), suggesting that onefold arylation will proceed to
the end until 1a was completely consumed out (Fig. 8a). In
addition, the meta-substitutions of bromoarenes increase the

P
PhPh

Rh

O

O

O

Br

O
Me

H
MeO

TS11A-2j TS11C-2jTS11B-2j

ΔΔG = 32.2 kcal mol-1 ΔΔG = 42.8 kcal mol-1 ΔΔG = 42.5 kcal mol-1

Rh
P

Br
O

O

Ph O
Me

O

H

MeO

Rh
P

Br
O

O

Ph Ph O
Me

O

H

MeO

Rh
O

O
O

K

OHO

O
KBr

O

tBu

tBu

P
Ph

Ph

Me

INT13A

TS11TS11A

ΔΔG = 18.2 kcal mol-1
ΔΔG = 29.4 kcal mol-1

P
PhPh

Rh
O

O

O

Br tBu

tBu

MeO
O

Me

PPh3

INT10A

P
PhPh

Rh
O

O

O

Br

tBu

tBu

MeO O
Me

P
PhPh

Rh

O

O

O

Br

tBu
O
Me

H

tBu

MeO

Rh
O

O
O

K

OHO

O
KBr

O

tBu

tBu

P
Ph

Ph

Me

TS14A

ΔΔG = 35.6 kcal mol-1

Rh
O

O
O

K

OHO

O
KBr

O

P
Ph

Ph

Me

INT13A-2j

Rh
O

O
O

K

OHO

O
KBr

O

P
Ph

Ph

Me

TS14A-2j

ΔΔG = 22.5 kcal mol-1

MeO MeO

MeO MeO

a

b

c

Fig. 8 Mechanistic experiments. a the calculated key transition states and intermediates for the twofold direct arylation of PPh3 and 2a. b the calculated
key transition states and intermediates for the twofold direct arylation of PPh3 and 2j. c DFT-computed free energies for the three competitive C-H
metalation pathways in the second-fold direct arylation of PPh3 with 2j. Energies are in kcal mol−1 and bond lengths are in Å.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30697-7 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2934 | https://doi.org/10.1038/s41467-022-30697-7 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


difficulty of the second reductive elimination, making the activation
barrier of transition state TS14A as high as 35.6 kcal mol−1.
Therefore, controlling the reaction time and increasing the steric
hindrance of meta-substituents could effectively tune the che-
moselectivity. Instead, using bromoarene 2j as the substrate, the
reductive elimination of intermediate INT13A-2j proceeds
smoothly via transition state TS14A-2j with an energy barrier of
22.5 kcal mol−1, thus producing the twofold arylation product
3aj, in accordance with the experimental results (Fig. 8b)40. The
second arylation on different sites was also calculated (Fig. 8c).
The ortho’-C-H activation undergoes a CMD process through six-
membered cyclic transition state TS11A-2j with a free energy of
32.2 kcal mol−1, which is much lower than that of four-
membered cyclic transition state TS11B-2j (42.8 kcal mol−1)
and TS11C-2j (42.5 kcal mol−1). In the disfavored transition
states TS11B-2j and TS11C-2j, the dihedral angle of biphenyl is
deformed to 75.1° and 64.3°, respectively, indicating the distinct
repulsion between the incorporated aryl group and second aryl
group of P, thus increasing the activation energy barriers to
>40 kcal/mol.

The use of tBuOLi as the base in the threefold C‒H arylation
was studied as well (Fig. 9). The above-used K2CO3 showed
lower reactivity than tBuOLi in this transformation. In the
onefold arylation process, the ortho-substituents of bromoarene
donate electron effect into the vacant d orbital of Rh, which
facilitates the dissociation of oxygen connected with Rh and
increases the alkalinity of the carbonate, thus making the
energy barrier of the CMD process lower to 31.5 kcal mol−1.
However, the bromoarene without ortho-substituents are sui-
table substrates in the threefold arylation process, the
carbonate-assisted CMD process via TS4A-1 has an energy
barrier of 37.7 kcal mol−1, which is much higher than the corre-
sponding process in onefold C-H arylation (37.7 kcal mol−1 vs
31.5 kcal mol−1). For the LiOtBu used in the experiment, anion-
assisted CMD transition state TS4A-2n is calculated to be
36.3 kcal mol−1 in energy relative to INT1A-2n, indicating that the

mechanism of alkoxy base assisted CMD process is also difficult. To
explore a more plausible reaction mechanism, the C‒H bond oxi-
dative addition with Rh(I) through transition state TS2B-2n was
also calculated. This step is more favorable, since the free energy of
rate-determining step is 33.9 kcal·mol−1 relative to INT1A-2n,
which is 1.5 kcal·mol−1 higher than the overall barrier of
32.4 kcal mol−1 in onefold arylation. This explains well that the
threefold arylation is able to proceed well when the reaction tem-
perature was elevated from 130 to 150 °C. The whole energy profiles
for the threefold C‒H arylation have been shown in Supporting
Information.

In summary, we have developed an effective method for the
direct arylation of arylphosphines with aryl bromides enabled
by rhodium catalysts. The reaction can proceed through one-
fold, twofold, and threefold C–H activation by steric control of
aromatic halides, affording a series of biarylphosphine ligands
with architecture and electronically tuned substituents.
Mechanistic experiments and density functional theory calcu-
lations showed the preferred pathway for this tunable direct
arylation process. Further applications of the developed phos-
phine ligand library, as well as other C–H functionalization of
arylphosphines, are underway.

Methods
General procedures for synthesis of 3. To an oven-dried Schlenk tube, arylpho-
sphines 1 (1.0 equiv, 0.20mmol), arylbromides 2 (3.0 equiv, 0.60 mmol), [Rh(cod)Cl]2
(2.5mol%, 2.5mg, 0.005mmol), K2CO3 (5.0 equiv, 138mg, 1.0mmol) were dissolved
in 1,4-dioxane (0.3mL). The mixture was stirred at 130 °C under argon for 24 h.
Upon the completion of the reaction, the solvent was removed. The crude mixture
was directly subjected to column chromatography on silica gel using petroleum-ether/
EtOAc as eluent to give the desired products 3.

Data availability
The crystallography data have been deposited at the Cambridge Crystallographic Data
Center (CCDC) under accession number CCDC: 2082986 (3aj), 2082987 (3ap), 2082989
(3at) and can be obtained free of charge from www.ccdc.cam.ac.uk/getstructures.
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