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Artificial neural networks enable genome-scale
simulations of intracellular signaling
Avlant Nilsson 1,2,3,4, Joshua M. Peters 1,3,4, Nikolaos Meimetis 1, Bryan Bryson 1,3 &

Douglas A. Lauffenburger 1,3✉

Mammalian cells adapt their functional state in response to external signals in form of ligands

that bind receptors on the cell-surface. Mechanistically, this involves signal-processing

through a complex network of molecular interactions that govern transcription factor activity

patterns. Computer simulations of the information flow through this network could help

predict cellular responses in health and disease. Here we develop a recurrent neural network

framework constrained by prior knowledge of the signaling network with ligand-

concentrations as input and transcription factor-activity as output. Applied to synthetic

data, it predicts unseen test-data (Pearson correlation r= 0.98) and the effects of gene

knockouts (r= 0.8). We stimulate macrophages with 59 different ligands, with and without

the addition of lipopolysaccharide, and collect transcriptomics data. The framework predicts

this data under cross-validation (r= 0.8) and knockout simulations suggest a role for RIPK1 in

modulating the lipopolysaccharide response. This work demonstrates the feasibility of

genome-scale simulations of intracellular signaling.

https://doi.org/10.1038/s41467-022-30684-y OPEN

1 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 2Department of Biology and Biological
Engineering, Chalmers University of Technology, Gothenburg SE 41296, Sweden. 3 Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
4These authors contributed equally: Avlant Nilsson, Joshua M. Peters. ✉email: lauffen@mit.edu

NATURE COMMUNICATIONS |         (2022) 13:3069 | https://doi.org/10.1038/s41467-022-30684-y | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30684-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30684-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30684-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30684-y&domain=pdf
http://orcid.org/0000-0002-9476-4516
http://orcid.org/0000-0002-9476-4516
http://orcid.org/0000-0002-9476-4516
http://orcid.org/0000-0002-9476-4516
http://orcid.org/0000-0002-9476-4516
http://orcid.org/0000-0001-9163-6706
http://orcid.org/0000-0001-9163-6706
http://orcid.org/0000-0001-9163-6706
http://orcid.org/0000-0001-9163-6706
http://orcid.org/0000-0001-9163-6706
http://orcid.org/0000-0003-2333-0187
http://orcid.org/0000-0003-2333-0187
http://orcid.org/0000-0003-2333-0187
http://orcid.org/0000-0003-2333-0187
http://orcid.org/0000-0003-2333-0187
http://orcid.org/0000-0003-1716-6712
http://orcid.org/0000-0003-1716-6712
http://orcid.org/0000-0003-1716-6712
http://orcid.org/0000-0003-1716-6712
http://orcid.org/0000-0003-1716-6712
http://orcid.org/0000-0002-0050-989X
http://orcid.org/0000-0002-0050-989X
http://orcid.org/0000-0002-0050-989X
http://orcid.org/0000-0002-0050-989X
http://orcid.org/0000-0002-0050-989X
mailto:lauffen@mit.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The healthy body continuously adapts to the environment
by altering the molecular state of its cells. This primarily
occurs through binding of multiple types of ligands to

receptors at the cell-surface, this acts as signals that are propa-
gated through molecular interactions culminating in activation of
transcription factors (TF) and subsequent transcription of genes.
Rather than constituting independent paths from receptors to
specific genes, signaling is conducted through a complex network
with spatial and temporal components1. This enables the cell to
compute a response to stimulation by multiple ligands2,3, e.g., co-
stimulation of human macrophages gives rise to a spectrum of
cellular activation states4. Disruptions to the network can cause
disease, e.g., activating mutations in the signaling protein BRAF is
present in 40–50% of all melanoma tumors, i.e., skin cancer, and
single target treatments are not always sufficient due to cellular
adaptations, e.g., tumors often acquire resistance to BRAF-
inhibitors5. A systems perspective on signaling is required to
better understand responses to co-stimulation and predict the
effects of drugs. Such an understanding could be obtained
through genome-scale computer simulations of signaling that
have long been anticipated6–8.

By now, many requisites for genome-scale models of signaling
are in place. The network topology has been extensively char-
acterized with thousands of biochemical interactions collected in
databases9 and with visual maps available for many signaling
pathways, e.g., through the Kyoto Encyclopedia of Genes and
Genomes (KEGG)10. Genome wide data can be generated using
high-throughput methods, e.g., activities of hundreds of TFs can
be statistically inferred from transcriptomics data11 and cellular
responses to combinations of ligands, can be characterized
through co-stimulation experiments2. For metabolism, genome-
scale simulations are routinely performed using the flux balance
analysis (FBA) framework, which predicts intracellular fluxes
using steady state assumptions, linear optimization, and data on
metabolic exchange rates12. It has been used to gain system level
insight on a wide range of topics, e.g., the effect of intercellular
compartmentalization on the flux of glutamate in cancer13 or the
influence of metabolic trade-offs on oxygen consumption in
muscle cells14. However, the linear FBA methodology cannot be
applied to signaling, in which nonlinear relationships are typically
important to capture and stoichiometric constraints are less
straightforward to impose.

Current signaling models are often based on ordinary differ-
ential equations (ODE) or logic rules7,8,15 and face challenges
when expanding to the genome-scale7,16. Yet, several of these
have been overcome by simplifying assumptions. Explicit enu-
meration of microstates, which has been successful for individual
proteins, is numerically intractable at the genome-scale17 due to a
combinatorial explosion of states from posttranslational mod-
ifications and protein complexes. This is circumvented by models
that omit enumeration, e.g., signal flow models15, which represent
signaling as a signed directed graph with scalar activity values for
each signaling molecule. Cellular activity occurs across multiple
timescales, e.g., conformational changes of proteins occurs much
faster than signaling events, while protein translation from
mRNA occurs much slower. The requirement by network-wide
models for simulation of long time-courses at high resolution can
be overcome using quasi-steady-state approximations17,18 that
assume that faster processes are instantaneous and slower pro-
cesses are constant. However, two major limitations remain for
reaching the genome-scale using current methods: predefined
equations are needed for each molecule, while the exact
mechanism is often unknown; and parameter estimation may
require problematically long computational times for the largest
models despite major advances19. Therefore, an alternative fra-
mework for modeling signaling is warranted.

Advancements in artificial neural networks (ANN) have
enabled large-scale models in many different areas, including
drug discovery and genomics20. ANNs approximate unknown
and highly complex functions through a sequence of linear matrix
operations and non-linear transformations. These approxima-
tions, sometimes containing millions of parameters, can be
rapidly trained from paired samples of input and output data
using the backpropagation algorithm20,21. While ANNs excel at
predictions, their underlying mechanism is often elusive, and
therefore more interpretable ANNs based on prior knowledge
have been proposed for modeling biological systems22. For
example, a feed forward neural network (FFNN) with a network
topology derived from known signaling interactions has been
used to predict cell types from gene expression data22. However,
FFNN do not allow feedback loops, which are frequent in sig-
naling, and therefore recurrent neural networks (RNN) may be a
more suitable architecture for modeling signaling networks. It has
previously been shown that a RNN without prior knowledge
constraints can recapitulate the output of a small ODE-model of
signaling23.

Here we construct a framework for rapid parameterization and
simulation of intracellular signaling using RNNs hence referred to
as LEMBAS, Large-scale knowledge-EMBedded Artificial
Signaling-networks. We first construct an activation function
suitable for approximating the steady state behavior of different
molecular mechanisms. We then introduce a sparse RNN form-
alism that encodes the topology of a known signaling network.
LEMBAS uses ligand concentrations as input to predict TF
activities at steady state and we construct a regularization func-
tion that ensures that steady state is reached. To test the data
requirements for training generalizable models, we generate
synthetic data from a reference model with computationally
derived parameters. Models trained on modestly sized
(400–800 samples) synthetic datasets, accurately predict most
randomly generated input-output pairs from the reference model.
Additionally, the trained model predicts the effect of simulated
gene knock outs (KO). To demonstrate the frameworks applic-
ability to real world data, we generate a transcriptomics dataset
for macrophages stimulated with 59 different ligands in the
absence and presence of the ligand lipopolysaccharide (LPS). We
discuss how genome-scale signaling models may leverage new
types of high throughput data and facilitate personalized
medicine.

Results
Approximating molecular interactions at steady state. For the
purpose of the signaling framework developed herein, molecular
interactions are assumed to always be at steady state. This can be
justified by timescale separation, as these events are expected to
occur on the order of milliseconds compared to signal trans-
duction that evolves over several minutes. Molecular dynamics
here signifies interactions between signaling molecules through a
range of different mechanisms, e.g., phosphorylation, binding, or
conformational changes. The steady state assumption implies that
the activity of the target molecule of the interaction is a single
valued function of its source molecules that are considered con-
stant at that instant. This activity depends on the specific mole-
cular mechanism (Fig. 1a) with the simplest arguably being
independent activation and inhibition that may be interpreted as
kinases and phosphatases respectively.

In many cases the exact molecular mechanism of a signaling
interaction will be unknown, but its input–output relation can be
approximated by a neural network. Directed acyclic graphs, i.e., a
FFNN, are appropriate models for interactions that are assumed
to instantaneously reach steady state17 and for independent
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activation and inhibition, there is a direct mapping between their
analytical steady state solution and a FFNN with the
Michaelis–Menten equation as activation function (Supplemen-
tary Fig. 1a). Based on this we developed a problem-specific
activation function, the Michalis–Menten like (MML) activation
function (Fig. 1b) with two main features; preventing negative
states that would be non-physiological; and preventing states >1
that are non-physiological assuming that this represents full
saturation. Physiological constraints are thus imposed at the level
of the activation function, allowing weights and biases to take on
arbitrary values. In practice, the MML was taken as the leaky
version of the Rectified Linear Unit (ReLU) activation in its
standard formulation24 for negative inputs. This prevents a strict
0 gradient that may cause irrecoverable inactivation of nodes
during training leading to blocked signaling in sparse networks.
The MML was taken as ReLU also for input values less than 0.5 to
allow a range where signaling states can be passed forward
without alteration.

We found that a FFNN with this activation function and no
hidden layers provided a good approximation of independent
activation/inhibition (Fig. 1c) outperforming the other activation
functions that were tested, as well as ODEs with incorrect
functional form (Supplementary Fig. 1b). The overall performance

was acceptable also for other molecular mechanisms, although
prediction errors were not uniformly distributed (Supplementary
Fig. 1c). An advantage of the MML model without hidden layers
was that the sign of weights directly corresponded to the mode of
action (MOA), activation (positive), or inhibition (negative). This
allows for a straight forward implementation of MOA-constraints.
Additionally, it requires markedly less calculations than multi-
layered FFNNs. For FFNNs with one hidden layer, i.e.,
intermediate values with no direct biological translation, all of
the tested activation functions produced excellent approximations
(Fig. 1c).

Constraining a recurrent neural network with prior knowl-
edge. Signaling involves a network of molecular interactions
whose effects propagates from receptors at the surface to TFs in
the nucleus. In order to represent these interactions, which
include feedback loops, we developed a sparse RNN formulation
as a model of cellular signaling, LEMBAS. We constructed a
minimal signaling network (Fig. 2a) to demonstrate its applica-
tion. The structure of this prior knowledge network was encoded
by a sparse matrix holding the weights of its molecular interac-
tions (Fig. 2b). The overall expression, also known as a first order
non-linear difference equation, iteratively calculates the signaling
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Fig. 1 Modeling molecular mechanisms using a feed forward neural network (FFNN). a The steady state for different mechanisms involving two source
molecules (A and B) at constant concentration and a target molecule with an inactive state ([X]) and active state ([Xact]). Results were attained by running
ODE simulations until steady state, reaction rates (1–4) were parameterized manually (values in Supplementary Table 1), maximum activity was scaled to 1.
b The Michaelis–Menten-like (MML) activation function is designed as a monotonously increasing, continuous function with a maximum of 1 and
continuous first derivative (except at 0). It is composed of three segments; a leaky; a linear; and a saturating. The leaky and linear segments correspond to
the leaky ReLU activation function, as the Michaelis Menten equation is not defined for negative input. The saturating segment is composed of a shifted
and scaled Michaelis–Menten equation. c FFNNs models of molecular mechanisms with different activation functions and number of layers. The model was
trained on steady state activity for a grid of 7 × 7 linearly spaced source concentrations and tested on a 20 × 20 grid, the Pearson correlation between
prediction and test data was calculated (mean of three runs). A black outline marks the performance of MML for independent activation and inhibition with
no hidden layers. Source data are provided as a Source Data file.
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state from the state at the previous timestep and includes ligand
concentrations as input and a bias term, which may be inter-
preted as basal activation or thresholding. In this study molecular
interactions were modeled without hidden layers so that MOA
could easily be constrained, but the approximations of molecular
interactions could have been made arbitrarily complex by adding
intermediary nodes between sources and targets.

It is here assumed that signaling activity reaches a steady state
after evolving for some predefined number of timesteps (Fig. 2c)
and TF-activities are projected from the steady state. Ligand-
concentrations, weights, and biases are all assumed to stay
constant during the iterations, which can be motivated by time-
scale separation. Often RNNs are used to fit time series or other
sequence data, but here intermediate states are discarded resulting

in a one-to-one relation between ligand patterns and steady state
TF activities. It can be noted that while internally, a trajectory is
computed from some initial state (here all zeros) to steady state,
the steady state does not explicitly depend on the initial state or
any of the intermediary steps and these are therefore not required
to reflect biologically relevant transitions. An implication of the
steady state assumption is that any oscillations exhibited by the
network are dampened.

When training a model using LEMBAS, any potential
prediction error can be back propagated to adjust the model
parameters. The unrolling of an RNN into discrete timesteps is
commonly referred to as backpropagation through time
(BPTT)25. Here the BPTT expression is simplified by the steady
state assumption and the assumption of constant input (Fig. 2c).
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Fig. 2 Modeling a simple signaling network using an RNN. a A simple signaling network including ligands (L1, L2) receptors (R1, R2), signaling proteins
(S1, S2), and a TF (T1) interconnected by 8 interactions (w1, …, w8). b The difference equation calculates the state (hn) at timestep n from the previous time
step. The matrix A holds the interaction weights and the bias term (bias) and input term (x) are added, the activation function (σ) is applied at each
timestep. c Calculations are repeated until a steady state (hss) is reached and the predicted TF activity (ŷ) is projected (p) from the steady state. Loss (L) is
calculated by comparison to reference data (y), e.g., as mean square error (MSE). It is back propagated to provide the partial derivatives with respect to
weights and biases at steady state. Here ⊙ is element wise multiplication. To prevent potential exploding gradients, the loss is clipped at each step (see
methods). d Reference data generated by a parameterized model. e A model trained on the reference data by minimizing the loss using stochastic gradient
descent. Loss from predicting the mean value for comparison (dashed line). f Perfect fit (Train) and generalization (Test) to reference data. g Parameters in
agreement between fit and reference. Source data are provided as a Source Data file.
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Due to these assumptions, the gradients only depend on the
steady state values and due to the vanishing of gradients from
early timesteps, the back-propagated error can be assumed to
reach a steady state that is independent from the trajectory by
which it is computed (see Supplementary Fig. 2 for a numerical
comparison and Supplementary Notes 1 and 2 for derivation). It
can be noted that BPTT, for this restricted RNN, strongly
resembles loopy belief propagation that is used for Bayesian
inference on cyclic graphs26, where error messages are propagated
until convergence. As an alternative to direct iterations, we also
tried using Newton’s method for the forward pass and an
equation solver for the backward pass, which is a linear equation
system. However, in these tests, the solvers were an order of
magnitude slower than iteration (Supplementary Fig. 3a, b).

Models can be constructed on training data, then tested for
generalization on previously unseen data. The data, containing
ligand–TF activity pairs, was generated from a reference model
(Fig. 2d) with manually assigned parameters. A model was
trained using this data, i.e., without direct access to the parameter
values. Terms were added to the loss function to constrain
weights by their MOA and constrain biases at ligand positions to
zero, since their concentration was assumed to be provided as
input (see methods for implementation). Additionally, regular-
ization terms controlling the L2 norm of the parameters were
added to prevent overfitting, as is common practice. The model
was trained using the ADAM optimizer27 with a cosine learning
rate schedule and warm restarts, as has been proposed by
others28. Using this setup, it was possible to train (Fig. 2e) a
model to a near perfect accuracy, both on data used for training
(80%), and on test data (20%) that was left out of the training set
at random (Fig. 2f). We tested the methods sensitivity to non-
uniformly distributed training data by adversely selecting samples
that were left out of training (Supplementary Fig. 4a) and this
reduced generalization marginally, e.g., removing the bottom left
quadrant reduced the correlation (Pearson) of predictions to 0.85.

For this particular model structure, the trained model
accurately recovered the original parameter values (Fig. 2g).
However, it was possible to construct a network where this did
not occur even though the network generalized perfectly to test
data (Supplementary Fig. 4b). In this model, with sequential
nodes without branching, the parameters were not identifiable,
i.e., several different parametrizations provide an equally good fit
to the data. Nevertheless, there was a strong correlation between
the predicted state vector of trained- and reference-model,
suggesting that the learned model may be able to accurately
predict the effects of perturbing states, despite inconsistent
parametrization.

The steady state assumption and spectral radius constraints.
The assumption of a pseudo-steady state is motivated by time-
scale separation; however, this is expected to be disrupted by
regulatory events over the course of a few hours, e.g., through
transcriptional changes that remodel the network structure or
induce autocrine signaling. An example of this is signaling via
NFκB, which drives oscillatory TF activities through transcrip-
tional induction of NFκB-inhibitors, e.g., p100 and IκBα29. In
principle such regulatory effects could be modeled as transitions
between two steady states where data on the regulatory change is
used as input for the second state, e.g., increased levels of p100 in
the case of NFκB signaling. In support of this principle, we
constructed a simple model of NFκB dynamics (with 4 molecular
species) that elicited oscillatory behavior driven by time delay in
protein translation (Supplementary Fig. 5a). By sampling data
from the trajectories of this model at 4 selected time points
(Supplementary Fig. 5b), and training a steady state model to fit

the data (Supplementary Fig. 5c) we found that the parameters of
the underlying model were correctly identified (Supplementary
Fig. 5d).

Feedback loops can prevent an RNN from reaching a steady
state. The formulation above assumes that a steady state is
reached within a specified number of timesteps. However,
depending on the parametrization this may not occur. This
could yield non-sensical output and may be detrimental to the
gradient calculations, which could prevent training from conver-
ging. The requirement to reach a steady state can be formally
expressed using eigenvalue analysis of the linearized difference
equation (Fig. 3a). For the model to eventually reach a steady
state, the absolute value of the largest eigenvalue of the transition
matrix, i.e., the spectral radius, must be less than 1 (see
Supplementary Note 3 for derivation). Similar ideas have
previously been explored for linear systems30 and for RNNs31,32.

It is possible to constrain the spectral radius. Its partial
derivatives can be computed (for a numerical demonstration see
Supplementary Fig. 6) since it is a locally smooth function of the
weights33. We introduced a regularization term to control the
spectral radius using gradient descent (Fig. 3b) and with marginal
effects on the magnitudes of the weights (Fig. 3c) it ensures steady
state behavior (Fig. 3d). The introduction of the spectral radius in
the loss function can be viewed as imposing a prior on the
temporal complexity of the model. It should be noted that while
the spectral radius regularization ensures that all conditions in the
training data reach a steady state, it does not guarantee that this
holds for arbitrary conditions, i.e., untested conditions may be
unstable. With this, we had the prerequisites to simulate networks
of arbitrary size and wiring.

Parameterizing a large model for synthetic data generation. To
put LEMBAS to the test, we reconstructed a more comprehensive
signaling network. For this, we turned to an online database,
OmniPath9, that collects evidence of signaling interactions in
human cells. The full set of interactions in OmniPath is very
comprehensive and includes both well-characterized interactions
and results from single high-throughput experiments. To ensure a
model of high-quality, we used a subset of interactions that listed
KEGG10 as reference database and for which the MOA was
known (Fig. 4a). Nodes were labeled as ligands, receptors, sig-
naling molecules or TFs, based on annotation in OmniPath (see
“Methods”).

We set up a reference model to generate synthetic data. To
parameterize such a large model by hand would be daunting, and
parametrizing it at random did not yield meaningful models
(Fig. 4b), where TF activities depended on the input. This
appeared to be a consequence of the biological network structure,
since matrices with random structure and similar sparsity showed
a more dynamic response when parameterized at random
(Supplementary Fig. 7). To overcome this, we devised a setup
to automatically generate parameters based on desired properties
of the model (see “Methods”), which when applied to the simple
signaling network in Fig. 2a, recapitulated its signaling profile
without the need for manual calibration (Supplementary Fig. 8).
Briefly, using randomly generated input, an objective function
was optimized to simultaneously minimize; mean correlation
between conditions and TFs; the L2 norm of biases and weights;
and deviations from a uniform distribution of activities for TFs
and conditions. Additionally, the spectral radius, MOA of
weights, and the bias term on ligands were constrained. The
resulting model generated much richer synthetic data with TF
activity patterns that responded to ligand input (Fig. 4c).
Principal component analysis of the models, TF-patterns showed
that increasing the number of ligands increased the covered space
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consistent with complex interactions and emergent states
(Supplementary Fig. 9). This was also supported by a generalized
linear model of the patterns that showed a decreasing fit for an
increasing number of simultaneous inputs, suggesting the
presence of non-linear interaction effects (Fig. 4d). The
parameterized reference model demonstrates the computational
capacity that lays latent in the topology of the signaling network.

The time complexity of LEMBAS is favorable for learning large
networks. Network size can be characterized by the number of
signaling nodes (n) or by the number of non-zero interactions (z)
and a bottleneck for the algorithm involves sparse matrix
multiplication between the weight matrix and the state vector
with a complexity of zn2, meaning that simulation time increases
linearly with the number of interactions and that doubling the
number of nodes requires 4 times longer simulation time. For
biologically relevant networks with between 1000 and 19,000
nodes and ~10 interactions per node, we observe a linear increase
in wall time from 0.006 to 0.06 s per pass (Supplementary
Fig. 10a). However, the purpose of the algorithm is to train
models from data to an acceptable fit, which requires training for
a number of epochs that will depend on the total number of
conditions (see Supplementary Note 4 for a more in-depth
theoretical analysis of the complexity). Empirically we find a sub-
linear relationship between the number of conditions and number

of epochs of training required to attain a fit (Supplementary
Fig. 10b, c). While the complexity of training a generalizable
model, so far remains an empirical question, polynomial bounds
on the number of epochs have been established for some
classification tasks using RNNs34.

Training generalizable models on synthetic data. To test the
data requirements for generating generalizable models, we trained
models on synthetic data generated from the reference model. To
aid in the generalization and prevent the model from getting
stuck in local minima during training, several regularization
techniques were applied (see “Methods”). Briefly, the state vari-
able was regularized to have approximately uniform distribution
and a non-negative max value across conditions; weights were
regularized to have non-zero values and L2 regularization was
applied to all parameters; Gaussian noise was added to the state
variable with the level of noise decayed throughout the training in
proportion to the learning rate. Training with noise could be
considered a more biologically realistic alternative to drop-out, a
regularization technique that aims to decreases the dependency
on specific nodes by removing them at random. Experiments with
drop-out on knowledge primed neural networks by others22

showed that a much lower dropout rate than the default (50%) is

a b

dc

Deviationn-1 Deviationn-1

D
ev

ia
tio

n n

10

Stable lim :
only if

Ba
ck

w
ar

d 
pa

ss

Fig. 3 Stability of each steady state is controlled by the spectral radius of a transition matrix. a Linearization of the difference equation (first order
Taylor expansion) around a steady state (hss) and shift of coordinates with the steady state as origin yields a homogeneous linear difference equation with
transition matrix (T), here I is the identity matrix. Stability requires that a deviation (4h0) from steady state tends to 0 for repeated multiplication by T.
This occurs only if the spectral radius (ρ) of T, i.e., the eigenvalue (λ) of T with largest absolute value, is less than 1. A regularization term (Lρ) is
constructed to constrain the spectral radius. Its gradient is a function of the eigen value and left (w) and right (v) eigenvectors. Note that the imaginary
component of this function is orthogonal to the radius and can be ignored. The Re function elementwise returns the real part of complex numbers. b All
eigenvalues of a 100 × 100 transition matrix before and after a reduction of the spectral radius with the loss function using gradient descent for 200 steps.
Matrix parametrized at random with 20% non-zeros. c Strong similarity between matrix weights before and after reduction suggesting that the
regularization will cause minimal disruption to the learning. d Trajectories are stable after shrinking the transition matrix, here the trajectory of the first
element. Source data are provided as a Source Data file.
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required, presumably due to the likelihood of complete blockage
when the number of possible paths are limited.

With these techniques we fit models that generalized to a quite
favorable extent. The amount of data required for this was
investigated by training models with increasing amounts of
randomly generated conditions for different numbers of simulta-
neous ligands (Fig. 5a). More simultaneous ligands improved
generalization, and excellent performance was attained at the
highest data settings. As expected, training models without
spectral radius regularization caused training to diverge, resulting
in poor fits (Supplemental Fig. 11a). A low, but non-zero,
correlation was attained for models trained on data with
scrambled order of conditions (Supplementary Fig. 11b). This
could be due to the model learning general differences between
distributions of individual TFs and was corroborated by an even
higher correlation from taking the average of each TFs as
prediction. We were concerned about potential information
leakage from the reference model, since some of the regulariza-
tion terms were shared with the parameterization algorithm, but
training a model using only regularization terms (without fitting
to data) did not perform better than predicting the average of
each TF (Supplementary Fig. 11b), suggesting that leakage was
not substantial.

For the best model, the predicted TF values generally fell on the
line of identity when comparing to reference (Fig. 5b). There were
however some notable exceptions, these corresponded to a few
poorly predicted conditions with correlations as low as 0.2
whereas the correlations of individual TFs were all above 0.9
(Supplementary Fig. S11c). Training with additional data could
potentially alleviate this issue, since a larger state space would be
sampled, but the saturating trend in generalization after
400 samples (Fig. 5a) suggests that perhaps further improvements
to the regularization may be more economical. We found that, in
general, parameters were not identical between reference and
trained models (Supplementary Fig. 11d), presumably due to lack
of identifiability, but that most of the state variables were still
highly correlated between trained and reference models (Supple-
mentary Fig. 11e).

We hypothesized that the fitted model would predict in silico
knock outs (KO) of signaling molecules in the reference model
without training on such data. If successful, this would mean that
the trained models had acquired the same structural dependen-
cies as the reference model. For models trained on data from
living cells, this would correspond to the ability to predict
systemic effects of mutations or drugs. We simulated KO of each
of the signaling molecules under several different conditions, i.e.,
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in presence of different ligands. Although many KOs had limited
impact on most TFs, the predicted difference in TF activity was
similar between reference and fitted models (Fig. 5c), meaning
that KO events were in general successfully predicted.

LEMBAS relies strictly on prior knowledge of the signaling
network and does not attempt to identify novel interactions. This is
advantageous since it strongly reduces the solution space, alleviating
the data requirements while at the same time enforcing biological
plausibility and enabling the simulation of KO events. However,
this may also be a limitation for learning the parts of signaling that
are not yet fully characterized. This may be particularly challenging
when applying LEMBAS to other mammals, since their prior
knowledge networks often are mere homolog-based extrapolations9

of their human counterpart. At best, training under such conditions
may result in inability to completely fit the test data, which may
help highlight signaling interactions that require further attention
and research, however, incorrect relations may also be learned
which may harm generalization. A potential solution is to allow the
model to use a limited number of interactions supported by prior
knowledge of sub-standard quality. Alternatively, the model could
be set up to identify novel interactions, which may result in data-
driven discovery.

A recent approach attempts to overcome missing signaling
interactions by adding condition-dependent signals to each
node35,36. In theory, missing interactions may be inferred from
analysis of the imputed signaling patterns. We adapted a version
of this method using a fully connected neural network. We
applied it, post hoc, to a model from which we had manually
removed one interaction (between RALGDS and RALA) that we
found was important for the model’s predictions. After training
the neural network to reduce the error introduced from removing
the interaction, it provided an unambiguous signal on RALA, the
target of the interaction (Supplementary Fig. 12a). Furthermore,
by identifying nodes that correlated with the signal, and
discarding downstream signaling proteins, we narrowed down
the source of the missing interaction to a set of 5 nodes that
included RALGDS and its nearest neighbors in the signaling
network (Supplementary Fig. 12b), supporting the utility of the
method. However, for a more realistic setting, where fitting of the
model and condition-specific signals occurred simultaneously, we
were unable to identify the missing interaction (Supplementary
Fig. 12c). So, while data-driven discovery seems like a promising
future application of LEMBAS, a more thorough evaluation
would be required to determine its utility in a realistic setting.

Estimating transcription factor activities. Transcription factor
activities are increasingly recognized as a natural bridge between
signaling and regulation37 and in order to apply LEMBAS to
actual experimental cell biology data, TF-activities must be esti-
mated for each experimental condition. Since the lifetime of
mRNA is expected to be much shorter than regulatory changes in
transcription rates38, mRNA concentrations can be expected to be
proportional to their formation rates and thus reflect the activity
of the TFs that regulate their expression. Estimation of tran-
scription factor activities from gene expression of their targets is
an appealing method, due to the comparable ease of data gen-
eration, that is becoming increasingly utilized11. In this study, we
used a gene set enrichment-based method, Dorothea11, that
estimates probabilities of TF activities from mRNA concentra-
tions of their target genes. In the Dorothea-study, the authors
quantify their ability to predict changes in TF activities under
defined conditions, such as TF knock-out or overexpression, and
found that literature-derived TF-target interactions outperformed
interactions inferred from high throughput studies. They provide
confidence scores between A and E for each interaction in their
database, and for this study, we only use interactions with high
confidence (A and B). For modeling purposes, one challenge is to
relate the statically inferred probabilities of TF activation to dif-
ferent levels of TF activity, e.g., due to time-occupancy at TF
binding sites or levels of polymerase recruitment. Nevertheless, it
can be expected that some, presumably non-linear, relation exists,
which may be approximated by the RNN model.

We applied the method to a transcriptomics dataset from
literature4 where macrophages were stimulated with 12 ligands in
23 different combinations. There was in general good agreement
for the predicted TF-activities among biological replicates from
the same condition (Supplementary Fig. 13a, b) and the inferred
activity patterns (Supplementary Fig. 14) appeared to largely
agree with known biology, e.g., that RELA and RELB are induced
by inflammatory ligands such as interferons and lipopolysacchar-
ide (LPS)39. Applying LEMBAS to this data, we fit a model with
high accuracy, Pearson correlation r= 0.96 (Supplementary
Fig. 15a). For this, we expanded the model with interactions
from an immune-specific resource, InnateDB40, and manually
added receptor interactions for the ligands used in the study
(Supplementary Table 3). Leave-one-out cross validation
(LOOCV) of the model’s ability to generalize to unseen data,
showed a correlation of r= 0.59 (Supplementary Fig. 15b),
markedly higher than for models trained on data in scrambled

ba c

Fig. 5 Modest amounts of synthetic data is sufficient to train generalizable models. a Synthetic training data was generated from a reference model and
used to train an independent model. Training data with different numbers of conditions (10, 50, 100, 400, and 800) and simultaneous ligands (2, 3, and 5).
Generalization performance was evaluated on 1000 independently generated test conditions as the Pearson correlation between prediction and reference.
A non-zero correlation was attained for predicting the average of each TF. Training was conducted for 10,000 epochs with a batch-size of 5. b Comparison
of model prediction and reference for the best performing model. c KOs of signaling nodes were simulated by applying a strong negative bias to the node,
resulting in their state being close to zero after applying the activation function. For independent KOs of 253 internal nodes under 100 random conditions,
the change in TF activity for KO compared to no KO (control) was in good agreement between model and reference. For predictions to be off by more than
1 (marked in gray) both KO and control must be incorrectly predicted. Source data are provided as a Source Data file.
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order r= 0.11 (Supplementary Fig. 15c). This was even better
than for synthetic data of comparable size, perhaps due to denser
sampling from a restricted region of the ligand stimulation space.

Predicting signaling in ligand stimulated macrophages.
Encouraged by LEMBAS’s performance on synthetic- and lit-
erature data, we generated a data set for ligand stimulated mac-
rophages. Human macrophages differentiated from monocytes
from healthy donors (n= 3) were stimulated with one of 59
different ligands for 24 h, with and without the addition of LPS
for the last 2 h (Fig. 6a). Transcriptomics data was generated for
each condition and used to infer TF-activities (Fig. 6b). There was
in general good agreement between the biological replicates
(Supplementary Fig. 16a, b). As expected, LPS elicited a strong
signaling response, inducing, among other TFs, RELA and
STAT1. A group of ligands that included IL26 and Prostaglandin
E2 (PGE2) showed a signaling profile that was markedly distinct
from the PBS control condition and also differed in their LPS
response. IL4 and IL13 which are associated with the type II
inflammation also showed distinct signaling patterns.

We constructed a model to fit the data. For the signaling
network to accommodate the comprehensive set of ligands used
in the experimental study it was expanded with interactions from
the SIGNOR database41, complemented with manual curation of
interactions (see “Methods”) and addition of non-protein derived
ligands, resulting in a model with a similar number of parameters
(1262 biases + 6594 weights = 7856 parameters) and data points
(103 samples × 74 TFs = 7622 datapoints). The model fit the data
with high accuracy, Pearson correlation of 0.95 (Supplementary
Fig. 17a), and generalized well to data that was left out of the
training r= 0.8 (Fig. 6c) in cross validation with 27 folds (3
conditions per fold). This was markedly better than for models
trained on data in scrambled order r= 0.19 ± 0.3,
p= 2.33 × 10−9, Mann–Whitney U test (Supplementary Fig. 17a).
We also trained models using the leaky ReLU activation function
with similar performance r= 0.74 ± 0.18 (Supplementary
Fig. 17a), but were unable to fit the data using the sigmoid
activation function. The generalization performance was poor for
6 of the conditions, suggesting that the model was overfitted in
these cases (Supplementary Fig. 17b). The condition with worst
generalization performance was SERPING1, which could be
related to its complex extracellular activities42 that are not
covered by the intracellular signaling model. There was a
tendency for TF’s that showed a worse fit for the training data
to also have worse predictions (Fig. 6d, and Supplementary
Fig 17c), suggesting that reconstructing an even more compre-
hensive network could further improve the predictions.

With the trained signaling models in hand, we applied
simulated perturbations to interrogate how predictions were
affected by the internal wiring. We focused on the LPS stimulated
condition, as this was the ligand we had collected most data for
(43 conditions, compared to 2 conditions for all other ligands).
We simulated how knocking out each signaling protein would
affect RELA (Fig. 6e), a TF that is known to be activated by LPS in
macrophages43. As could be expected, the LPS receptor TLR4 was
predicted to have a large effect, but a number of NF-κB activating
proteins were also identified, e.g., RIPK1, CHUK, and IKBKG, in
good agreement with prior knowledge44. In particular, RIP1 has
been found to be a critical modulator of TLR-responsive
pathways in human macrophages and has been proposed as a
target against chronic inflamation45. We also simulated the effect
of “knock in”, i.e., activating each signaling protein (Fig. 6f), the
predicted responses were generally weaker than for knock out,
but the model identified a dampening effect of PPP2CA, which is
known to directly dephosphorylate RELA46, showcasing that

biologically relevant interactions have been learned by the
integrative approach. However, the noticeable discrepancies in
the predicted effect size between models from different runs,
suggests that even larger datasets would be favorable to generate
confident predictions of the state of individual signaling proteins.

For a more global analysis of the wiring, we calculated how
sensitive each TF was to small perturbations in signaling proteins
under each of the studied conditions. From inspecting the
maximum absolute sensitivity, i.e., both activating and inhibitory
influence, we identified 235 signaling proteins (~20% of the
internal nodes) with a strong predicted effect on at least one TF in
at least one condition (Fig. 6g). As could be expected, some
signaling proteins acted as hubs that affected most TFs, e.g.,
MAPK1 (also known as ERK2) and GSK3B. Others, only affected
one specific TF, e.g., NFIB only affected NFIC. Analogously, some
TFs were affected by a large number of signaling proteins, e.g.,
MYC and FOXO3, while others only by a few, e.g., ELK1 was
primarily affected by MAPK1 and JAK2. Applied to a broad
range of conditions, sensitivity analysis may be used to identify
drug-targets with broad or specific responses. It can also be useful
for identifying interactions of high or low importance when
constructing smaller scale models of specific processes, localizing
non-identifiable parameters47, or for network visualization.

Predicting viability in drug treated cancer cell lines. The main
advantage of LEMBAS is that it enables rapid parameterization of
large-scale signaling models. For the macrophage data, a model
with 1262 signaling proteins was trained and there are few models
of this scale available in literature for comparison48. One of the
most ambitious parameterizations of an ODE-based signaling
model in terms of scale consisted of around 1200 molecular
species and 2600 reactions48. This model was fitted to predict cell
viability under the influence of 7 drugs in eight different con-
centrations in 120 different cancer cell lines (around 6720
observations in total) and used data on basal gene expression and
prominent mutations in each cell line to enable context-specific
responses. To benchmark LEMBAS against this approach, we
adapted our macrophage network, which was of similar scale. To
this end we added a projection layer to predict viability as a
weighted sum of transcription factor activities, e.g., from MYC
and the FOXO and STAT families, mirroring the approach used
for the ODE-model (Supplementary Fig 18a). We also added
layers that projected signals from drugs to their intracellular drug
targets, and mutations and gene expression to their correspond-
ing signaling proteins (Supplementary Fig 18a). Reportedly, the
ODE model was fitted in just under a week using a cluster with
400 CPU cores and iterations were halted after 100 steps. The
correlation between data and model was then 0.85 ± 0.01 for the
fit and 0.69 ± 0.09 for cross validation. In comparison, our fra-
mework reached a correlation of 0.87 ± 0.01 within 15 min on a
laptop with 6 cores and the cross-validation with a correlation of
0.70 ± 0.06, was completed within an hour (Supplementary
Fig 18b, c). Showing that for this task, LEMBAS was comparable
in terms of expressiveness and generalization and superior in
terms of speed.

Discussion
We have here demonstrated that genome-scale simulation of
intracellular signaling is now attainable. We developed LEMBAS,
a computational framework based on RNNs, constrained by prior
knowledge of signaling interactions, that rapidly trains predictive
models using signal-response data, e.g., TF activities from ligand
stimulations or viability in response to drugs. In particular, the
model’s ability to predict the effects of KO’s is highly advanta-
geous and cannot easily be matched by black-box-based models.
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Fig. 6 Modeling ligand stimulation in macrophages. a Human monocyte derived macrophages were treated with 59 different ligands for 24 h with and
without addition of LPS for the last 2 h. b TF-activities were estimated for 74 transcription factors across 103 unique conditions (displaying averages across
biological replicates). c A model consisting of 1262 nodes and 6594 interactions was reconstructed and trained to fit the data. It generalized well to unseen
data under cross validation (r= Pearson correlation, p= two-tailed p-value) that included conditions where all ligands were present in at least two
conditions (84 out of 103) and included at least once in the train set. d The fit of TFs in training data was related to the cross-validation performance.
e Predicted effect on RELA activity in response to simulated KO under the LPS stimulated condition using the cross-validation folds (n= 27) to estimate
consistency, top 10 KOs by median effect size, max whisker length 1.5 interquartile range. f Top 5 responses to simulated knock in, a red box indicates
positive delta. g Maximum sensitivity of internal signaling proteins on TF activities across all conditions identified 235 signaling proteins with an absolute
sensitivity of at least 0.5 in at least one condition. Abbreviations of none-gene-name-derived ligands, leukotriene B4 (LTB4), all-trans retinoic acid (ATRA),
lysophosphatidic acid (LPA), prostaglandin E2 (PGE2), lipopolysaccharide (LPS), oxidized low density lipoprotein (ox-LDL). The boxes in panels e and
f display the median and inter quartile range of the data, whiskers extend to the rest of the data provided that it is within 1.5 inter quartal range of the
boundaries of the box. Due to space constraints, some of the labels are omitted from the heatmaps in panel g. Source data are provided as a Source
Data file.
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For models trained on real-world data, this would have important
clinical implications, since many drugs act by blocking the
activity of signaling molecules. We demonstrated the practical
applicability of the framework to experimental data, and although
our experiments with synthetic data suggest that larger data sets
are required to provide even more generalizable and robust
predictions, we showed that these models recapitulate known
biology and generalize to conditions that were not included in the
training. More broadly, this work demonstrates how genome-
scale models can enquire consistency between experimental data
and prior knowledge and highlight their limitations. We antici-
pate that LEMBAS in conjunction with large-scale datasets will
generate highly generalizable models that further our under-
standing of intracellular signaling.

Presently, many high-throughput methods are being developed
that will synergize well with LEMBAS, including large-scale
transcriptomic screenings, e.g., the L100049. These will enable
profiling of numerous ligand-combinations and other perturba-
tions to explore the space of possible signaling states and models
trained on such data will provide a succinct and actionable
representation of the acquired knowledge. LEMBAS is not limited
to study ligand-stimulation, our simulations of the effects of
drugs on viability and our gene KO-simulations demonstrate how
intracellular perturbations can be incorporated. Innovative use of
nucleotide barcoding has enabled simultaneous construction of
KO cells and sequencing of their gene expression50, albeit so far
this was only applied to TFs, not signaling proteins. Such intra-
cellular perturbations are of great interest for studying
signaling16,48 and can help resolve identifiability issues, where
activity in multiple pathways can explain the data equally well.

Identifiability issues could be resolved by collecting data on the
internal signaling states of select proteins, since in general,
observations from more molecular species will improve con-
fidence in the predicted cell states. The coverage of observable vs
hidden nodes can be used as a crude metric of this confidence,
and this will generally be more challenging for large-scale models
that have more molecular species to cover. For example, a smaller
scale model of macrophages from literature51 covers 70 molecular
species with observations for approximately 80% of the nodes in
at least one condition, another model52 has 130 species with a
coverage of approximately 20%. Meanwhile, our model of mac-
rophage signaling includes 1262 species with a coverage of
around 5%, although since only around 20% of these had a strong
influence on the predictions, the effective coverage after reg-
ularization may be higher than this estimate suggests. It should be
noted that LEMBAS is not limited to predict TFs, if data is
available, any molecular state can be projected from the state
vector and fitted analogously to the TF data. High-throughput
methods for generating multimodal data are currently under
development, e.g., coupled profiling of transcriptome and protein
activity53 and barcoding states of phosphoproteins using
antibodies54. Data may also be acquired using proteome level
quantification of phosphorylation states7.

Transcriptomics is, nevertheless, a strong technology for gen-
erating genome-scale data to train signaling models, both in
terms of cost and availability. Transcriptome-based TF-activity
estimates, provides a much larger set of observables than high
level phenotype data, e.g., cell viability16,19, which have also been
used for fitting large-scale signaling models. The connectivity of
TFs throughout the signaling network also helps offset the
increase in a number of parameters with increasing network size
by a matching increase in number of TFs, i.e., observed data-
points. The use of transcriptomics data to infer TF activity
requires reliable estimation-methods. While many activities
inferred using statistical methods are of high quality11, our
understanding of gene regulation is continuously improving and

more advanced computational methods are being developed, e.g.,
auto encoders that fit TF activities as latent variables informed by
prior knowledge of TF-gene relations55 and mechanism-based
deep learning models38. There is also the development of
sequencing-based methods that simultaneously profile chromatin
accessibility, intra-nuclear proteins, and gene expression56, which
could aid in acquiring more accurate TF activity estimates. There
are presently several methods that strive to infer signaling pat-
terns from transcriptomics data and prior knowledge of the sig-
naling- and regulatory networks, e.g., CARNIVAL57 and
NicheNet58. However, these aim to provide qualitative descrip-
tions of possible network wirings for individual condition as
opposed to generating a predictive model consistent with all
conditions as the one developed in this study.

We here primarily aspired to model the effect of ligand sti-
mulation in a single cell type and differentiation state. This is
encoded through the weights and biases. A natural generalization
would be to let these parameters depend on external factors, e.g.,
cell type or test subject. Assuming that the wiring is mostly
conserved, these parameters could be made into regularized
functions of easily quantifiable properties, e.g., genotypes, allow-
ing personalized parametrizations that still leverage data from
other experiments. This was, partially, implemented for the via-
bility case study, where the transcription profile of each cell line
affected the bias. Subsets of parameters could even be pretrained
using data from molecular studies, which corresponds to transfer
learning that has been successful in other ANN applications, e.g.,
mammograms have been analyzed by appending a classifier to a
network pretrained on regular images59. This would be particu-
larly useful for analyzing subpopulation-specific responses among
cells within a single experimental condition, that are now being
inquired with single cell sequencing techniques. It is of much
interest to discern the root cause of these differences e.g., differ-
ences in ligand concentrations, basal activity, or network wiring.
Single cell sequencing has founded an atlas of cell types at various
stages of differentiation, and a fruitful continuation of this work,
in particular for immune cells60, could involve comparisons of
their dynamic responses to stimulation through differences
between parameterized models.

LEMBAS relies on steady state assumptions motivated by time
scale separation. From biological perspective, it seems plausible
that evolution would favor reproducible responses, i.e., that a
given signaling pattern converges to the same state each time,
although there are certainly exceptions, where sustained oscilla-
tions are instead desirable, e.g., the circadian rhythm or the
cardiac cycle. Due to the steady state assumption LEMBAS can-
not directly simulate such dynamics, although internally it cal-
culates a trajectory for each condition. Time-series data could in
principle be accommodated by the framework by fitting states at
particular time steps, however, this would likely be better
accommodated by continuous time RNNs. Such RNNs have
obvious similarities with ODE models and discussions on brid-
ging the gap between RNNs and ODEs are ongoing16, notably a
direct correspondence has been established between RNNs with a
specific architecture and a common numerical ODE solver61.

Our regularization of the spectral radius ensures that all con-
ditions in the training data reach steady state, but it does not
guarantee that this holds for arbitrary conditions. The pursuit of
methods to enforce global stability for non-linear systems is an
ongoing62, but it is not clear if global stability should be required
for biological systems, since they may be intrinsically unstable for
conditions that are never encountered. Interestingly, if evolution
is viewed as an optimization algorithm that has learned cellular
parameters from conditions that are encountered, then by ana-
logy turbulent states could be expected to occur for untrained
conditions, which may be an interpretation of the chain-of-events
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in some diseases e.g., the detrimental immune responses known
as cytokine storms63.

The challenge to learn parameters of a model with known
structure from data is not limited to biology. In control theory, it
has been proven that SGD can learn linear dynamical systems64,
which corresponds to an RNN with linear activation function.
The RNN developed herein is an example of a sparse ANN. It has
been recognized21 that for fully connected ANNs trained on
image data, most parameters can be set to zero without marked
loss in performance. After removing these interactions, the sparse
models can sometimes be retrained to the same level of perfor-
mance as the original, since the learned structure remains enco-
ded in the sparse connections. Analogously for signaling, sparsity
has been learned through optimization by evolution. The ongoing
development of new algorithms and hardware for training ANNs
assures that the future will provide further improvements in
model sizes, and training and execution times, e.g., sparse matrix
multiplication is parallelizable and can be efficiently calculated on
graphic processing units65.

There are many avenues to expand the framework to further
accommodate realistic simulations. One would be to allow
molecules in different cellular compartment to have distinct sig-
naling states. This would add a spatial component to the model
and could be implemented directly through the prior knowledge
network without changes to the framework. The intrinsic mod-
ularity of ANNs allow for intuitive integration with other net-
works, this seems immediately promising for integration with
ANNs of regulatory processes, but it is also conceivable that cell-
cell interactions could be modeled by chaining together multiple
networks. The use of executable models in cancer research has
shown how submodules with varying levels of abstraction can be
integrated into a computer program that can be formally
verified66. The rapid execution of trained models in consort with
databases of drug-interaction partners67 opens up for genome-
wide in silico screening of drug responses. This, together with
personalized signaling models could provide individualized pre-
dictions of drug responses and side effects at the level of indivi-
dual cell types.

Methods
Ordinary differential equations of molecular dynamics. ODEs were formulated
for the different reaction schemas (see Fig. 1a) assuming mass action kinetics (see
Supplementary Fig. 1 for an example). The rate constants were manually para-
metrized (see Supplementary Table 1 for values) to yield sensible output. The
differential equations were solved numerically using an initial value problem solver
for systems of ODEs (scipy.integrate.solve_ivp68 in python 3.7.10). State variables
were initialized as 1/[total number of states] and the activity after 100 time units
was taken as the steady state value. For convenience, the system was solved once
with high resolution, a 50 × 50 linearly spaced grid, and linear gridded interpola-
tion (scipy.interpolate.interpn) was used to down-sample to the indicated opera-
tional resolution.

Neural network simulations of molecular interactions. Neural networks where
constructed and trained using the pytorch framework69. This includes the autograd
functionality, i.e., automatic differentiation, that retains the computation graph and
uses it to automatically calculates gradients of the loss function. For the sigmoid
activation, the default formulation was used (torch.sigmoid), for ReLU the leaky
version was used (torch.nn.functional.leaky_relu), and the MML function was
manually implemented (as specified in Fig. 1b). For the fully connected layer
(torch.nn.Linear) 5 hidden nodes were used. A trainable scaling factor was added to
the output of the functions to accommodate normalization of activities. The neural
networks were trained for 5000 epochs using the ADAM optimizer (torch.opti-
m.Adam) with a learning rate of 0.002 and the built in L2 weight decay (factor
10−5). Default initialization of weights and biases was used.

Structure of data files. The signaling network structures were stored in list format
with each entry containing a source node, a target node, the mode of action, and
references to databases and PubMed ids, where applicable. Signaling nodes were
identified by their uniprot identifier. This structure is similar to the format used by
OmniPath9, but unlike OmniPath, all interactions were considered directed from
source to target and reversible interactions were represented by an additional entry

with source and target nodes exchanged. The signaling network file was accom-
panied by an annotation file, that for each of the signaling nodes specified their
function, e.g., ligand or transcription factor, and a human readable synonym, e.g.,
gene name or small molecule acronym. For storage of trained networks pytorch
serialized objects (torch.save) were used and a human readable plain text format
was also developed where each entry contained the parameter type (bias, weight,
input projection, or output projection), parameter value, source node and target
node (only used for weights). For the macrophage dataset input and output data for
the network were stored as tab separated tables with conditions as rows and ligands
and TF levels respectively as columns.

Projections from input to state and from state to output. Input consists of a [s ×
i] matrix where s is the number of samples (in total or in the mini-batch) and i is
the number of ligands in the input, the output consists of a [s × o] matrix, where o
is the number of TFs in the output. The RNN calculates a state matrix, [s × n],
where n is the number of state variables. To accommodate size differences between
input, output, and state matrixes the RNN is proceeded by a projection layer that
inserts the elements of the input at their corresponding position in a zero-padded
matrix [s × n] with elements ordered as in the state matrix. Similarly, the state
vector is projected to an output matrix by selecting the corresponding TF elements
from the state matrix and placing them in an order that matches the order of TFs
in the data. Scaling factors for each element are included in the projections and for
the output projection these are made trainable parameters.

Recurrent neural network formulation. The RNN takes a matrix x as input and
returns a matrix hss as output both with the structure [s × n], with s and n defined
as above. The function is parameterized by trainable weight and bias vectors. The
structure of the signaling network (A) is provided as a sparse row matrix (sci-
py.sparse.csr_matrix) with values of the non-zero elements given by the weight
vector. The columns of the matrix correspond to sources and the rows to targets.
The state vector is initialized as all 0 and iterated for a finite number of steps, set to
150 in this study. The RNN function was implanted as a manual autograd function
(torch.autograd.Function) with both forward and backward pass specified manu-
ally (see Supplementary Note 5 for the algorithm) using numpy70 operations. The
spectral radius of the transition matrix for the backward pass is assumed to be less
than 1, meaning that the magnitudes of the back propagated gradients are boun-
ded. However, since it cannot be excluded that this constraint occasionally will be
violated during training, gradient clipping is applied at each iteration. To prevent
clipping under regular conditions, the clipping function was constructed with a
linear segment between two saturating tanh regions (see Supplementary Note 1).

Initialization of weights, biases, and scaling factors. Weights are initialized as
uð0; 0:1Þ þ 0:1, where u is a uniformly sampled random number on the specified
interval. Weights corresponding to inhibitory interactions are made negative by
multiplication by −1. All weights are scaled by a factor 0:8=ρðAÞ, where ρ(A) is the
spectral radius of the matrix A to ensure that ρ Að Þ<1. Biases are initialized at a
value of 0.001 except for biases corresponding to nodes that only have inhibitory
inputs, in which case they are initialized at 1 to accommodate dynamic node states
in the positive regime. The scaling factors for elements in input and output pro-
jections are initialized by a constant value, 3 for input projections (which corre-
sponds to a state of ~0.92 after applying the activation function) and 1.2 for output
projection.

Soft constraints for weight signs and ligand bias. To impose soft constraints,
barrier functions were constructed, multiplied by a constant and added to the loss
function. For interactions with known mode of action, activation or inhibition, the
sign of the corresponding weight was constrained to be positive or negative
respectively. This was imposed by adding the sum of absolute values of weights
where the sign conflicted with prior knowledge. For biases associated with ligands,
the model was prevented from learning large values, since knowledge about ligand
concentrations is expected to be available and provided as input. Here, the barrier
function was constructed as the sum of squares of biases belonging to ligands.

State and parameter regularization and application of noise. To aid in gen-
eralization and prevent the model from getting stuck in local minima, several
regularization techniques were applied. To prevent parameters from taking on
extreme values, L2 regularization of weight and bias parameters was implemented
by adding the sum of squares of these vectors multiplied by a coefficient, 10−8, to
the loss function. For training on the synthetic dataset an additional term was
added to the weight loss to prevent weights from getting stuck at zero (Eq. 1).

loss ¼ ∑
1

w2
i þ 0:5

ð1Þ

Regularization of the state variables was implemented to ensure that they
remained active with a wide dynamic range during training, with similar objective
as batch normalization. The goal was for each of the elements of the state variable
to have a uniform distribution across conditions, and this was implemented by
regularizing some of the statistical properties to match the corresponding
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properties of a uniform distribution on the interval [a b] (Eq. 2).

μ hð Þ ¼ b� a
2

; σ2 hð Þ ¼ 1
12

b� að Þ2; min hð Þ ¼ a; max hð Þ ¼ b ð2Þ
To be operational independent of batch size, the properties were calculated

across all conditions, and for conditions that were not in the present batch their
latest calculated values were used; however, these were detached
(torch.tensor.detach) from the computation graph and only gradients from the
current batch were back propagated. The regularization was implemented by
calculating the deviation of the empirical property across conditions from the ideal
property calculated for the interval [0.01, 0.99]. The sum of squares of deviations
was applied as barrier function. Additional regularization was added to prevent
negative max values, the sum of negative max values was used as barrier function.
The sum of these contributions was multiplied by a factor, 10−5, and added to the
loss function.

In addition to regularization, Gaussian noise was added to the b vector for each
forward pass, to ensure that the fitted parameters were robust to small deviations.
The level of noise was made proportional to the learning rate (lr) as
b ¼ bþ 10 � lr � norm 0; 1ð Þ, where norm is sampling from a normal distribution
with 0 mean and 1 variance.

Spectral radius regularization. An exponential barrier function was used to
constrain the spectral radius (ρ) with k as scaling factor (Eq. 3).

loss ¼ a � exp k � ρ� �
; a ¼ 1

exp k � ½target ρ�� � ; target ρ
� � ¼ exp

½target precision�
½maximumnumber of steps�

� �

ð3Þ
To be able to backpropagate this function, we constructed a manual autograd

function for the gradient of the spectral radius (see Supplementary Note 6 for the
algorithm). It made use of a sparse eigenvalue solver (scipy.sparse.linalg.eigs). Since
both left and right eigenvectors are required for the gradient calculation and only
right eigen vectors are returned by the sparse solver, the matrix was transposed and
solved a second time with the predicted eigenvalue from the first pass as target. To
conserve computations, a single steady state was selected at random for
regularization from each batch.

Model reconstruction. The most recent interaction database was retrieved from
the OmniPath9 website (archive.omnipathdb.org, retrieved 2021-06-21). Only
human interactions from the OmniPath core set were included. The interactions
were divided into 3 subsets, Ligand-Receptor (LR) interactions, regulatory inter-
actions, and signaling interactions (see supplementary table 3 for details on the
queries). The LR and signaling interaction were further reduced to only include
interactions that referenced KEGG among the sources. A few reactions were
removed based on manual curation; interactions between IL6R and JAK1, STAT3,
and SRC were removed, since IL6R only signals through its interaction with gp130
(IL6ST)71; the interaction between TLR4 and IRAK4 and CD14 were removed
from receptor–ligand interactions, since IRAK4 and CD14 are not considered
ligands based on their uniprot annotation72. All interactions that were listed as
reversible were duplicated and reversed and their interactions were set as uni-
directional. To avoid duplicate interactions, all interactions present in LR were
removed from the signaling set. Any conflicts in mode of action, i.e., listed as both
activating and inhibitory, were resolved by removing the mode of action infor-
mation. Nodes that were not listed in Uniprot72 were also removed. Nodes were
classified as ligands if they were listed as sources in LR, as receptors if they were
listed as targets in LR, and TFs if they were listed as sources in the regulatory
interactions. The LR and signaling interactions were merged. Nodes where con-
sidered dead ends and removed from the network if there for the node was no path
from any ligand or to any TF. Additionally, nodes were considered redundant and
removed if they had only a single source and target that both were the same node.
Network plot was drawn using MATLAB 2020a.

The same procedure was followed for the network intended for the literature
data, but InnateDB was also included as an approved source. Furthermore, the RL
interactions were manually defined (supplementary Table 3) based on the ligands
available in the experimental data based on uniprot72 annotation. The list of TFs
was restricted to the ones with experimental data available.

The same procedure was followed for the macrophage network for experimental
data, but SIGNOR was also included as an approved source. RL interactions for
non-proteins were manually defined (Supplementary Table 4), and some manual
curation was performed (Supplementary Data 1). The list of TFs to include in the
network was manually defined.

Synthetic data generation and analysis. To generate synthetic data with a non-
trivial distribution, an objective function with several terms was defined to para-
meterize the reference model. For each epoch the model was provided with 200
conditions containing five randomly selected ligands per condition with uniformly
sampled concentrations, these were resampled for each evaluation. The predicted
TF activities were regularized to follow a uniform distribution both across condi-
tions and across different TFs, this was implemented in the same way as state
regularization (see above) but without dependency on states from previous epochs.
The mean correlations were minimized across both conditions and TFs, this was

implemented by calculating the average of the correlation coefficients of the output
matrix and its transpose. Spectral radius regularization was applied with a coeffi-
cient of 10−2 and L2 norm on weights and biases was applied with a coefficient of
10−6. Sign and ligand constraints were applied as specified above. To preempt
information leakage, parameters were initialized differently than for the trained
models; weights were initialized uniformly at random from the interval [0, 3] and
their sign was assigned based on mode of action, and scaled to a spectral radius of
0.8; bias was assigned by sampling uniformly from the interval [0, 0.01].

The complexity of the synthetic data was studied by PCA analysis of predicted
output from 2000 randomly generated conditions with different numbers of
simultaneous ligands. Linear models (sklearn.linear_model.LinearRegression)73

were fitted to the synthetic data for each simultaneous ligand level, and
prediction performance was evaluated using 20 fold cross validation
(sklearn.model_selection.KFold). The performance of the model trained on
single ligand data was also evaluated.

In silico knock outs. The predicted effects of in silico KO were studied by adding a
strong negative bias (−5) to the node of interest, resulting in near zero node states
after applying the activation function. The change in TF activity compared to the
control condition without KO was used as metric since most TFs are not expected
to be affected by most KOs. For the KO predictions under the TNF condition, the
KO was applied to all nodes in each of the models that were generated for the cross
validation, and nodes were ranked by the median of the predicted effect on RELA.

Sensitivity analysis. For each condition, the reference state without perturbations
was simulated. For each signaling protein, the raw state before applying the acti-
vation function was calculated. A new simulation was run where each signaling
protein was perturbed by an addition of 0.01 times the raw state, this was
implemented by adding a matrix with the perturbations on the diagonal to the
input. The sensitivity for each TF was calculated by dividing the change in activity
by the reference state and multiplying by 100 (1/0.01).

Inference of TF activity from literature data. Literature data4 was retrieved from
the ArrayExpress74 database (ebi.ac.uk/arrayexpress), accession number E-GEOD-
46903. Genes without any detected signal (min p > 0.01) or without variance ([std]
< 10−6 [mean]) were removed from further analysis. The log-transformed data
(5203 genes and 384 samples) was centered and TF activities were inferred using
Dorothea11, as is provided through the R package “dorothea”75, which uses an
enrichment-based statistical method, viper76, with the default settings,. Only TFs
with a confidence score of A or B and interacting with at least 5 genes were
included. Conditions were filtered to only contain data from GM-CSF cultured
macrophages from the same time point (72 h) amounting to 103 samples including
biological replicates. The Dorothea reported log odds ratios were transformed to
probabilities using the inverse logit function, i.e., the logistic function. The average
was taken among replicates resulting in 23 unique conditions. Standard deviation
among replicates for each TF within each condition were inspected and TFs were
discarded if their 75th percentile of standard deviations exceeded 0.2 corresponding
to 4 TFs (see Supplemental Fig. 13a).

Viability predictions. LEMBAS was appended with additional layers to support
viability predictions in different cell-lines using data on basal gene expression,
prominent mutations, and concentrations of different drugs. The perturbations of
the intracellular signaling state were estimated by incorporating signal projection
layers for drug concentration, cell-line gene expression profile, gene mutations, and
appending a layer for predicting viability from TF activities (see Supplemental
Fig. S18a). The input to this modified model consisted of three types of data: (i) a
[C × D] matrix containing the log-transformed concentration of drugs, where C is
the number of samples and D is the number of different drugs in the experiment,
(ii) a [C × S] matrix containing the basal gene expression of the different cell-lines
(log transformed and z-scored) for each signaling molecule in the model, where S is
the number of signaling molecules in the network, and, finally, (iii) a [C × M]
matrix containing the genes mutated in each cell-line, where M is the total number
of unique mutations. Each of the input types were processed by a separate layer and
projected to vectors that were additively combined to form a perturbation of the
signaling state of LEMBAS.

The drug layer, projects the input (concentrations of drugs) to the targeted
signaling protein in the network. Specifically, the input is multiplied by a sparse
[D × T] matrix, where D is the number of drugs in the experiment and T is the
number of known targets. The matrix contains non-zero weights only in positions
corresponding to known interactions between a drug and its respective targets48.
The multiplication product is then projected into the signaling nodes of the prior
knowledge network. The gene expression data is projected, using a set of trainable
weights and bias terms, and clipped to the interval [-inf 0] by a non-linear
activation, in this way adding negative bias to the node states of lowly expressed
signaling proteins, the state of highly expressed genes unaffected. The mutations
for each cell-line are added to the perturbation signal by through projection via a [S
× M] matrix, where S is the total number of signaling nodes in the network and M
is the total number of targeted/mutated genes, after first being multiplied element-
wisely by trainable weights. Finally, the signaling output of LEMBAS ([C × S]) is
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projected to transcription factors actives that are linearly combined to predict cell
viability through a weighted sum of the transcription factor activities plus bias.

Cell culturing. Deidentified buffy coats from healthy human donors were obtained
from MGH Blood Center. PBMCs were isolated from buffy coats by density-based
centrifugation using Ficoll (GE Healthcare). Monocytes were isolated using a CD14
positive selection enrichment kit (STEMCELL Technologies). Isolated monocytes
were differentiated to M-CSF-derived macrophages in RPMI 1640 (Thermo Fisher
Scientific) supplemented with 10% heat inactivated FBS (Thermo Fisher Scientific),
10 mM HEPES, and 2 mM L-glutamine. Media was further supplemented with
50 ng/mL M-CSF (Biolegend, MCSF: #574802). Monocytes were cultured in low-
adhesion tissue culture flasks (Corning) for 5 days.

Cell stimulation and RNA-sequencing. Cells were detached and re-plated on day
6 into regular attachment 96-well tissue culture plates with 50,000 cells in 100 μL
fresh media. Cells were incubated for 24 h for reattachment. To stimulate cells,
media supernatant was removed and 98 uL of fresh media was added with 2 μL of
designated ligand at 50× concentration. For a subset of conditions, 10 ng/mL of
LPS was added to each well 2 h prior to the lysing cells. After 24 h, the supernatants
were removed and cells were lysed in 50 μL of RLT lysis buffer (Qiagen) + 1% beta-
mercaptoethanol. Lysates were spun down, transferred to PCR plates, and snap-
frozen on dry ice prior to library preparation. RNA-seq was performed using a
modified, automation-enabled version of the Smart-seq2 protocol with 5000 cells
or 5 μL of lysate as input used previously77. RNA was isolated using 2.2X SPRI
clean-up (Agencourt). Beads were resuspended in dNTP mix, RNase inhibitor
(Takara), nuclease-free water, and 3′ RT primer (IDT, 5′-AAGCAGTGGTAT-
CAACGCAGAGTAC(T30)VN-3′) and incubated for 3 min at 72 °C. For reverse
transcription (RT), samples in a total of 10 μL were incubated for 42 °C for 90 min,
followed by 10 cycles of 50 °C for 2 min and 42 °C for 2 min, and finished with
70 °C for 15 min. RT mix contained Maxima RT (Thermo Scientific), Maxima
buffer (Thermo Scientific), Betaine (Thermo Scientific), MgCl2 (Invitrogen), RNase
inhibitor (Takara), and TSO (IDT, 5′-AAGCAGTGGTATCAACGCA-
GAGTACrGrG+G-3′). cDNA was then processed using Kapa HiFi HotStart
(Roche) and ISPCR primer (IDT, 5′-AAGCAGTGGTATCAACGCAGAGT-3′) for
15 cycles. cDNA was purified by a 0.8X SPRI clean-up and concentrations were
determined using the Qubit hsDNA kit (Invitrogen). Libraries were generated
using the Nextera XT kit per the manufacturer’s instructions but with miniaturized
reactions. Final libraries were purified using 0.9X DNA-SPRI beads (Agencourt).
Agilent bioanalyzer 2100 was used to determine cDNA and library size distribu-
tions. All libraries were sequenced using 38 × 38 paired-end reads on a NextSeq 500
(Illumina).

Machine output was converted to FASTQ files using bcl2fastq v2.20.0. The
Smart-seq2 Multi-Sample Pipeline (RRID:SCR_018920) was used to generate count
and TPM matrices using the hg38 reference. For each cell in the batch, paired-end
FASTQ files were first processed with the Smart-seq2 Single Sample v5.1.1 Pipeline
(RRID:SCR_021228). Reads were aligned to the GENCODE human (V27)
reference genome using HISAT2 v2.1.0 with default parameters in addition to --k
10 options. Gene expression was calculated using RSEM v1.3.0’s rsem-calculate-
expression --calc-pme --single-cell-prior. QC metrics, RSEM TPMs and RSEM
estimated counts were aggregated into a single Loom file for downstream
processing. Count matrices are deposited in Gene Expression Omnibus (ascension
number GSE202515).

Transcriptomics filtering and normalization. The transcriptomics data were
quality filtered to only include samples with a total number of estimated reads
above 2 million, and a total number of detected genes above 5000. Of the
383 samples, 325 fulfilled this requirement. After filtering, technical replicates were
collapsed, resulting in 190 biological distinct samples. Sample specific scaling
factors were estimated using DEseq2 (estimateSizeFactors)78 and data was variance
stabilized (vst) and centered. The effect of donor was regressed out using a function
from the limma78 package (removeBatchEffect). Dorothea was applied to the
resulting data as for literature data as specified above.

Statistics and reproducibility. A neural network model, y = f(x), was trained on
data from ligand stimulated macrophages. Cells were stimulated with 59 different
ligands in the presence and absence of LPS, where the absence/presence of ligands for
each experimental condition comprised the x matrix. Transcriptomics data was
collected for each condition and transcription factor activity was derived from the
data, comprising the y matrix. Samples were excluded if an insufficient number of
transcripts (<2 × 106) or genes (<5000) were detected. Model performance was
evaluated by the Pearson correlation between prediction and data under cross vali-
dation, i.e., data was divided into folds of non-overlapping train and test sets, and
performance on the test sets was evaluated for models fitted on the corresponding
train sets. The hypothesis that the model could learn generalizable relations between x
and y was tested by comparing the test performances to models fitted to train sets
with y in scrambled order, i.e., with disrupted relations between x and y. The sta-
tistical significance of the difference between these distributions of correlation values
were calculated using the two-sided non-parametric Mann–Whitney U test. No
statistical method was used to predetermine sample size, however sample size

requirements estimated by simulations on synthetic data (Fig. 5a) indicated that 100
experimental conditions could be expected to yield a predictive performance of
around r= 0.8 on test data. No attempts were made to reproduce the transcriptomics
data. The experiments were not randomized. The Investigators were not blinded to
allocation during experiments and outcome assessment.

Hardware for simulations. Simulations were performed on a Dell Precision 3530
laptop with an Intel i7 CPU @ 2.60 GHz with 6 cores (12 logic processors) and 16
GB ram. For convenience, evaluation of data requirement and cross-validation was
carried out on a singled threaded computer cluster (Intel Xeon CPU @ 2.60 GHz)
that allowed job scheduling (using Slurm) with 16 parallel jobs.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The count matrices for the 60-ligand RNA-sequencing dataset generated in this study
have been deposited in the Gene Expression Omnibus under accession number
GSE202515. The OmniPath interaction database used in this study is available through
their website (archive.omnipathdb.org/omnipath_webservice_interactions__20210621-
20211113.tsv.xz). The transcriptomics data for ligand stimulated macrophages from Xue
et al. 20144 used in this study is available at ArrayExpress under accession code E-
GEOD-46903 [ebi.ac.uk/arrayexpress/experiments/E-GEOD-46903]. The processed cell
viability data and cell line mutation profile from Fröhlich et al 201848 used in this study is
available on Zenodo (https://doi.org/10.5281/zenodo.1472794). The associated basal cell
line expression data (RPKM) used in this study is available at the depmap portal under
CCLE 2019 (depmap.org/portal/download). Source data are provided with this paper.

Code availability
The code and scripts to reproduce the simulated data are made available through a public
GIT repository (github.com/Lauffenburger-Lab/LEMBAS, https://doi.org/10.5281/
zenodo.6532706).
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