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SpotClean adjusts for spot swapping in spatial
transcriptomics data
Zijian Ni 1,6, Aman Prasad2,6, Shuyang Chen1, Richard B. Halberg3,4, Lisa M. Arkin2, Beth A. Drolet2,

Michael A. Newton1,5 & Christina Kendziorski5✉

Spatial transcriptomics is a powerful and widely used approach for profiling the gene

expression landscape across a tissue with emerging applications in molecular medicine and

tumor diagnostics. Recent spatial transcriptomics experiments utilize slides containing

thousands of spots with spot-specific barcodes that bind RNA. Ideally, unique molecular

identifiers (UMIs) at a spot measure spot-specific expression, but this is often not the case in

practice due to bleed from nearby spots, an artifact we refer to as spot swapping. To improve

the power and precision of downstream analyses in spatial transcriptomics experiments, we

propose SpotClean, a probabilistic model that adjusts for spot swapping to provide more

accurate estimates of gene-specific UMI counts. SpotClean provides substantial improve-

ments in marker gene analyses and in clustering, especially when tissue regions are not easily

separated. As demonstrated in multiple studies of cancer, SpotClean improves tumor versus

normal tissue delineation and improves tumor burden estimation thus increasing the

potential for clinical and diagnostic applications of spatial transcriptomics technologies.
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Spatial transcriptomics (ST) is a powerful and widely used
approach for profiling genome-wide gene expression across
a tissue1,2. In a typical ST experiment, fresh-frozen (or

FFPE) tissue is sectioned and placed onto a slide containing spots,
with each spot containing millions of capture oligonucleotides
with spatial barcodes unique to that spot. The tissue is imaged,
typically via Hematoxylin and Eosin (H&E) staining. Following
imaging, the tissue is permeabilized to release RNA which then
binds to the capture oligonucleotides, generating a cDNA library
consisting of transcripts bound by barcodes that preserve spatial
information. Data from an ST experiment consists of the tissue
image coupled with RNA sequencing data collected from each
spot. A first step in processing ST data is tissue detection, where
spots on the slide containing tissue are distinguished from
background spots without tissue. Unique molecular identifier
(UMI) counts at each spot containing tissue are then used in
downstream analyses (Supplementary Fig. 1).

Ideally, a gene-specific UMI at a given spot would represent
expression of that gene at that spot. This is not the case in practice.
As we demonstrate here, messenger RNAs bleed between and
among nearby spots causing substantial contamination of UMI
counts, an artifact we refer to as spot swapping. Spot swapping is
related to, but distinct from, previously defined sources of con-
tamination which have been widely recognized over the past
decade in next-generation sequencing studies3. Specifically,
improvements in sequencing technologies have greatly increased
the speed and scale at which data can be obtained, but the
advantages rely on multiplexing where indexes (or barcodes) are
attached to each RNA (or DNA) fragment in a sample prior to
pooling so that sample-specific transcripts can be identified in the
sequenced pool. In spite of the major advantages in reduced cost
and increased efficiency, a disadvantage is that indexes from one
sample may attach to transcripts from another, an error referred to
as index hopping or barcode swapping. While present in most
datasets3–6, good statistical methods are in place to adjust for this
type of contamination4–6. A second type of contamination is
specific to single-cell RNA sequencing (scRNA-seq) experiments,
where ambient RNA is sequenced along with RNAs from an
individual cell. As with index hopping, robust statistical methods
are in place to adjust for ambient RNA contamination in droplet-
based scRNA-seq experiments7,8.

While existing methods can be used to remove some sources of
contamination present in an ST experiment, they are insufficient to
adjust for effects due to spot swapping as they do not accommodate
the spatial nature of the contamination (for further discussion, see
Supplementary Section S1). In barcode swapping, the swapping
takes place in the pooled cDNA library, and so a barcode from one
sample has an equal chance of binding reads from any another
sample. In spot swapping, barcodes from one spot are much more
likely to bind reads from nearby spots. While barcode swapping
might also affect an ST experiment during sequencing, spot
swapping is a distinct type of contamination.

Below we demonstrate the effect of spot swapping in multiple ST
experiments. While it is straightforward to quantify the extent of
spot swapping from tissue spots to background spots, assessing the
extent of spot swapping within tissue is challenging in most settings
without prior information. Toward this end, we consider marker
genes where expression is known to be high in particular tissue
regions, and low in others. We also conduct a human–mouse
chimeric experiment to evaluate the extent of human-specific
transcripts in mouse regions, and vice versa.

To adjust for spot swapping in ST experiments, we propose a
computational approach called SpotClean, implemented in the R
package R/SpotClean. Simulations and case study analyses show
that SpotClean increases the specificity of marker gene expres-
sion, increases the power for identifying differentially expressed

genes, improves the specificity of clusters, and increases the
accuracy of spot annotations. The impact of these improvements
in studies of breast, pancreatic, and colorectal cancer is also
demonstrated.

Results
Spot swapping in public datasets. Figure 1 shows spot swapping
from tissue to background in a study of human brain from
Maynard et al. 9. Specifically, Fig. 1b shows that UMI counts at
background spots (which are zero in the absence of contamina-
tion) are far from zero, with the counts decreasing with increasing
distance from the tissue. The distributions of total UMI counts in
tissue and background spots show considerable overlap (Fig. 1c);
and the expression patterns at tissue spots and nearby back-
ground spots are similar, but distinct from distant background
spots, as shown for 50 genes in Fig. 1d. As a result of expression
similarity between the tissue and nearby background, tissue and
background spots often cluster together. This is emphasized in
Fig. 1f, where spots on the slide are colored by membership in the
graph-based clusters shown in Fig. 1e. As shown, many of the
clusters contain spots from the tissue and nearby background.
Supplementary Figs. 2–5 show similar results from 16 additional
datasets; and Supplementary Table 1 shows that the proportion of
UMI counts in background spots ranges from 5% to 20% in most
datasets.

Figure 1, Supplementary Figs. 2–5, and Supplementary Table 1
demonstrate that spot swapping occurs from tissue to background.
The effect is not explained by inefficient barcode binding, as might
be observed in mitochondrial genes or long non-coding RNAs, for
example (Supplementary Fig. 6), or by differences in permeabiliza-
tion times (Supplementary Fig. 7). While spot swapping from tissue
to background reduces expression levels at affected spots, a bigger
concern is spot swapping from one tissue spot to another, as this
confounds downstream analyses.

Evaluating the extent of spot swapping from tissue spot to
tissue spot is challenging as it requires information about
expected expression of specific genes at specific tissue locations.
Toward this end, we first consider tissue-specific marker genes
that identify distinct tissue layers in brain9. In the absence of spot
swapping, expression for a layer-specific marker should be high
within that layer, and low (or off) in other layers. When spot
swapping occurs, marker expression is relatively high in adjacent
layers and decreases with increasing distance from the layer. This
is evident with GFAP, for example, a marker known to be up-
regulated in white matter (WM) and in the first annotated layer
of the dorsolateral prefrontal cortex (Layer1)9. Supplementary
Figure 8 shows high expression of GFAP inWM and Layer1 spots,
as expected, but also relatively high expression in tissue spots
adjacent to WM and Layer1, with GFAP expression decreasing as
distance from WM (or Layer1) increases. While it is possible that
some increase in marker expression in adjacent tissue spots may
be due to the presence of WM (or Layer1) cells at those spots, we
note that the rate of expression decay into the background spots
(where no cells are present) is similar to the rate of decay into
adjacent tissue regions. Consequently, the possible presence of
WM (or Layer1) cells in adjacent tissue spots is not sufficient to
fully explain the observed expression pattern. Similar results are
shown for a WM marker, MOBP (Supplementary Fig. 8), as well
as additional markers in multiple datasets (Supplementary Fig. 9).

A study of human breast cancer provides another example.
Supplementary Fig. 10 shows expression for a highly specific
breast cancer marker, ERBB2 (also called HER2). Because of its
high specificity (it is typically expressed at a low level in normal
breast tissue, but highly expressed in many breast tumors10),
ERBB2 is used in clinical practice as a target of a number of
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therapies11. Supplementary Fig. 10 shows high expression of
ERBB2 in the tumor tissue, but also high expression in nearby
normal tissue that decreases with increasing distance from the
tumor. As mentioned above, the increased expression in adjacent
normal tissue may be due to the presence of both tumor and
normal cells in those spots. However, this is not sufficient to fully
explain the effect as the rate of decay from tumor tissue to
adjacent normal tissue is similar to the rate of decay from tumor
into the background, where no cells are present.

Experimental validation of spot swapping using chimeric
samples. To more directly quantify the extent of spot swapping,
we conducted chimeric experiments where human and mouse
tissues were placed contiguously during sample preparation. For
each experiment, we annotated the H&E images to identify
species-specific regions, and we calculated the proportion of
mouse-specific reads in human spots and human-specific reads in
mouse spots (Fig. 2, Supplementary Fig. 11). This is a lower
bound on the proportion of spot-swapped reads (LPSS) as it does
not account for spot swapping within species (e.g. reads from

human spot t bound by probes at human spot t’), or for reads in
the background. LPSS ranges between 10% and 15% in these
experiments (Supplementary Table 1).

Taken together, results from a comparison of tissue and
background expression (Fig. 1 and Supplementary Figs. 2–5),
analysis of marker genes in brain and breast cancer tissue
(Supplementary Figs. 8–10), and the chimeric experiment (Fig. 2,
Supplementary Fig. 11, and Supplementary Table 1) demonstrate
that spot swapping affects UMI counts in ST experiments. As we
show below, this nuisance variability decreases the power and
precision of downstream analyses.

SpotClean is a probabilistic model that adjusts for spot
swapping. To adjust for the effects of spot swapping in ST
experiments, we developed SpotClean. SpotClean is based on a
probabilistic framework that accommodates spot-swapped reads
to provide improved estimates of UMI counts for every gene at
each spot. Specifically, SpotClean models gene-specific expression
at a given spot as a function of reads present in tissue at that spot,
reads that bleed out into other spots, and reads that bleed in from

tissue
background

a b

c d

e f

Fig. 1 Spot swapping in human brain sample LIBD_151507. a H&E-stained image. Scale bar is 1 mm. b Unique molecular identifier (UMI) total counts in
the background decrease with increasing distance from the tissue. Tissue and background spot annotations are taken from Maynard et al. 9. The perimeter
delineating tissue and background is shown in white; also shown in white are tissue spots originally called background in Maynard et al. 9 that appear to
contain tissue in the H&E image. The spots shown in white have been removed from the summaries shown in c–f to ensure that the effects shown are not
due to spots on the tissue-background boundary, or to tissue in the background. c UMI count densities for tissue and background spots show relatively high
counts in the background. d Counts of the top 50 genes from a select tissue region (upper), from a nearby background region (middle), and from a distant
background region (bottom) show the similarity between expression in tissue spots and nearby background spots due to spot swapping from tissue to
background, an effect that decreases as distance from the tissue increases. The positions of the three regions are shown in Supplementary Fig. 2. e Graph-
based clustering of all spots identifies 9 clusters, visualized in uniform manifold approximation and projection (UMAP) plot. f Spots on the slide are colored
by their cluster membership shown in e. Black arrows highlight areas of spot swapping of signal from tissue to background.
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other spots. Bleeding rates and the size of the neighborhood
affected are estimated via gradient descent; latent expression
levels are estimated using an EM algorithm.

SpotClean recovers true gene expression, provides more precise
estimates of marker gene expression, and improves down-
stream analyses. Evaluations were conducted on simulated and
case study data. In SimI, contaminated counts are generated
assuming that local contamination follows a Gaussian kernel;
SimII-IV relax the Gaussian assumption. Supplementary
Tables 2–5 show the mean squared error (MSE) between true and
decontaminated gene expression in simulated datasets; SpotClean
provides better estimates of expression, reducing the MSE by over
20% in most simulations.

The benefits of SpotClean on marker gene estimation and on
downstream analyses are also illustrated in case study data.
Specifically, Fig. 3a shows that SpotClean improves the specificity
of GFAP by maintaining expression levels in WM and Layer1 and
reducing spurious expression in the other layers. Supplementary
Fig. 9 shows similar results for four additional markers.

We also identified differentially expressed (DE) genes between
WM and Layer6 using raw and SpotClean decontaminated data;
Fig. 3b and Supplementary Fig. 12 show results for gold-standard
genes known to be DE between these layers as discussed in
Maynard et al. 9. In most cases, data processed via SpotClean
results in increased fold-changes and smaller p-values, further
suggesting that SpotClean results in more accurate expression
estimates.

Additional results are demonstrated in a study of breast cancer.
Figure 4 shows expression for ERBB2 and MUC1, another breast
cancer marker, before and after SpotClean. SpotClean increases
specificity of these markers by maintaining expression in the tumor
regions and reducing expression in the non-tumor regions. It also
leads to improved separation of the tumor and non-tumor regions
via clustering, as shown visually, and quantified by ARI scores.
Similar results are shown in Fig. 5 in a study of pancreatic cancer12.

SpotClean reduces the risk of overestimating malignancy in
cancer studies. As the diagnosis and extent and invasiveness of a
tumor is typically estimated through evaluation of an H&E image
by a pathologist, there is now considerable interest in using ST
experiments, which couple the H&E image with molecular pro-
filing data, to improve diagnosis and precision therapy. ST can
provide additional information by identifying subtle collections of
malignant cells, but accurate spot annotation is required for this
information to be useful in clinical practice, and especially so as
not to overcall tumor burden. SpotClean demonstrates advantage
toward this end. Figure 6a shows spots annotated using Spot-
Clean data versus spots annotated using data that has not been
decontaminated via SpotClean for the breast cancer sample dis-
cussed above. Compared with the H&E image annotations shown
in Fig. 6a, which we consider to be a gold standard, the non-
decontaminated data misidentifies many spots as malignant
including those containing benign cells surrounding the tumor;
the SpotClean decontaminated data more closely resembles
identification of malignant cells on the H&E image. Specifically,
over 13% of the spots are labeled malignant in the raw, but not

b

mixture

a

human

mouse

Human-mouse chimeric sample

c d

Fig. 2 Spot swapping in human–mouse chimeric sample HM-1. a Species annotation of sample HM-1, a chimeric tissue of human skin and mouse
duodenum. Spots annotated as mixtures were removed prior to calculating the summaries in b–d in an effort to ensure that the effects shown are not due
to spots containing a mixture of the two species. b The spot-specific proportions of spot-swapped UMI counts (human-specific UMIs in background or
mouse spots; mouse-specific UMIs in background or human spots). Also shown are the proportion of human-specific UMIs in human spots and mouse-
specific UMIs in mouse spots. For the six boxplots from left to right, n= 2962, 751, 1014, 2962, 751, 1014 spots, respectively. The lower whisker, lower
hinge, line inside box, upper hinge, and upper whisker represent the minimum, lower quartile, median, upper quartile, and maximum calculated without
outlier values which are more than 1.5*inter-quartile range away from the hinges and are shown in separate dots. Note that there may be spot-swapped
reads in these latter proportions (e.g. reads from human spot t bound by probes at human spot t’), but they cannot be identified in this experiment. c–d The
total UMI counts in human-specific genes and mouse-specific genes for HM-1. Similar plots for HM-2 and HM-3 are shown in Supplementary Fig. 11. Tissue
spots on the perimeter as well as spots annotated as mixtures were removed prior to calculating the proportions in b in an effort to ensure that the effects
shown are not due to spots on the tissue-background boundary.
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SpotClean decontaminated, data. Figures 6b and c show that
expression in these questionably malignant spots is more similar
to spots known to harbor non-malignant cells suggesting that
these questionably malignant spots are false calls.

Similar results are shown in Fig. 7 in a study of colorectal cancer
where SpotClean decontaminated data leads to improved
delineation of tumor and non-tumor regions as evidenced by
enhanced tumor malignancy scores in tumor spots, and lower
malignancy scores in non-tumor spots, compared with raw data
(Fig. 7b). SpotClean also identifies a cluster not identified in
previous work (SpotClean tumor cluster 1 shown in Fig. 7c); and
multiple analyses suggest that this cluster is a distinct tumor sub-
population containing both tumor and tumor-infiltrating immune
cells. First, a careful look at the H&E stain shows that this group of
spots is non-normal, but distinct from other tumor regions (red
boxes, Fig. 7a). Second, 9 of the top 10 genes identified as DE
between SpotClean tumor cluster 1 and other tumor clusters are
immunoglobulin marker genes (from 74 total DE genes with
adjusted p-value ≤ 0.01); and immunoglobulin expression for these
9 genes is largely specific to this cluster (Fig. 7d). Finally, the
average malignancy score for this group is lower than other tumor
clusters, but higher than normal spots, further suggesting that this
group of spots contains both tumor cells and tumor-infiltrating
immune cells (average malignancy scores at normal, tumor cluster
1, and other tumor spots are 0.384, 0.430, and 0.477, respectively).
Taken together, this evidence suggests that cluster 1 identified by
SpotClean maintains biologically relevant information and, in this
case, provides for a more specific clustering that captures subtle
structure present in the tissue.

Discussion
Common sources of contamination in next-generation sequencing
experiments such as barcode swapping4–6 and ambient RNA

contamination7,8 have been widely recognized over the past decade
(Supplementary Section S1). We here identify spot swapping, a
related but distinct form of contamination present in the 10x
Visium1, SpatialTranscriptomics1, and Slide-seqV22 platforms.
SpotClean adjusts for the effects of spot swapping using a proba-
balistic model that accommodates spot-swapped reads to provide
improved estimates of gene-specific UMI counts at each spot.
SpotClean may be used to obtain improved estimates of expression
given data from the 10x Visium or SpatialTranscriptomics platforms;
it is not applicable to platforms where background barcodes and/or
accurate barcode positions are not provided (e.g. Slide-seqV2).

We have demonstrated the utility of SpotClean to adjust for spot
swapping and, in doing so, to provide improved estimates of
expression. Since the probability of a spot-specific barcode binding
reads from another spot increases as the distance between spots
decreases, most of the adjustments made by SpotClean are local (i.e.
reads are reassigned from one spot to a nearby spot). Given this,
SpotClean will have only a modest impact on some downstream
analyses, but a more major impact on others. Specifically, since
average expression within a region will remain largely unchanged
post SpotClean, downstream analyses that rely on average expres-
sion (e.g. DE analyses) will show only slight improvements over the
raw data, as shown here. Modest improvements can also be
expected for data where clusters are easily separated. However, for
more specific analyses and/or more subtle signals, the effects of
SpotClean are greater. Specifically, SpotClean provides substantial
improvements in marker gene analyses by decreasing expression in
regions where markers are known to be lowly expressed, while
maintaining expression levels in other regions. In addition, Spot-
Clean substantially improves clustering results and spot annota-
tions in situations where regions are not easily separated, which
may have important implications for clinical applications of the ST
technology (e.g. in cancer diagnosis and staging).

Layer1

Layer2

Layer3

Layer4

Layer5

Layer6

WM

Human dorsolateral prefrontal cortex

raw SpotClean

raw SpotClean
a

b

Fig. 3 SpotClean improves marker specificity in human brain sample LIBD_151507. a Known annotation of different layers of the human brain sample
LIBD_151507 (left); layer-specific marker gene expression in the raw (middle) and SpotClean decontaminated (right) data show that SpotClean provides
improved specificity of marker gene expression for GFAP, a marker for WM and Layer1, and for SNAP25, a neuronal marker up-regulated in Layer2–Layer6.
b An analysis of genes known to be differentially expressed (DE) between WM and Layer6 in raw and SpotClean decontaminated data shows that
SpotClean results in increased fold-changes (FC) and smaller p-values for the majority of known DE genes.
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In summary, spatial transcriptomics provides unprecedented
opportunity to address biological questions and enhance patient
care, but artifacts induced by spot swapping must be adjusted
for to ensure that maximal information is obtained from these
powerful experiments. SpotClean provides for more accurate
estimates of expression, thereby improving spot annotations
and increasing the power and precision of downstream
analyses.

Methods
Versions. The following software and packages were used in the analysis: R-4.0.2;
R/SpotClean-0.99.0; R/SoupX-1.5.0; R/celda-1.5.11; R/Seurat-3.2.2; R/scran-
1.17.20; R/SPOTlight-0.1.7; R/reticulate-1.16; Python-3.7.4; Python/spatialde-1.1.3;
bcl2fastq v2.20.0.422; FastQC-0.11.7; MultiQC-1.9; Space Ranger-1.2.2; Loupe
Browser-4.2.0.

SpotClean. Let K be the total number of spots, G be the set of genes, It be the set of
tissue spots with cardinality It

�� �� ¼ Kt , and Ib be the set of background spots with

tumor
non-tumor

Breast cancer (H&E image)a

b

d

raw SpotClean
c

Breast cancer (spot labels)

tumor
non-tumor

Fig. 4 SpotClean improves marker specificity in human breast cancer sample human_breast_2. a H&E image (left) and spots annotated as tumor vs.
non-tumor via a pathologist’s visual inspection (right). Scale bar is 1 mm. b Expression of two tumor-specific markers in the raw (left) and SpotClean
decontaminated (right) data. SpotClean increases specificity of these markers by maintaining expression in the tumor regions, and reducing expression in
the non-tumor regions. c Boxplots of the marker expression shown in b as well as the marker expression in a breast cancer single-cell RNA-seq reference
dataset23. For the six boxplots from top to bottom in both ERBB2 and MUC1, n= 1843, 675, 1843, 675, 198, 317 spots or cells. The lower whisker, lower
hinge, line inside box, upper hinge, and upper whisker represent the minimum, lower quartile, median, upper quartile, and maximum calculated without
outlier values which are more than 1.5*inter-quartile range away from the hinges and are shown in separate dots. d UMAP plots generated from raw and
SpotClean decontaminated data colored by spot annotations. SpotClean decontaminated data leads to improved separation of the groups, as shown
visually, and quantified by the adjusted rand index (ARI) scores which show a 13% improvement in the SpotClean decontaminated data.
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cardinality Ib
�� �� ¼ Kb where Kt þ Kb ¼ K . G defaults to genes that are highly

expressed, highly variable, or both; this default can be relaxed by a user. The true
(i.e., uncontaminated) UMI counts are given by fYg;tgg2G;t2It and observed counts
by D ¼ fXg;jgg2G;j2It ∪ Ib

. As our interest here is to characterize the extent of spot
swapping, we introduce the missing variable Bg;t;j to be the UMI count for gene g
leaving tissue spot t and binding to tissue (or background) spot j: Likewise we
define Sg;t to be the UMI count arising from gene g in tissue spot t that remain at
that spot and thus are not subject to bleeding. We decompose Yg;t into a sum:
Yg;t ¼ Sg;t þ Bg;t , where Bg;t ¼ ∑k2It ∪ Ib

Bg;t;k counts all bleed-outs from spot t to
other spots k≠ t: Extending notation, we set Yg;b ¼ Sg;b ¼ Bg;b ¼ 0 for background
spots b 2 Ib since background spots do not express RNA. With these missing
variables defined, we note that the measured count Xg;j ¼ Sg;j þ Rg;j where Rg;j ¼
∑k2It Bg;k;j represents UMI counts received at spot j due to spot swapping. We
leverage this missing-data formulation by flexibly modeling the component counts
with independent Poisson distributions, which are known to be effective for UMI
counts13.

For a collection of spot and gene-specific parameters, as well as global
parameters controlling the swapping rates, we parameterize the distributions as:
Sg;t � Poissonðμg;tð1� rβÞÞ and Bg;t;j � Poissonðμg;t rβ½ð1� rγÞwt;j þ rγ

1
K�Þ where

rβ is the bleeding rate; rγ is a distal and 1� rγ is a proximal contamination rate. By
taking the global bleeding rate rβ 2 0; 1½ �; it follows that the uncontaminated
counts follow: Yg;t � Poissonðμg;tÞ for target parameters μg;t whose estimates
constitute statistical estimates of the uncontaminated counts. Likewise for

measured counts, Xg;j � Poissonðηg;jÞ; for induced gene and spot parameters. We
define wt;j by a weighted Gaussian kernel: wt;j ¼ Kðdt;j; σÞ=∑

j0
Kðdt;j0; σÞ where dt;j

is the physical Euclidean distance between spots t and j measured in pixels in the
slide image, σ is the kernel bandwidth, and Kðd; σÞ ¼ eð�d2=2σ2 Þ is a Gaussian
kernel14.

Parameter estimation. Plug-in estimates obtained by minimizing the residual sum
of squares (RSS) between observed total counts and their expected values are used
to estimate rβ, rγ, and σ. Specifically,

ðbrβ; brγ; σ̂; fcμ�tgt2It Þ ¼ argmin
rβ ; rγ ; σ; fμ�t gt2It

∑
j2It ∪ Ib

ðX�j � η�jÞ2 ð1Þ

where X�j; η�j; μ�j are the summations of Xg;j; ηg;j; μg;j among all genes, respectively.
To reduce computational complexity, σ̂ is taken as the minimum RSS calculated
over a grid of candidate values. Explicit gradients are calculated for rβ and rγ and
estimates are obtained by L-BFGS-B gradient descent15. Details are provided in
Supplementary Section S2. Since this optimization problem is not necessarily
convex, it is important to choose appropriate initial values. For the initial values
fμ 0ð Þ

�t gt2It of fμ�tgt2It , we use the observed total UMI counts fX�tgt2It in tissue spots
and scale them up so that they sum to the total UMIs in the data. The initial
bleeding rate, r 0ð Þ

β , is the average expression in background spots divided by the

average expression in all spots; and the initial distal contamination rate, r 0ð Þ
γ , is

raw SpotClean

Pancreatic cancer (H&E image) Pancreatic cancer (spot labels)
a

b c tumor
non-tumor

Fig. 5 SpotClean improves marker specificity in human pancreatic cancer12 sample PDAC-A. a H&E image (left) and spots annotated as tumor, duct
epithelia, pancreatic tissue, and stroma from the original study (right). Scale bar is 1 mm. b The upper panel shows expression of the tumor-specific marker
TMSF1 in the raw (left) and SpotClean decontaminated (right) data. SpotClean increases specificity of this marker by maintaining expression in the tumor
region, and reducing expression in the non-tumor regions. A pancreatic-specific marker, PRSS1, is shown in the lower panel; as in the upper panel, the
specificity of this marker is increased via SpotClean. c UMAP plots generated from raw and SpotClean decontaminated data colored by spot annotations
(tumor vs. non-tumor). The groups are well separated even in the raw data, but SpotClean decontaminated data leads to slightly improved separation of
the groups.
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defined by average expression in the 25th–50th percentile of all background spots
divided by average expression in all background spots.

With estimates r̂β; r̂γ; σ̂ of the global parameters, true expression levels
fμg;tgg2G;t2It are readily estimated using an expectation-maximization (EM)

algorithm16. Details are provided in Supplementary Section S3. For the initial
values of true expressions fμð0Þg;t gg2G;t2It , we use the observed UMI counts
fXg;tgg2G;t2It and scale up each gene so that their summations are equal to the gene
summations in all spots.

Estimation of spot-level contamination rate. For tissue spot t, let ct be the
proportion of contaminated UMIs from total observed UMIs. We estimate ct using
the estimated contamination received in t over its estimated contaminated total

counts from model fitting: ĉt ¼
Ê ∑

t02It� tf g
∑
g
Bg;t0 ;t

� �
Ê X�tð Þ .

Minimum number of background spots required for parameter estimation.
Given that the observed data is a single matrix with a fixed number of columns
(spots), the number of unknown parameters is proportional to the number of tissue
spots. In the extreme case where all spots are covered by tissue, we have more
unknown parameters than observed data values. In this case the contaminated
expressions are confounded with true expressions, and SpotClean estimation
becomes unreliable. We recommend that the input data have at least 25% of spots
not occupied by tissue, so that SpotClean has enough information from back-
ground spots to reliably estimate contamination.

Analysis of publicly available case study datasets. We downloaded UMI count
matrices for 16 publicly available datasets, of which 13 came from 10x Visium1, 1
came from SpatialTranscriptomics1, and 2 came from Slide-seqV22; links are
provided in Supplementary Table 6. For each Visium and SpatialTranscriptomics
dataset considered, the count matrix was normalized via scran17, following the
Seurat18 pipeline for dimension reduction, clustering, and visualization. Seurat
functions FindVariableFeatures(nfeatures= 4000), ScaleData(), RunPCA(), RunU-
MAP(), FindNeighbors(), and FindClusters() were applied under default settings.
For each Slide-seqV2 dataset, we inspected total UMI counts of all spatial barcodes
in the raw count matrix.

Evaluation of spot swapping in mitochondrial and long non-coding RNAs. To
investigate potential differences in bleeding rates in mitochondrial genes and long
non-coding RNAs (which may have less efficient barcode binding) vs. other genes,
we calculated the proportion of UMI counts in background spots for each gene.
Genes having UMI counts greater than 10 were divided into two groups: (1)
mitochondrial genes and long non-coding RNAs, (2) the remaining genes. A two-
sided Student’s t-test was conducted between the two groups for each dataset.

Identification of marker genes and DE genes in the DLPFC data. Maynard et al. 9

consider spatial expression in the six-layered dorsolateral prefrontal cortex (DLPFC). The
authors identified a number of marker genes for distinct layers of the DLPFC. In addition
to these, we also consideredmarker genes from a single-cell RNA-seq study of Alzheimer’s
disease19 where markers differentiating between known cell types were identified. The
markers shown here were selected from these papers if they were highly expressed (in the
upper 25th percentile) in theMaynard et al. 9 datasets.We also evaluate the genes reported
as DE betweenWM and Layer6 in Maynard et al. 9. We filtered their list of DE genes and
considered those genes having FDR≤ 10−4. From those, we chose the top 100 highest
expressors in the raw data, sorted by fold change, and selected the top 10 for each dataset.
For the DE analysis, raw and decontaminated tissue matrices were normalized using
scran17; for each gene, p-values were obtained from a two-sample two-sided t-test between
the 354 spots inWMand the 486 spots in Layer6. Summary statistics for the tests in Fig. 2b
are reported in Supplementary Tables 7 and 8.

Human–mouse chimeric experiment. Fresh sections of normal human skin tissue
were obtained from two participants (60-year-old and 39-year-old) after obtaining
informed consent during routine Dermatologic surgery. Participants were not
compensated. Human studies were conducted under a protocol (#2010-0367)
approved by the School of Medicine and Public Health Institutional Review Board
at the University of Wisconsin. The two participants in this study were randomly
recruited in clinic on a single day during routine Dermatologic surgery. No other
potential participants were approached because additional tissue was not needed.
The participants consented to have their normal residual tissue from Dermatologic
surgery used for this study. While this recruitment is biased toward patients who
needed a Dermatologic procedure for non-melanoma skin cancer treatment, given
that we intentionally sampled normal skin from these patients, we do not anticipate
an impact on our results. The covariate-relevant population characteristics are as
follows: 60-year-old and 39-year-old patients with current diagnoses of non-
melanoma skin cancer requiring Dermatologic surgery for treatment.

Tumor spots
by H&E image

a b

c

Malignancy score
(SpotClean)

Malignancy score
(raw)

Malignancy
score

Fig. 6 SpotClean improves identification of malignant spots in human breast cancer sample human_breast_2. a Malignant spot composition as
estimated via SPOTlight22 is shown for the raw data (upper left) and SpotClean decontaminated data (upper middle). Scale bar is 1 mm. The raw data
identifies many spots as malignant whereas the SpotClean decontaminated data more closely resembles the annotations derived from the H&E image
(upper right). The insets highlighted in the upper panel are shown in the lower panel. b Spearman correlations between average expression in the malignant
scRNA-seq cells and spot-specific expression were calculated. Boxplots of correlations are shown for n= 265 strongly non-malignant spots, 216
questionably malignant spots (spots labeled malignant in the raw data, but not the SpotClean decontaminated data), and 546 strongly malignant spots.
The lower whisker, lower hinge, line inside box, upper hinge, and upper whisker represent the minimum, lower quartile, median, upper quartile, and
maximum calculated without outlier values which are more than 1.5*inter-quartile range away from the hinges and are shown in separate dots. Correlations
with non-malignant scRNA-seq cells are also shown. The correlations show that expression in the questionably malignant spots more closely resembles
that in non-malignant cells suggesting that the malignant classification in the raw data at these spots is likely false due to spot swapping. c The UMAP plot
further demonstrates that the questionably malignant spots in the raw data are likely false positives as their expression more closely resembles that at non-
malignant spots.
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Fresh mouse tissue was harvested on the same day. Animal studies were
conducted under a protocol (#M5131) approved by the School of Medicine and
Public Health Institutional Animal Care and Use Committee at the University of
Wisconsin in compliance with policies established by the Office of Laboratory
Animal Welfare at the National Institutes of Health. All animals were housed in a
specific pathogen-free facility and fed a standard chow diet containing 4% fat. The
set point for temperature was 72 °F and the set point for humidity was 30%. The
dark/light cycle was 12:12.

Three chimeric tissue blocks were then prepared under cold conditions as
follows and frozen over a bed of dry ice and stored at −80 °C in optimal tissue
cutting (OCT) medium until they were ready to use:

HM-1: Duodenum from a 10-week-old C57BL/6J male mouse as casing to a
4 mm punch section of human skin from a 60-year-old participant.

HM-2: Colon from a 10-week-old C57BL/6J male mouse as casing to a 4 mm
punch section of human skin from a 39-year-old participant.

HM-3: Heart from a 10-week-old C57BL/6J male mouse encasing a 4 mm
punch section of human skin from a 39-year-old participant.

The Visium Spatial Tissue Optimization Slide & Reagent kit (10X Genomics
Cat no. 1000193) was used to optimize permeabilization conditions for the

chimeric tissue according to manufacturer’s protocol and yielded an optimal tissue
permeabilization time of 12 min. The Visium Spatial Gene Expression Slide &
Reagent kit (10X Genomics Cat no. 1000184) was used to generate sequencing
libraries. Sections were cut at 10 μm thickness and mounted onto Visium slide
capture areas, stained with H&E, digitally imaged with an Aperio AT2 scanner, and
then permeabilized for library preparation. Sequencing libraries were prepared
following the manufacturer’s protocol. Initial quality control of the libraries was by
analysis of 2 × 150 MiSeq data for each sample. The libraries were then sequenced
on a NovaSeq 6000 (Illumina), with 29 bases from read 1 and 101 from read 2, at a
depth of 500k–600k reads per spot. The actual depth was 455,652, 440,024, 538,709
reads per spot for sample HM-1, HM-2, HM-3, respectively.

Alignment and pre-processing in the chimeric experiment. Raw FASTQ files
were generated using bcl2fastq (Illumina, Inc.). The sequencing quality of each
sample was evaluated using FastQC20 and MultiQC21. All FASTQ files passed
quality control. Tissue images were manually aligned using the Loupe Browser.
Reads were aligned to the GRCh38+mm10 reference genome (refdata-gex-
GRCh38-and-mm10-2020-A from https://support.10xgenomics.com/single-cell-
gene-expression/software/downloads/latest) and gene expression was quantified

Malignancy
score

tumor
non-tumor

Colorectal cancer (H&E image) Colorectal cancer (spot labels) Malignancy score (raw) Malignancy score (SpotClean)

a b

c d
BayesSpace clusters (raw)

BayesSpace clusters (SpotClean)

Fig. 7 SpotClean processed data leads to improved identification of malignant spots and increased specificity in clustering in human colorectal cancer
sample human_colorectal. a H&E image (left) and spots annotated as tumor vs. non-tumor via a pathologist’s visual inspection (right). Red boxes highlight
the spots belonging to SpotClean’s tumor cluster 1 (panel c). b Malignant spot composition as estimated via SPOTlight22 is shown for the raw (left) and
SpotClean decontaminated data (right). SpotClean results in higher malignancy scores in tumor regions, and lower in normal regions. c BayesSpace25

clustering for the raw data (top) and SpotClean decontaminated data (bottom). The SpotClean decontaminated data identifies a cluster not identified in
previous work (SpotClean tumor_1, red boxes). The SpotClean tumor_1 spots are distinct on the H&E image (red boxes in a) and likely contain tumor-
infiltrating immune cells as evidenced by high expression in the immunoglobulin markers shown in d. Scale bars in a, b, d are 1 mm.
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using Space Ranger under default parameters. Following alignment, we considered
only those reads labeled confidently mapped by SpaceRanger; confidently mapped
reads are reads that map uniquely to a gene. We refer to a gene as a human gene if
it has prefix GRCh38; a mouse gene has prefix mm10. UMI counts were nor-
malized for differences in total counts across species by scaling total UMI counts in
mouse to match total UMI counts in human. Genes having average expression
<0.01 were removed.

Human and mouse tissue spot annotation in the chimeric experiment. Tissue
spots were labeled as human, mouse, or histopathological mixture based on visual
inspection of the H&E images. A histopathological mixture spot is one with tissue
contributions from both species that can be visually verified in the H&E-stained
image. A pure human or pure mouse spot was relabeled as a computational
mixture spot if the spot label differed from the majority of UMIs. Specifically, a
human (or mouse) spot was labeled as a computational mixture if the total UMI
counts from mouse (human) exceeded the median of total UMI counts across all
mouse spots (human spots). Background spots are defined as those spots on the
slide outside the tissue region (not annotated as human, mouse, or mixture). Both
histopathological or computational mixture spots were removed prior to analyses
in an effort to ensure that the effects shown are not due to spots containing a
mixture of the two species.

Lower bound on the proportion of spot-swapped reads (LPSS). Spot-swapped
reads include reads from one tissue spot binding background probes (tissue-to-
background) as well as reads at one tissue spot binding probes at another tissue
spot (tissue-to-tissue). It is not possible to directly measure tissue-to-tissue swap-
ping in most cases. However, the chimeric experiment provides some insight into
the extent of spot swapping tissue-to-tissue. We define LPSS in the chimeric
experiment as the proportion of misclassified reads (mouse reads in human spots
and human reads in mouse spots). This is a lower bound as it does not account for
spot swapping within species (e.g. reads from human spot t bound by probes at
human spot t′) or for reads in the background.

Cell type decomposition using SPOTlight. For cell type decomposition, we
applied SPOTlight22 to the Visium human breast cancer data and the Visium
human colorectal cancer data (referred to here as human_breast_2 and human_-
colorectal; details on these data are provided in Supplementary Table 6).
SPOTlight22 requires single-cell RNA-seq data to use as a reference; for this, we
used the human breast cancer single-cell RNA-seq data from Chung et al. 23 and
the human colorectal cancer single-cell RNA-seq data from Li et al. 24. SPOTlight22

was applied to the raw data under default settings to estimate the cell type com-
position of every spot; SPOTlight22 was also applied to the SpotClean deconta-
minated data under default settings. Note that since tumor cell populations are
heterogeneous, and spots contain multiple cells, most spots containing malignant
cells will also contain non-malignant cells. A spot’s malignancy score is defined to
be the proportion of malignant cells estimated by SPOTlight22.

Following clinical practice, we label a spot as malignant if there is any evidence
of malignancy. Specifically, we annotate spots as malignant if the estimated
malignant cell composition exceeds 10%, which corresponds to ~1 malignant cell
in the spot since the estimated number of cells in a spot is ~10 in Visium data22.
We further define non-malignant spots as strongly non-malignant if the non-
malignant cell composition exceeds 95%, and strongly malignant if the malignant
cell composition exceeds 30% in both raw and decontaminated data. Questionably
malignant is used to refer to spots called malignant in the raw data, but not the
SpotClean decontaminated data.

Identification of DE genes in the colorectal data. DE analysis was performed
using Seurat’s pipeline with the Wilcoxon Rank sum test and standard defaults; p-
values are adjusted using the Bonferroni correction.

Correlations with single-cell data. For the breast cancer data, Spearman corre-
lations between the expression of each spot and the average expression of malig-
nant cells in the reference single-cell data were calculated to measure the similarity
of each spot group (strongly non-malignant, strongly malignant, or questionably
malignant) to malignant cells; the same was done to measure similarity of each spot
group to non-malignant cells. Boxplots in Fig. 4c demonstrate the median, upper
and lower quartile, range without outliers, and outlier values of the Spearman
correlations for each group of spots using default plotting functions.

Clustering and ARI. For each cancer case study analysis (breast, pancreatic, and
colorectal), the Seurat pipeline was applied under default settings to the raw and
decontaminated data to produce UMAP plots. For the breast cancer data and the
pancreatic cancer data, tumor spots were clustered using k-means clustering
(k= 2) of the top 50 PCs calculated in the Seurat pipeline. For the colorectal cancer
data, tumor spots were clustered using BayesSpace25 under default settings. In the
H&E image, tissue spots were labeled as tumor and non-tumor based on visual
inspection. The adjusted rand indexes (ARI) were calculated between cluster labels
and tumor/non-tumor labels.

Simulations. SimI simulates the spot swapping effect to get contaminated UMI
counts given an input dataset. Specifically, starting from an input UMI count matrix
of real data, 3000 genes with highest total UMI counts were selected. Expression for
these genes was scaled to target the same average UMI total counts (average taken
over spots) across input datasets. Denote the resulting matrix by fμg;tgt2It . The
bleeding rate rβ and distal contamination rate rγ were estimated from the input
data, using the same approach as described for obtaining initial values in SpotClean.
The spot distances fdt;jgt2It ;j2It ∪ Ib

were calculated based on the spot coordinates in

the H&E image of the input dataset; the contamination radius, σ, was set to 10; and
the weights which describe the proportion of UMIs swapping locally from tissue
spot t to any spot j, wt;j , is given by a Gaussian kernel. The expected contamination
of gene g from tissue spot t to spot j is then given by μg;t rβ½ð1� rγÞwt;j þ rγ

1
K�.

Summing contamination from all tissue spots to spot j and adding the UMIs that
stay at j, μg;jð1� rβÞ; gives the expected observed expression ηg;j . Simulated counts
for gene g in spot j are sampled from Poissonðηg;jÞ.

Additional simulations are similar, but for SimII, SimIII, and SimIV the
proximal contamination weights are given by a Linear, Laplace, and Cauchy kernel,
respectively. This allows us to investigate the extent to which SpotClean is robust to
departures from the Gaussian kernel assumption.

For SimV, starting from a UMI count matrix of real data, we select the top 5000
most highly expressed genes; any gene having average expression <0.1 is removed.
SpatialDE26 is then applied using default settings; the top 500 highest expressed
genes with q-value ≤ 0.01 are identified as true spatially variable (SV) genes. For
each SV gene, we simulate a matched non-SV gene by sampling independent
Poisson counts parameterized by the average expression of the SV gene.

Application of SoupX, DecontX, and SpotClean. Default parameters were used
for SpotClean and DecontX. Since SoupX requires manual input of clusters, we first
applied the Seurat pipeline on the raw tissue UMI count matrix to get cluster labels,
with functions NormalizeData(), FindVariableFeatures(), ScaleData(), RunPCA(),
FindNeighbors(), FindClusters() applied under default settings. Parameters for
SoupX (soupRange in estimateSoup(), tfidfMin, and soupQuantile in autoEstCont())
were manually tuned when the default settings failed. Some datasets did not run
even after parameter tuning; results from these datasets are marked as NA. Spot-
Clean decontaminates genes with average expression above 1, high variance as
determined by Seurat’s FindVariableFeatures() function, or both. All methods were
applied to these same set of genes. In the simulated data, we force all methods to
decontaminate all genes since there are relatively few (1000 or 3000 genes
depending on the simulation).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequence data for the three human–mouse chimeric experiments are available at
GEO (accession number: GSE178221). Links to 16 public spatial transcriptomics datasets
are available in Supplementary Table 6. The human breast cancer single-cell RNA-seq
data from Chung et al. 23 is available at GEO (accession number: GSE75688). The human
colorectal cancer single-cell RNA-seq data from Li et al. 24 is available at GEO (accession
number: GSE81861). Additional datasets used to investigate permeabilization times are
available at GEO (accession numbers: GSE169749, GSE178361, GSE188888, GSE190595,
and GSE193460). Processed data for reproducing results in our studies are available at
Zenodo27. The GRCh38+mm10 reference genome is available at 10x Genomics (refdata-
gex-GRCh38-and-mm10-2020-A).

Code availability
The R package SpotClean is available at https://github.com/zijianni/SpotClean 28 and will
be submitted to Bioconductor. Codes for simulation and case study data analyses can be
found at https://github.com/zijianni/codes_for_SpotClean_paper 29.
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