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Extensible and self-recoverable proteinaceous
materials derived from scallop byssal thread
Xiaokang Zhang 1,2,10, Mengkui Cui3,10, Shuoshuo Wang1,2,10, Fei Han4,10, Pingping Xu 1,2, Luyao Teng1,2,

Hang Zhao4, Ping Wang4, Guichu Yue 5, Yong Zhao 5, Guangfeng Liu6, Ke Li3, Jicong Zhang 3,

Xiaoping Liang 7, Yingying Zhang 7, Zhiyuan Liu 4✉, Chao Zhong 8,9✉ & Weizhi Liu 1,2✉

Biologically derived and biologically inspired fibers with outstanding mechanical properties

have found attractive technical applications across diverse fields. Despite recent advances,

few fibers can simultaneously possess high-extensibility and self-recovery properties espe-

cially under wet conditions. Here, we report protein-based fibers made from recombinant

scallop byssal proteins with outstanding extensibility and self-recovery properties. We

initially investigated the mechanical properties of the native byssal thread taken from scallop

Chlamys farreri and reveal its high extensibility (327 ± 32%) that outperforms most natural

biological fibers. Combining transcriptome and proteomics, we select the most abundant

scallop byssal protein type 5-2 (Sbp5-2) in the thread region, and produce a recombinant

protein consisting of 7 tandem repeat motifs (rTRM7) of the Sbp5-2 protein. Applying an

organic solvent-enabled drawing process, we produce bio-inspired extensible rTRM7 fiber

with high-extensibility (234 ± 35%) and self-recovery capability in wet condition, recapitu-

lating the hierarchical structure and mechanical properties of the native scallop byssal thread.

We further show that the mechanical properties of rTRM7 fiber are highly regulated by

hydrogen bonding and intermolecular crosslinking formed through disulfide bond and metal-

carboxyl coordination. With its outstanding mechanical properties, rTRM7 fiber can also be

seamlessly integrated with graphene to create motion sensors and electrophysiological signal

transmission electrode.
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Nature has evolved the use of a serial of protein fibers, such
as mussel byssal thread1, hagfish slime2, spider silk3,
silkworm silk4, and rat tail tendon fiber5, with unique

hierarchical structures6,7, functional domains8–11, and inter-
molecular crosslinks12,13, to achieve outstanding mechanical
properties for specific functional roles. Inspired by these natural
fibers, researchers have made important progress in the devel-
opment of various protein-based fibers with outstanding
mechanical properties, such as hagfish slime-inspired fibers with
ultra-high stiffness14 and silkworm silk-inspired fibers with
enhanced tougheness15, with enormous applications in tissue
engineering16, extracellular matrix17, wearable device18, and other
fields. From a sustainable viewpoint, those bio-derived fibers are
excellent substitutes for chemically synthesized fibers19,20. Despite
impressive strength, stiffness, and toughness, the application
scope of existing biologically inspired materials is severely limited
by their low extensibility and poor self-recovery capability, par-
ticularly in wet conditions. Biomaterials with high extensibility
and self-recovery properties in wet physiological conditions are
highly demanded for tissue engineering and medical care
applications21,22, as they have the potential to support soft tissue
repairing where a certain degree of elasticity, such as vocal
folds23, human cartilage24, and muscle tissue25 is highly required.
In addition, owing to their stretchability and low stiffness,
they may find broad applications in wearable smart materials
and flexible electronics, such as strain sensors with high
sensitivity26,27.

Scallop Chlamys farreri is able to firmly attach to a substrate
using its byssus even in dynamic marine environment28. Scallop
byssus possess high strength that can bear more than 100 times of
its own body weight29. Another notable feature is that the byssal
thread shows extraordinary extensibility, stretching more than
twice of its original length (Fig. 1). Despite their attractive
mechanical properties, little is known about the components and
molecular assembly mechanisms of the scallop byssus. We pre-
viously identified the major components and distribution of
scallop byssal proteins (Sbps) by combining transcriptomics and
proteomics29–32. The byssus is composed of more than 20
different proteins and mucopolysaccharides28,30,31,33. Among
them, several proteins including Sbp5-2 and Sbp4-1 were dis-
covered as foot-specific proteins in the highly extensible region of
the byssus thread, with Sbp5-2 being the most abundant
component30.

The richness of Sbp5-2 in the byssal thread region raises an
intriguing question whether this protein is responsible for the
high-extensibility of the scallop byssus under wet condition. Here,
we investigate the structure-mechanical properties relationship of
the Sbp5-2 proteins across multiple length scales using a
recombinant protein containing the eighth to fourteenth tandem
repeats module (TRM8-14) of the Sbp5-2 protein as a model. We
initially assess the hierarchical structure of the byssal thread
derived from scallop Chlamys farreri and study its mechanical
properties, including extensibility and self-recovery property.
Next we achieve genetically engineered recombinant extensible
protein 7 (rTRM7) fibers containing TRM8-14 of Sbp5-2 through
a simple drawing process, recapitulating the hierarchical structure
and mechanical properties of the scallop byssal thread. We fur-
ther assess the possible inter- and intramolecular interactions
including hydrogen bond, metal coordination bond, and disulfide
bond in affecting the mechanical properties of the recombinant
rTRM7 protein fibers. Finally, we illustrate a proof-of-concept
demonstration of motion sensors and electrophysiological signal
transmission electrode by embedding graphene in rTRM7 fibers
through the above drawing process. We anticipate that our
scallop-inspired rTRM7 fiber, which possesses high-extensibility
and self-recovery capacity while retaining functionality in wet

environment, would find broad applications in biomedical and
industrial fields.

Results
Hierarchical structure and mechanical properties investigation
of scallop byssal thread. Scallop Chlamys farreri anchor itself
onto mineral substrates in the ocean through depositing a byssus
with a bundle of threads. Interestingly, the thread region of the
byssus exhibited remarkable extensibility (Fig. 1a). To understand
the possible mechanisms, we took a fresh byssus from scallop and
investigated the microscopic structure of the thread region
(Fig. 1b). Morphological observation of the byssal thread by
scanning electron microscope (SEM) clearly revealed that the
thread is composed of smooth and loosely folded films that are
aligned parallel to the byssus axis (Fig. 1c). Protein is the main
component of the highly extensible thread, accounting for 81.89%
of the total mass (Supplementary Table 1). To further study the
secondary structure of the proteins in the byssal thread, we per-
formed X-ray fiber diffraction and Fourier transform infrared
(FTIR) spectroscopy on the thread region. The byssal thread
showed a typical β-sheet diffraction pattern with meridional
reflection at 4.65 Å (representing inter-sheet distance within
β-sheet layers) and equatorial reflection at 9.80 Å (representing
inter-sheet distance between β-sheet layers)34. Consistently, of all
the secondary structures integrated from the amide I region of
FTIR absorption spectrum, β-sheet structure accounts for the
largest proportion, reaching 38.83 ± 1.75% (Supplementary Fig. 1
and Table 2).

We next conducted tensile test to study the mechanical
properties of the byssal thread in high-moisture condition
(relative humidity ~90%, tensile speed 0.2 mm/s) (Fig. 1d,
Supplementary Movie 1). The resultant stress-strain curve
revealed that the byssal thread showed high extensibility reaching
327 ± 32% of its original length, outperforming other types of
natural fibers, including underwater mussel byssal thread1 and
hagfish slime2, and spider silk3,35, silkworm silk4, and rat tail
tendon fiber5 (Fig. 1e). Moreover, to study the self-recovery
capability of the byssal thread, we performed cyclic tensile test by
repeatedly stretching to 100% or 200% strain and returning to 0%
strain for five consecutive cycles in wet condition (Supplementary
Fig. 2). In these processes, the byssal thread showed a remarkable
hysteresis, indicating effective energy dissipation upon
deformation36. The dissipated energy substantially reduced in
the second cycle, but remained constant in the following three
cycles. The byssal thread showed little permanent deformation
after cyclic stretching, indicating strong resistance to mechanical
forces. These studies lead to a conclusion that scallops adopt
high-extensible and self-recoverable byssal thread to optimize
load distribution and energy dissipation37.

Shellfish usually leverages metal ions from seawater to
construct their hierarchical structures and to strengthen the
mechanical properties of their byssus. For example, mussel
utilizes Fe3+ to enhance the stiffness of its byssus38, while pearl
oyster adopts Ca2+ to stabilize the nanocavities within its
byssus39. It is thus conceivable that scallop may adopt a similar
mechanism for the mechanical benefits of its byssus thread. To
test this hypothesis, we next applied inductively coupled plasma
mass spectrometry (ICP-MS) to investigate the presence of
polyvalent metal elements in the byssal thread of scallop.
Quantitative analysis showed that Calcium was the most
abundant element, accounting for 55.75% (Fig. 1f). Notably, after
treatment of the byssal thread with ethylenediaminetetraacetic
acid (EDTA) to remove possible polyvalent metal ions, we carried
out similar tensile tests and found it maintained high extensi-
bility, but the tensile strength decreased to 3.79 ± 0.65MPa
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(compared to 9.88 ± 0.99MPa for the non-EDTA treated sample).
More intriguingly, after re-incubation in CaCl2 buffer (20 mM
Tris-HCl, 10 mM CaCl2, pH 8.5), the byssal thread restored the
tensile strength to 8.03 ± 1.22MPa obviously arising from the
reformation of metal-carboxy coordination bonds (Supplemen-
tary Fig. 3 and Table 3). These results highly implied that the
calcium ions might coordinate with negatively charged groups
(for example, carboxy groups) in the byssal thread proteins.
Indeed, X-ray photoelectron spectroscopy (XPS) confirmed that
the removal and recovery of Ca2+ in the EDTA-treated and
Ca2+-recovery samples respectively: the Ca2p signal for the
EDTA-treated byssal thread was much lower than that of the
native and the Ca2+ recovery ones (Supplementary Fig. 4).
Collectively, these results demonstrated that Ca2+ likely partici-
pates to form certain metal coordination bond that markedly
enhanced the strength of scallop byssal thread.

Scallop byssal thread-inspired protein-based fibers. Intrigued
by the high extensibility of scallop byssus and the fact that protein
component is enriched in the thread region, we performed mass
spectrometry to investigate proteins extracted from the thread
region (Supplementary Fig. 5). Among them, Sbp5-2 (Gene ID:
30077.9)31, the highest expressed protein in the byssal thread
accounting for 37.36 wt%, was hypothesized to be responsible for
the high extensibility (Fig. 2a, Supplementary Fig. 6). Moreover,
we obtained the amino acid sequence of Sbp5-2 from scallop

genome, and confirmed it by rapid-amplification of cDNA ends
(RACE) (Supplementary Table 4). The Sbp5-2 amino acid
sequence can be divided into fourteen tandem repeat motifs
(TRMs), each containing a Cys-Xn-Cys pattern and several
negatively charged residues (Fig. 2b). Notably, Cys accounts for
8.4% and negatively charged Asp and Glu accounts for 12.4% in
Sbp5-2, implying the protein may contain both intermolecular
disulfide bond and metal-carboxy coordination bonds. We thus
reasonably speculated that the proteins enriched with TRMs are
at least partially responsible for the high extensibility of the
byssus. A further understanding of the structure-function rela-
tionship of TRMs would thus provide insights into the design of
scallop byssal thread-inspired protein fiber.

Expression and purification of the full-length Sbp5-2 protein
using Escherichia coli as a host turns out to be a challenging task
possibly due to the high Cys content in the protein. To
circumvent this difficulty, we rationally derived the gene sequence
of the eighth to fourteenth tandem motifs from Sbp5-2 to
construct a recombinant protein (rTRM7) (Fig. 2b), with the
content of Cys and negatively charged Asp and Glu in rTRM7
closely matching that in Sbp5-2 (Fig. 2c). Indeed, with shortened
sequence, rTRM7 could be successfully expressed as inclusion
body in E. coli and could be directly purified as soluble protein
following a denaturing protocol (Supplementary Fig. 7). By
optimizing the protein expression and purification process, we
could harvest ~120 mg protein per liter culture medium. Then,
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Fig. 1 Structure and mechanical properties of the native scallop byssal thread. a Photographs of marine scallop adheres to a given substrate through a
byssus with a bundle of threads before and after stretching. b Photographs of a complete byssus derived from scallop. The thread region of scallop byssus
is marked in dotted box. cMorphological characterization of the microscopic structure of the byssal thread by SEM. The byssal thread is composed of films
folded loosely and aligned along the axis of macroscopic byssus. The insert image refers to X-ray fiber diffraction pattern of the byssal thread. The byssal
thread shows a typical diffraction pattern of cross-β strands, in which the meridional reflection is ~4.65 Å (corresponding to the inter-sheet distance within
the same layer) and the equatorial reflection is ~9.80 Å (corresponding to the inter-sheet distance between adjacent layers). d A representative strain-
stress curve of scallop byssal thread stretched in wet condition (relative humidity ~90% and tensile speed 0.2 mm/s). The byssal thread shows high
extensibility reaching up to 327 ± 32%. The insert images show the byssal thread before and after stretching. e The extensibility comparison of scallop
byssal thread and several biogenic threads derived from diverse of creatures underwater or on the earth. The scallop byssal thread shows the highest
extensibility, which serves a benchmark for high extensible materials. f Quantitively analysis of metal elements in the byssal thread by ICP-MS. Among
these polyvalent metals, calcium accounts for the largest proportion in thread region (55.75%). Data are presented as mean values ± SEM. n= 3
biologically independent experiments.
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using an rTRM7 protein ink (lyophilized rTRM7 proteins
dissolved in hexafluoro-2-propanol (HFIP) at 150 mg/mL)40,41,
we developed a drawing process to fabricate rTRM7 fiber
(Fig. 2d). Specifically, by initially casting rTRM7 protein ink into
a thin and transparent free-standing film on CaCl2 buffer surface,
we could slowly draw rTRM7 fibers from the surface of the
flattened film using forceps. The as-prepared fibers were then
immersed in CaCl2 buffer immediately (Fig. 2e). In the initial
trials, we also attempted to produce fibers from the low-
concentration rTRM7 (50 mg/mL), rTRM7 mutation (all Cys to
Ser), and recombinant proteins containing less TRMs (≤6) and
protein containing TRM1-7 of Sbp5-2. However, none of them
could form films in the same condition (Supplementary Fig. 8).
These results suggested that other than the specific protein

sequence, factors including protein concentration, Cys residues
and molecular length all affected the formation of thin-layer film
and subsequent formation of thin fibers through the drawing
process.

In order to identify the microscopic morphology and molecular
structure of rTRM7 fiber, we performed SEM observations and
X-ray fiber diffraction respectively. The SEM image results clearly
revealed that rTRM7 fiber contained loosely folded smooth sheets
that were aligned parallel to the fiber axis (Fig. 2f). Further, X-ray
fiber diffraction pattern of rTRM7 fiber indicated a typical β-sheet
structure with meridional reflection at 4.65 Å and equatorial
reflection at 9.80 Å, like that of natural byssal thread (Fig. 2g). In
addition, FTIR absorption spectrum revealed that of all the
secondary structures in rTRM7 fiber, β-sheet constituted the
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largest proportion of 38.69 ± 7.86% (Supplementary Fig. 9 and
Table 5). Collectively, these results suggested that the fabricated
rTRM7 fiber recapitulated the hierarchical structure of natural
scallop byssal thread.

Mechanical properties and the underlying molecular interac-
tions of rTRM7 fibers. When stretching rTRM7 fiber with for-
ceps under water, we observed a significant deformation reaching
more than twice of its initial length (Supplementary Fig. 10).
Therefore, we systematically studied the extensibility of rTRM7
fiber through tensile test. rTRM7 fiber showed high extensibility
reaching 234 ± 35%, but relatively low tensile strength
(1.21 ± 0.45 MPa) in wet condition, likely due to the water
molecules trapped inside the fiber acting as plasticizer (Fig. 3a
and Supplementary Movie 2). The statistics for mechanical
measurements of ten individual fabricated fibers indicated the
reproducibility of this method (Supplementary Fig. 11). More-
over, it was confirmed that the mechanical properties were not
affected by the picking speed (Supplementary Fig. 12). When

repeatedly stretching to 100% or 200% strain at 0.2 mm/s and
finally restoring to 0 % strain for five cycles consecutively,
rTRM7 fiber exhibited remarkable hysteresis and energy dis-
sipation in the first cycle, but showed less pronounced behaviors
in the following four cycles (Supplementary Fig. 13). We next
investigated the self-recovery capability of rTRM7 fiber with
programmed tensile test by firstly stretching to 200% stain at
0.2 mm/s and restoring to 0 % strain for three cycles at different
time intervals (the second cycle test was executed immediately
after the first cycle, but the third cycle test was carried out after
incubating the stretched rTRM7 fiber in CaCl2 buffer for 2 h)
(Fig. 3b). In the second cycle, the strain-stress curve of rTRM7
fiber did not restore to the first cycle and the dissipated energy
reduced by ~80%. Whereas in the third cycle, rTRM7 fiber
showed the same strain-stress curve as the first cycle with equal
dissipated energy. These evidence indicated the fabricated
rTRM7 fiber could recapitulate the high extensibility of the
scallop byssal thread in wet condition, and also exhibited self-
recovery capability.
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Concurrently, we measured the length of rTRM7 fiber before
and after each stretching in the aforementioned programmed
tensile test (Fig. 3c). rTRM7 fiber was stretched longer after each
tensile cycle test. However, after incubating in CaCl2 buffer for
2 h of relaxation, rTRM7 fiber almost restored to its original
length. We then carried out further characterization with light
microscopy and SEM to gain insights into the microscopic
structure of rTRM7 fiber in unstrained, strained, and relaxed
states (Fig. 3d). CdSeS@ZnS quantum dots (QDs), which could
bind rTRM7 molecules specifically via His-tag affinity, was
utilized to visualize the cross section of rTRM7 fiber. After
stretching, microscopic images showed that the strained rTRM7
fiber became thinner and denser than in unstrained state. In
parallel, SEM images revealed that the films of the strained
rTRM7 fiber became highly compacted and the original smooth
surfaces turned into wrinkled surfaces. After incubating in CaCl2
buffer for 2 h, the surface of rTRM7 fiber, as revealed by both
microscopic and SEM imaging, became smooth again and the
internal aperture was enlarged again. Based on these observations,
we concluded that rTRM7 fiber possessed self-recovery capability
that can restore both the energy dissipation and microscopic
structure within 2 h of incubation in CaCl2 buffer.

Intermolecular interactions have always been considered as one
of the key factors affecting the mechanical properties of
materials38,41. Animal threads such as the thread in a spider
web are enriched with hydrogen bonds that heavily affect their
mechanical properties42,43. Thus, we conjecture that hydrogen
bond might affect the extensibility and tensile strength of the
fabricated rTRM7 fiber. When rTRM7 fiber was dried at room
temperature (relative humidity ~50%) for 10 min, the extensi-
bility sharply decreased to 11.3 ± 2.9% and the tensile strength
increased to 36 ± 14MPa (Fig. 3e). After incubating the dried
fibers in CaCl2 buffer for 10 min, rTRM7 fiber restored the
extensibility to 228 ± 34% and the tensile strength to 4.4 ± 1MPa,
implying the hydrogen bond could quickly restore in the hydrated
fibers (Fig. 3e). Conceivably, the hydration state is essential to
maintain the hydrogen bond within rTRM7 fiber, which in turn
contributes to the extensibility but reduces the tensile strength of
rTRM7 fiber. In addition, the fiber still maintained excellent
mechanical properties even dispersed in the PBS buffer at 37 °C
for 3 days (Supplementary Fig. 14). However, the addition of
protease in the same PBS buffer could result in observed
degradation of fibers after incubation for 24 h (Supplementary
Fig. 15), implying the intrinsic biodegradation of the rTRM7 fiber
under physiological condition.

Other noticeable features of rTRM7 fiber include the presence of
Cys in the proteins that might form disulfide bond, and the
negatively charged Asp and Glu that can coordinate with metal
ions. To rule out possible influence of the formation of disulfide
bond onmechanical properties, we produced identical rTRM7 fiber
(referred as rTRM7’ fiber by drawing from CaCl2 buffer with
dithiothreitol (DTT) (20 mM Tris-HCl, 10mM CaCl2, 100 mM
DTT, pH 8.5)), a condition that disrupts or disfavors the formation
of disulfide bond. The extensibility of rTRM7’ fiber increased to
475 ± 16% and the tensile strength decreased to 0.42 ± 0.11MPa
(Fig. 3f). The presence of disulfide bond in rTRM7 and rTRM7’
fibers was next assessed by Raman spectroscopy: the characteristic
peak ranging from 495 cm−1 to 635 cm−1 confirmed that most of
the disulfide bonds were eliminated in rTRM7’ fiber (Fig. 3g)44.

Subsequently, to investigate the mechanical properties changes
caused by metal-carboxy coordination, we prepared and tested
three groups of fibers: rTRM7 fiber as control, rTRM7” fiber
without metal-carboxy coordination drawn from buffer with
EDTA (20 mM Tris-HCl, 100 mM EDTA, pH 8.5), and Ca2+

recovered rTRM7” fiber obtained by incubating fiber in CaCl2
buffer for 2 h (Fig. 3h). The extensibility of rTRM7” fiber

increased to 300 ± 43%, but the tensile strength reduced to
0.43 ± 0.12 MPa, whereas Ca2+ recovered rTRM7” fiber restored
the extensibility to 221 ± 28% and the tensile strength to
0.79 ± 0.30 MPa. The calcium-carboxy coordination bond in the
fibers were monitored by FTIR45. Compared to rTRM7” fiber, the
band of carboxy at ~1073 cm−1 blue shifted to ~1111 cm−1

implying that calcium-carboxy coordination was missing in
rTRM7” fibers and recovered in Ca2+ recovered rTRM7” fiber
(Fig. 3i)46. The presence of Calcium elements in these fibers were
also confirmed by XPS revealing that Ca2p signal appeared in
rTRM7 fiber and Ca2+-recovered rTRM7” fiber, but not in
rTRM7” fiber (Supplementary Fig. 16). In parallel, secondary
structure analysis from the Amide I region of FTIR spectra
revealed that β-sheet content in rTRM7” fiber was less than in
Ca2+-recovered rTRM7” fiber, and the β-sheet content in Ca2+-
recovered rTRM7” fiber restored to that in rTRM7 fiber
(Supplementary Fig. 17). Therefore, Ca2+ promoted β-sheet
formation implied a potential way to enhance tensile strength.

Furthermore, in cyclic tensile test stretching to 100% strain,
rTRM7’ and rTRM7” fibers both exhibited lower energy
dissipation capacity than rTRM7 fiber (Supplementary Fig. 18).
Then in programmed tensile test, we incubated the two-cycle
stretched rTRM7’ and rTRM7” fibers in CaCl2 buffer for 2 h to
reform the disulfide bond and metal-carboxy coordination. In the
third cycle test, rTRM7’ and rTRM7” fibers both restored the
energy dissipation capacity and restored the tensile strength,
which were both much higher than in the third cycle
(Supplementary Fig. 19). All these results indicated that dynamic
disulfide bond and metal-carboxy coordination in rTRM7 fiber
contributed to self-recovery and energy dissipation, and enhanced
the tensile strength but restricted the extensibility, through
restricted film shearing, controlled slippage, and stress transfer,
although direct experimental evidence for these behaviors in
rTRM7 fiber was lacking (Fig. 3j)47.

Functional rTRM7 fiber/graphene hybrid wearable devices. In
recent years, motion sensor, which can be noninvasively mounted
on human body, have been intensively studied by researchers in
the field of wearable electronics48,49. However, preparing high-
performance motion sensor with high extensibility and high
sensitivity in wet environment is still challenging50. Here, the
electronic properties of rTRM7 fiber were carried out in wet
environment showing that the resistance of rTRM7 periodically
changed with cyclic stretching, but the performance was non-
reproducible (Supplementary Fig. 20). The combination of bio-
macromolecule and carbon nanomaterials provides a feasible
solution for stable and wearable sensors51,52. Existing conven-
tional top-down approaches to obtain conductive materials
embedded within such motion sensors often requires multi-step
processes that are both time-consuming and costly53,54. Hence,
we designed and fabricated electronic rTRM7 (e-rTRM7) fiber by
introducing conductive graphene during the drawing process. In
particular, e-rTRM7 fiber was obtained through a similar TRM7
film drawing process using a mixed solution with graphene flakes
dispersed in an rTRM7 HFIP solution (150 mg/mL rTRM7 and
2% graphene) (Fig. 4a-b). Combined with the certain study
described previously55,56 and morphological observation by SEM
imaging revealed that graphene flakes were randomly but evenly
embedded within the films of e-rTRM7 fiber (indicated by white
arrow in Fig. 4c). The presence of graphene was also confirmed by
Raman spectroscopy (Fig. 4d). Compared with rTRM7 fiber,
three typical peaks attributing to graphene at ~1350 (D band),
~1574 (G band), and ~2701 (G’ band) cm−1 appeared in the
Raman spectrum of e-rTRM7 fiber57. We next conducted tensile
test to investigate the mechanical properties of e-rTRM7 fiber,
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which showed extensibility of 92 ± 11 % and tensile strength of
0.38 ± 0.09MPa in wet condition. Noticing that an obvious
decrease in mechanical properties of protein fibers occurred when
incorporated with graphene, thus we next performed morpho-
logical comparison of the structures for the rTRM7 and e-rTRM7
fiber with SEM imaging (Figs. 3d and 4c). The SEM results of
e-rTRM7 fibers showed that graphene flasks evenly dispersed in
the sample and seemed to disrupt the complete lamellar struc-
tures of the protein fibers, as the lamellar structures became less
dense after embedding graphene. The partial disruption of the
lamellar structure may weaken the interaction between protein
molecules in the fibers, resulting in a substantial decrease in the
mechanical properties of the fibers. However, the extensibility of
e-rTRM7 fibers still outperforms most of the graphene embedded
fibers reported so far58–61.

The well-dispersed graphene flakes in the films of rTRM7 form
an electrically conductive path that is responsive to environ-
mental changes, such as strain and external force, endowing the
e-rTRM7 fiber with high sensitivity to stimuli. We explored the
resistance change of e-rTRM7 fiber during cyclic stretching to

20% strain and backing to 0% strain at a speed of 0.2 mm/s in wet
condition (Fig. 4e). The red part indicated the resistance of
e-rTRM7 was positively related to the strain of e-rTRM7 fiber
with high sensitivity (gauge factor: ~2.5). In the relaxation stage,
the resistance of e-rTRM7 fiber decreased but not restored to the
starting value due to the slow recovery rate of fiber deformation.
In addition, e-rTRM7 fiber exhibited consistent resistance change
in continuous loading-unloading test (Supplementary Fig. 21).
Cytotoxicity assays showed that e-rTRM7 fibers exhibited good
cytocompatibility (Supplementary Fig. 22). To demonstrate
e-rTRM7 fiber’s practical application as a wearable strain sensor,
it was directly mounted on a knuckle to monitor finger activity
(Fig. 4f). The real-time monitoring showed the resistance of
e-rTRM7 fiber increased when making a fist and recovered when
relaxing (Fig. 4f). Based on all these observations, e-rTRM7 fiber
combining the mechanical properties of rTRM7 fiber and the
electrical properties of graphene, with high extensibility and high
sensitivity, would serve as the next-generation wearable electronic
system in diverse fields such as medicine, entertainment, and
sport industry.
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Fig. 4 Application of conductive e-rTRM7 fiber as motion sensor. a Schematic illustration of fabricating electronic rTRM7 (e-rTRM7) fiber and its
applications in wearable and implantable electrodes. b Photograph of e-rTRM7 fiber. c SEM images of side view and sectional view of the e-rTRM7 fiber
showing graphene flakes are randomly embedded in the films of e-rTRM7 fiber. The white arrows point to the graphene flakes. d Raman spectrum of
e-rTRM7 and rTRM7 fibers. Typical graphene peaks at 1350, 1574, 2701 cm−1 are appeared in e-rTRM7 fiber, while not in rTRM7 fiber. A.U., arbitrary unit.
e Resistance change of e-rTRM7 fiber over time under cycle loading-unloading stretching. e-rTRM7 fiber is stretched to 20% strain and relaxed to 0%
strain in two continuous cycles. The resistance is positively related to the strain of e-rTRM7 fiber (red part). f e-rTRM7 fiber applied to knuckle as a motion
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produced by the fist and relaxation. h, i The in vivo action potential signals from tibialis anterior muscle and tibial nerve induced by the increased
stimulating current on common peroneal nerve of the rat.
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The graphene decorated rTRM7 fiber electrodes can further be
used for skin electromyography (EMG) and in vivo compound
muscle action potentials detection. As shown in Supplementary
Fig. 23 and Movie 3, six fiber electrodes were placed on the
forearm (outer sider) of a volunteer. When the hand made a fist
and relaxation, the wrist flexors contracted and generated surface
EMS signals. Different gestures by finger performing flexion and
extension (Fig. 4g and Supplementary Fig. 24) were also
demonstrated to illustrating the graphene decorated rTRM7 fiber
can be well used for skin EMG detection function. The amplitude
of the signal peaks among those six electrodes showed the
consistency of the prepared fibers. Further, the detection of skin
EMG signals for muscle motion suggests its potential application
in the human-machine interfaces. In addition, in vivo compound
muscle action potential signals detection was also performed
(Fig. 4h, i and Supplementary Movie 4). The stimulating signal
was introduced through the common peroneal nerve of the rat.
Accordingly, the action potential signals from tibialis anterior
muscle and tibial nerve were recorded respectively. By applying
the increased stimulating current (10-40 μA), the peaks of the
action potential signals became more distinct. The in vitro and
in vivo physiological signals detection functions combined with
the excellent biocompatibility suggest the ability of skin-
attachable and implantable electrode for bio-interactive
applications.

Discussion
In this work, we investigated the mechanical properties and
hierarchical structure of the naturally occurring scallop byssal
thread, and demonstrated TRMs in Sbp5-2 were responsible for
the high extensibility and self-recovery capability. We next
genetically constructed a recombinant protein consisting of 7
tandem repeat motifs (rTRM7) of the Sbp5-2 protein and
expressed the protein in E. coli host with improved production
yield for scalable application. rTRM7 fiber was prepared by a
simple drawing process, recapitulating the hierarchical structure
and mechanical properties of scallop byssal thread, with
impressive extensibility and self-recovery capability.

Notably, we observed that intermolecular crosslinks, mainly
contributed by hydrogen bond, metal-carboxyl coordination, and
disulfide bond, had a significant influence on the extensibility and
self-recovery capacity of rTRM7 fiber, suggesting an effective way
to modulate it by modifying the formation of intermolecular
crosslinks. Moreover, by embedding graphene into rTRM7 fiber,
we achieved high performance e-rTRM7 fiber and established a
proof-of-concept application as motion sensor and electro-
physiological signal transmission electrode to monitor human
body activities.

Our studies shed light on the molecular mechanism underlying
the extensibility of scallop byssal thread and can guide new design
to construct bio-inspired protein-based fibrous materials from
sustainable protein feedstocks, especially for applications in wet
environment. To tap its full potential, further work will be needed
to probe the detailed intermolecular assembly mode for TRMs.
On the application side, the fibrous materials based on TRM with
outstanding mechanical performance represents a new class of
high extensible materials for diverse application scenario. New
TRMs-based proteins with additional functionalities through
genetic engineering may further expand their application scope in
both industrial and medical settings.

Methods
Scallop byssal thread protein collection. Chlamys farreri scallop was purchased
from Qingdao seafood market and cultured in laboratory conditions (~19 °C) for
24 h to secrete byssus. The byssal thread was harvested and washed with amounts
of deionized water. Then, we extracted the soluble proteins by following the

methods described in previous papers30,62. A clean blade was used to cut the thread
part of the scallop byssus for later usage. The samples were then dissolved using the
extraction buffer (6 M guanidine hydrochloride, 5% acetic acid, 2 mM EDTA,
10 mM DTT) after grinding evenly in liquid nitrogen. After incubation at 37 °C for
2 h, the sample was centrifuged at 12,000 g at 4 °C for 25 min. The resulting
supernatant was first dialyzed against 0.5 % acetic acid solution twice and then
against deionized water once. The soluble protein components were freeze-dried
and preserved for later usage. The soluble proteins were separated by SDS-PAGE
and the main proteins in brightest bands marked in red boxes were collected for
further study. Data is presented in Supplementary Fig. 5.

MS. The main bands shown as red rectangles in Fig S4 were cut with a clean blade
for mass spectrometry. MS spectra were acquired by Q-Exactive mass spectrometer
(Thermo Scientific) in positive mode over a range of 300 to 2000 m/z. The
strongest ten signals were selected and analyzed by Proteome Discoverer 1.4
(Thermo Scientific). To estimate protein abundance, we searched the fragmenta-
tion spectra against the Chlamys farreri full-protein database by Proteome Dis-
coverer with Mascot search engine. Data are presented in Fig. 2a and
Supplementary Fig. 6.

ICP-MS. The byssal thread was lyophilized and digested in 5 mL nitric acid for 2 h,
and then diluted to 50 mL with deionized water. The sample solution was analyzed
by Agilent 7500CE ICP-MS (Agilent Technologies Co. Ltd, USA). Commercial Sc,
Li, Y, Ge, In, Tb, and Bi samples at 1.0 mg/L were selected as a mixed internal
standard. Data is presented in Fig. 1f.

Amino acid analysis. 13.73 mg of dried byssal thread was accurately weighed and
put into a glass tube, and 6M HCl was added to the tube and sealing. The byssal
thread was hydrolyzed for 24 h in a 110 ± 1 °C thermostatic drying oven. After the
hydrolysate cools, the mixture was poured into a crucible and dried in a water bath
after cooling. The remaining sample was dissolved by adding 0.01 M HCl and
placed at room temperature for 4 h to convert cysteine to cystine, hydrolyzed
protein sample was finally dissolved in 0.02 M HCl and injected into the amino
acid analyzer (Hitachi L-8900 automatic amino acid analyzer) for analysis. Data are
presented in Supplementary Table 1.

Plasmid construction. The amino acid sequence of Sbp5-2 was confirmed by
rapid-amplification of cDNA ends (RACE). rTRM7, rTRM6, and rTRM7 mutation
(all Cys to Lys) genes were cloned from Sbp5-2 by PCR. The target genes were
digested by BamHI and XhoI restriction enzymes (Takara) at 25 °C for 30 min, and
inserted into pET32a by T4 Ligase at 37 °C for 30 min. The recombinant plasmids
were then transformed into DH5α Escherichia coli competent cells (Novagen)
respectively. All constructed plasmids were sequenced and verified by Sangon.
Primers utilized in plasmids construction are listed in Supplementary Table 4.

Protein expression and purification. The recombinant plasmids containing
rTRM7, rTRM6, and rTRM7 mutation were transformed into BL21 (DE3)
Escherichia coli competent cells (Novagen) individually. The strains were fer-
mented in LB medium containing 50 mg/L kanamycin to OD600 of 0.8 at 37 °C.
Protein expression was then induced with 0.2 mM Isopropyl-beta-D-
thiogalactopyranoside (IPTG) at 37 °C for 10 h. The expressed bacteria were col-
lected by centrifugation at 3,000 g at 4 °C for 30 min, and the pellets were sus-
pended in phosphate buffer and lysed under sonication for 35 min (5 s / 10 s) by
ultrasonic cell disruptor (JY 92-IIN Scientz). The insoluble inclusion body was
collected by centrifugation at 12,000 g for 10 min, purified twice with 50 mL PBS,
and then purified twice with 50 mL 1M urea buffer (20 mM Tris-HCl, 1 mM
EDTA, 1% Triton-114, 1% glycerin, pH 8.5). The purified inclusion body was then
dissolved in 8M urea buffer (20 mM Tris-HCl, 10 mM DTT, pH 8.5) and dialyzed
in dialysate buffer (20 mM Tris-HCl, 1 mM DTT, pH 8.5) for protein refolding.
The purified protein was identified by SDS-PAGE and lyophilized for further study.
Data is presented in Supplementary Fig. 7.

Fiber preparation. The lyophilized recombinant proteins were dissolved in HFIP
at a final concentration of 150 mg/mL. Five microlitre of the protein HFIP solution
was then dropped onto the surface of Tris-HCl buffer in a petri dish, and then the
self-assembling films forming on buffer surface were picked up with forceps and
drawn into fiber (Supplementary Movie 5). In addition, to evaluate the pick speed
influences on the fibers, we fabricated the protein fibers using a typical Dip Coater
(MHY-08093, Beijing Meihuayi Technology Co., LTD.) at different speed (50 mm/
min, 100 mm/min, and 200 mm/min) (Supplementary Movie 6). The freshly made
fiber was then incubated in CaCl2 buffer for 24 h for full maturation. Recombinant
protein fibers were washed with a large amount of deionized water and lyophilized
for further characterization. Data are presented in Fig. 2d, Supplementary Fig. 8.

e-rTRM7 fiber preparation. Graphene ink (KNG®-G2) was purchased from
Knano Graphene Technology Co., Ltd. China. The graphene powder was dissolved
and well dispersed in rTRM7 HFIP solution at molecular weight of 2% MW. Then
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the e-rTRM7 fiber was prepared following the above fiber preparation process.
Data are presented in Fig. 4a, b.

Tensile testing. Scallop byssal thread and recombinant protein fibers were carefully
adhered to cardstocks with initial test length of 5mm. The mechanical properties of
fibrous materials were measured by Electromechanical Universal Testing Machine
(MTS Systems Co., Ltd.) equipped with a tensile speed of 0.2mm/s. A 10N load cell
(MTS Systems Co., Ltd.) was applied to measure the force. All tests were carried out in
wet condition (relative humidity ~90%). The reproducibility of fabricated fibers was
evaluated by measuring the mechanical properties of ten fibers. The strain was calcu-
lated as the change in length divided by the initial test length, and the stress was
calculated as the force divided by the cross-sectional area. The diameter of fibers were
determined through optical microscope (VHM 3201) and cross-sectional area of the
protein fiber that we used was based on the geometric area (including the inner space
between protein layers). The fiber lengths were also recorded before and after stretching.
Data are presented in Figs. 1d, 3a, b, c, e, f, h, Supplementary Figs. 3, 10, 11, 12,
Supplementary Movie 1 and 2.

Self-recovery test. To test the self-recovery properties of the recombinant fibers,
the fibers were stretched to 200% strain and then returned to 0% strain. After two
cycles of continuous stretching, the fibers were removed from the fixture and
incubated in the buffer (20 mM Tris-HCl, 10 mM CaCl2, pH 8.5) for different times
(0.5 h, 1 h, and 2 h), and then the incubated fibers were stretched for the third cycle.
In order to fully restore the mechanical properties to the initial level, we incubate
the fiber in the same buffer for 2 h in all experiments. We also performed multiple
recovery experiments on our rTRM7 fibers (after each stretch cycle, the fibers were
incubated in buffer for 2 h, and the recovery test was performed at least ten times).
To further investigate the self-recovery ability of byssal thread and recombinant
protein fibers, we subject five successive loading-unloading cycles at strain of 100%
and 200%. Data are presented in Supplementary Figs. 2, 13, 18, 19, 25, and 26.

Stability and enzyme degradation evaluation. The fabricated protein fibers were
respectively immersed in PBS buffer and PBS solution with 3.5 U/mL protease XIV
(Sigma Aldrich), followed by incubation of at 37 °C in a sterile environment. The
mechanical properties of the fibers were measured every 24 h. Data are presented in
Supplementary Figs. 14 and 15.

Resistance measurement. The resistance of the e-rTRM7 fiber was recorded by
digital multimeter (Keithley 2400) with a resolution of 1 s. In order to monitor
hand movement, we adhered the e-rTRM7 fiber to the knuckle and measured the
resistance change while making a fisting. Data are presented in Fig. 4e, f, Sup-
plementary Figs. 20 and 21.

Biopotential signal extraction. The EMG signals were acquired by placing six
graphene decorated rTRM7 fiber electrodes on the forearm and a reference elec-
trode on the elbow. The front end of the fiber electrodes was attached with skin,
while the trailing end was sandwiched by two copper foil, which was connected to
the signal-out system. After that, those electrodes were connected to a self-designed
signal-recording setup processed with a band-reject filter (48–52 Hz). All of the
fibrous materials in the tests were tested in high humidity conditions and in
humoral environments. The EMG signals were analyzed using the MATLAB
(2019b) envelope function. For the in vivo experiment, the stimulating electrode
was put onto common peroneal nerve of male SD rats. The graphene decorated
rTRM7 fibers were put onto tibialis anterior muscle and tibial nerve. And the
compound muscle action potentials on tibialis anterior muscle and tibial nerve
were recorded using Plexon equipment. Data are presented in Fig. 4g, h, i, Sup-
plementary Figs. 23, 24, Movie 3 and 4.

SEM imaging. SEM images were collected using a JSM 7800 SEM with 2 kV
accelerating voltage. For sectional view, the samples were cut vertically by a clean
blade. Data are presented in Figs. 1c, 2f, 3d, and 4c.

X-ray fiber diffraction. The X-ray fiber diffraction data were collected using a
Rigaku MicroMax 007 x-ray generator and an R-AXIS IV++ area detector.
Fibrous samples were put into glass capillary tubes and mounted on the sample
stage. Data are presented in Figs. 1c and 2g.

XPS. XPS was executed on an ESCALAB 250Xi (Thermo Fisher Scientific) with a
monochromatic Al-Kα line (1486.6 eV). Element signals of samples were collected
with a step width of 0.01 eV. Data are presented in Supplementary Figs. 4 and 16.

FTIR spectroscopy. FTIR spectra were acquired by Nicolet iN10 infrared spec-
trometer (Thermo Scientific) in attenuated total reflection mode (ATR) from 4000
to 400 cm−1 with a nominal resolution of 4 cm−1. Baseline subtraction and peak
fitting were performed with Omnic 8.2 (Thermo Fisher Scientific Inc., Waltham,
MA, USA). Data are presented in Fig. 3i, Supplementary Figs. 1, 9 and 17.

Raman spectroscopy. Raman spectra were obtained by Labram HR800 (Horiba,
France) spectrometer with 532 nm laser excitation (10 mW power) from 200 to
3000 cm−1. The acquisition time of each sample spectrum was 30 s, and the
accumulation was 20 times. The Raman system was calibrated with a silicon slice
with the characteristic peak at 520 cm−1. Data are presented in Figs. 3g and 4d.

In vitro cytotoxicity assay. Microtitration (MTT) assay was used to test the
cytotoxicity of the fabricated fibers by assessing the viability of Rat L929 cells in the
presence of the e-rTRM7 fibers following the guideline from ISO 10993-5. The
fabricated e-rTRM7 fibers were sterilized by submersing the samples in 75% (v/v)
ethanol and disinfected with ultraviolet light for 60 min, then washed with ster-
ilized PBS solution three times for 90 min. The fiber extract was prepared by
incubating the sterilized e-rTRM7 fibers with 5 ml culture medium prepared with
DMEM (addition of 10% (v/v) FBS and 0.5% (v/v) Penicillin–Streptomycin) and
incubated for 24 h (37 °C, 5% CO2 and 95% air). 96 well microplates containing
culture medium or fiber extract were used to grow cells. Each of the microplate
wells contained around 1 × 104 cells and cultured in an incubator with 5% CO2 at
37 °C. Subsequently, after culturing for 1 day, 3 days, and 5 days separately, 20 μL
MTT solution (5 mg/mL) was added to each well. The culture medium was taken
away after 4 h incubation. 100 μL of DMSO was applied to each well and detect UV
absorption intensity at 570 nm wavelength after incubation for another 5 min. Data
are presented in Supplementary Fig. 22.

Statistics and reproducibility. All experiments were repeated three times inde-
pendently with similar results.

Data availability
The datasets generated in this study are provided in the Supplementary Information/
Source data file. Source data are provided with this paper and all Figures and
Supplementary Figures/Tables in the associated source data file are available. Source data
is available for Figs. 1d–f, 2a–c, 3a–c, 3e–i and 4d–i and Supplementary Figs. 1, 2, 3, 4, 6,
7, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, and 26 in the associated source data
file. Gene sequences are available at the scallop genome website (http://mgbase.qnlm.ac/
home). Source data are provided with this paper.
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