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Band conductivity oscillations in a gate-tunable
graphene superlattice
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Electrons exposed to a two-dimensional (2D) periodic potential and a uniform, perpendicular
magnetic field exhibit a fractal, self-similar energy spectrum known as the Hofstadter but-
terfly. Recently, related high-temperature quantum oscillations (Brown-Zak oscillations) were
discovered in graphene moiré systems, whose origin lies in the repetitive occurrence of
extended minibands/magnetic Bloch states at rational fractions of magnetic flux per unit cell
giving rise to an increase in band conductivity. In this work, we report on the experimental
observation of band conductivity oscillations in an electrostatically defined and gate-tunable
graphene superlattice, which are governed both by the internal structure of the Hofstadter
butterfly (Brown-Zak oscillations) and by a commensurability relation between the cyclotron
radius of electrons and the superlattice period (Weiss oscillations). We obtain a complete,
unified description of band conductivity oscillations in two-dimensional superlattices, yielding
a detailed match between theory and experiment.
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rtificial crystals, realised by moiré superlattices in het-

erostructures of 2D materials!~3 or by imposing a nano-

patterned superlattice*=® on a 2D electron system (2DES)
like graphene, provide the opportunity to study transport char-
acteristics of charge carriers in a periodic potential. Under the
influence of such a superlattice it becomes possible to modify the
band structure and therefore the electronic properties of 2D
materials, leading, e.g., to the recent observation of super-
conductivity in magic-angle graphene’. In perpendicular mag-
netic fields, superlattice systems exhibit a complex magnetic band
structure given by the fractal Hofstadter butterfly energy
spectrum® which was studied in GaAs-based 2DESs’ and
graphene-based systems at cryogenic temperatures!0-12. At ele-
vated temperatures, leaving the regime of Landau quantisation,
the fine structure of the Hofstadter energy spectrum vanishes but
its fundamental skeletal structure remains. Temperature-robust
magnetoconductivity oscillations were observed, which were
labelled Brown-Zak (BZ) oscillations'>14, and appear periodic in
the inverse magnetic flux per unit cell of the lattice. Krishna
Kumar et al. identified those oscillations as a band conductivity
effect, but mainly interpret them in terms of quasiparticles
residing in the minibands of the magnetic band structure intro-
duced by Brown!” and Zak!, without resorting to Landau levels.
While this interpretation has its merits, as evidenced by ballistic
transport of those quasiparticles!’, a full understanding of BZ
oscillations is only possible if the band structure of Landau levels
(LL) in a 2D periodic potential is taken into account. To this end,
we performed magnetotransport experiments in artificially cre-
ated 2D superlattices®18, in which a periodic potential modula-
tion can be controlled by electrostatic means. This approach
affords more flexibility in terms of arbitrary lattice constant,
geometry and tunable modulation strength compared to moiré
superlattices. In particular, using appropriate gate voltages, we
enter the regime of weak modulation potential, where the visi-
bility of BZ oscillations is governed by commensurability (Weiss)
oscillations. We thus arrive at a unified description of band
conductivity oscillations combining both Brown-Zak and Weiss
oscillations (WOs). We show below, both experimentally and
theoretically that BZ oscillations as well as WOs reflect the dis-
persion and internal structure of Landau bands at temperatures
much larger than the Landau band separation.

The impact of a 2D periodic modulation at high magnetic
fields can be understood in three steps. We first consider the
Landau level spectrum of an unmodulated 2DES, then activate
the modulation potential in one dimension only, leading to
Landau bands, and finally turn on the 2D modulation potential,
which further splits each Landau band according to the Hof-
stadter spectrum. In the following, a square 2D superlattice
potential V(r) = V(cos(Kx) + cos(Ky)) with K=2n/a, lattice
constant a, and modulation amplitude Vj is considered. The
modulation potential is assumed to be weak (V< Avg/lp), such
that Landau level mixing can be neglected (I; = \/h/(eB) is the
magnetic length).

A uniform (unmodulated) 2DES, subject to a strong, perpen-
dicular magnetic field develops the Landau level spectrum, giving
rise to the quantum Hall effect. For single-layer graphene, due to
its lirllgar dispersion, the spectrum has a square root dependence
on B

Ey,, = sgn(n)vp\/2heB|n|, (1

where # is the index of the highly degenerate Landau levels, and
vp the Fermi velocity in graphene.

When a 1D modulation potential (for example, the
cos(Kx)-term only) is included, each Landau level will broaden
into Landau bands, whose width not only depends on the

modulation potential strength, but also on the modulation period
and the magnetic field value. The periodic potential in the x-
direction leads to a dispersion of the Landau bands with respect
to the wave vector in the y-direction, k,, associated with a group
velocity vg, = (1/h)dE,/dk,. The band width, and thus vg,, vanish
completely at the flat band condition, which, in the semi-classical
limit (large )20, can be described by a commensurability relation
between the cyclotron radius of electrons R, = h,/7ng/(eB) and
the superlattice period a:2!

2R = (A—i)a A=1,2,3,... 2)

This expression contains a dependence on the carrier density ng,
and describes the minima of the WOs in the magnetoresistance of
a modulated 2DES?!-24 For single-layer graphene, the full
quantum mechanical expression for the Landau band width AE,
was calculated by Matulis and Peeters>:

n

AE, = %eiu/z I:Ln(u) + Ln—l(u)} (3)

Here, u = K23 /2, and L,(u) is a Laguerre polynomial.

Last, we consider the full 2D modulation, for rational values of
inverse magnetic flux per unit cell, ¢o/¢ = q/p, with g and p co-
prime integers. Now, each Landau band, which, for a 1D mod-
ulation, depends on n and k,, is split up into p subbands,
according to the Hofstadter spectrum in the high-field limit2°.
The overall modified Landau level spectrum is given by:

Ae,,

By = Eopt ot e L0 41,00 @
Here Ae, corresponds to the fractal Hofstadter spectrum at the
given value of a = ¢o/¢ = q/p (see Fig. 1b). The complete situa-
tion is sketched in Fig. 1 in which the energy spectrum of Dirac
fermions in a 2D square lattice is shown in panels (a) and (c). Due
to the linear Dirac dispersion, the Landau levels display a square
root dependence on the magnetic field. Each Landau level is first
broadened into energy bands, whose width has consecutively

1

E (eV)

0

Fig. 1 Energy spectra of graphene subject to a 2D modulation. a Modified
Landau level spectrum in 2D modulated graphene with a =40 nm and
Vo =12 meV. Landau bands exhibit an internal structure given by the
Hofstadter butterfly energy spectrum. Here, only Landau bands with n>0
up to n=11 are shown; Landau levels with n <0 can be obtained by
reflection at E= 0. At unit fractions of the magnetic flux quantum ¢q per
superlattice unit cell the spectrum exhibits extended minibands across the
full Landau band width giving rise to an enhanced band conductivity
contribution analogous to the case of a 1D modulation. The circles mark the
flat band positions at which the usual Landau levels are restored.

b Hofstadter energy spectrum in the high-field limit, where the inverse flux
is the relevant quantity. ¢ Zoom into the blue box region of a, circles mark
the flat band conditions.
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more nodes (flat bands) with increasing Landau level index, and
then splits up into recursive subbands of the Hofstadter spectrum.
Flat band conditions are marked by circles and show the van-
ishing band width in each Landau band.

The Landau band structure, as shown in Fig. 1a, can be probed
in transport experiments. Such experiments, both in GaAs® and
graphene-based 2DESs!0-12, were performed at low temperatures,
where the density of states can be resolved in magnetotransport,
and the Hofstadter spectrum can be directly observed, due to the
scattering contribution to conductivity. However, the group velo-
city vg within each Landau band also leads to a conductivity
contribution, the band conductivity Aoy, vér, which is largest
whenever the bands are broad and vanishes at the flat band con-
ditions. In contrast to the density of states effect, band conductivity
oscillations survive to higher temperatures, and give rise to the
well-known and robust WOs, which were observed both in 2DEGs
with a parabolic dispersion?! and graphene?4?” for a 1D mod-
ulation potential. In a 2D modulated GaAs-based 2DES, the
amplitude of WOs was reduced, and this was interpreted as a first
indication of the gapped Hofstadter energy spectrum?®. The fractal
gaps split the Landau bands into subbands which reduce the band
dispersion and thus also vg,, and ultimately the band conductivity.
Importantly, the thermal smearing at higher T, larger than the
Landau level separation, does not restore the band conductivity of
the band without gaps28. As we will show below, band conductivity
oscillations due to the Hofstadter spectrum (Brown-Zak oscilla-
tions) can only be observed outside the flat band condition.

The investigated graphene superlattice device with square lat-
tice symmetry and lattice constant a =39 nm was prepared fol-
lowing our previous works®1824 (see “Methods” for more
details). By combining one global back gate and a few-layer
graphene patterned bottom gate (PBG) a periodic charge carrier
density modulation is induced in monolayer graphene encapsu-
lated between two hBN flakes and placed on top of the double
gate structure (see Fig. 2b). The back gate mainly tunes the
potential modulation strength and the PBG mainly controls the
overall charge carrier density in the system. No moiré features
were found in this sample, showing that there was no uninten-
tional alignment of graphene and hBN. Data from a second
device with a hexagonal superlattice and a coexisting moiré lattice
are shown in the Supplemental Material, Fig. S5. In this sample,
BZ oscillations in a gate-defined superlattice are confirmed, and
they coexist with BZ oscillations due to the moiré lattice.

The realisation of superlattice phenomena by means of our
double gating technique is illustrated in Fig. 2c which shows PBG
voltage sweeps at three different back gate voltages V4, = 70, 10,
and —70 V. The inset of Fig. 2c shows the gate map of the device
in which the longitudinal resistance R, is plotted as a function of
back gate voltage Vi, and PBG voltage Vi at a temperature of
T=1.5 K. The field effect mobility, extracted at low back gate
voltage, is about 40,000 cm? V~1 s~1. By increasing the mod-
ulation strength, mainly controlled by the back gate voltage Vi,
additional Dirac peaks start to occur due to the induced 2D
periodic potential modulation and subsequent band structure
modifications. Further, detailed transport data at low tempera-
tures are reported in ref. ¢ and the relevant figures are reproduced
in the Supplemental Material, for convenience. In particular, at
each satellite Dirac peak, the transverse resistance R,,, measured
at B=200 mT changes sign, which confirms the change of carrier
type, when the Fermi level is moved through the minibands (see
Supplemental Fig. Sle). We note in passing that the visibility of
Hofstadter features in the low-temperature data is highest in
regions where the Landau bands are broad (see Supplemental
Material, Fig. S6). Upon raising the temperature, the well pro-
nounced satellite Dirac peaks start to vanish in transport

measurements at zero magnetic field, as can be seen in Fig. 2d. In
contrast, in magnetotransport measurements (shown in Fig. 3),
clear superlattice induced features remain visible even at high
temperatures. The following magnetotransport measurements
were conducted at a temperature of T'= 125 K. Due to the lattice
constant of @ =39 nm, one magnetic flux quantum ¢, = h/e
threads the superlattice unit cell area already at a magnetic field of
about B=2.7 T. As a consequence, in our device it is also possible
to study the regime of several magnetic flux quanta at moderate
magnetic fields accessible with standard cryostat lab magnets
while for moiré superlattices magnetic fields exceeding 50 T
would be necessary. The latter are out of scope for static fields
even in dedicated high-field facilities. Figure 3a shows the mea-
sured longitudinal resistance R,, as a function of magnetic flux
per superlattice unit cell area in units of the magnetic flux
quantum ¢/¢, for several PBG voltages Vipg at a constant back
gate voltage of Vo =80 V. In this regime, the Landau quanti-
sation is not resolved due to thermal broadening. Resistance
peaks at rational fractions of the magnetic flux quantum are
visible, most pronounced at ¢/¢o=1. The positions of the
resistance maxima are independent of the applied PBG voltage
Vpbe i€, independent of charge carrier density, which is a
characteristic of BZ oscillations as they reflect the periodicity of
the superlattice only. In addition, one can also observe a distinct
feature at two magnetic flux quanta extending over a limited PBG
voltage range, but no feature is found for three or four flux
quanta, giving further insight into the magnetic band structure.
Figure 3b shows the corresponding transverse resistance R,.
Similar to the R,, data, the transverse resistance also shows
deviations from the straight line behaviour at certain flux ratios.

In order to study the observed features in more detail, fol-
lowing Krishna Kumar et al.!3, we take the second derivative of
the conductance which effectively removes the background and
highlights extrema. The conductance G = G,, is calculated from
R,. and R, using G, = R;Ringy and it is equal to the longitudinal

conductivity o,, up to a geometrical factor close to one. In Fig. 4a
the second derivative of the conductance d>G/dB? is plotted as a
function of PBG voltage V,,,; and magnetic flux ¢/¢, measured at
a constant back gate voltage of Vi, =80 V. This gate voltage
creates a strong modulation potential (see Fig. 2). At rational
fractions of the magnetic flux quantum (highlighted in Fig. 4a)
clear signatures of BZ oscillations are visible which are most
pronounced in the bipolar regime (roughly, where Vi, and V¢
have opposite polarity). Also, the feature at two magnetic flux
quanta can be observed in a limited V, range. At higher charge
carrier density, also higher-order states 4 at ¢/d, =3, and weak
signatures at ¢/¢, = 2,2 appear. By inverting the sign of the
applied back gate voltage, the visible features are mirrored at the
charge neutrality point (see Fig. 4b for Vi,=—80 V). By
decreasing the modulation strength, i.e., by decreasing the back
gate voltage Vi, the observed band conductivity oscillations
reveal their internal structure. Figure 4c shows data at a back gate
voltage of Vi, =10 V. The red lines display the flat band con-
dition for A =1, 2, ..., 6. In general, a smaller modulation strength
causes a decrease in Landau band width and therefore the effect
of extended minibands and the contribution of band conductivity
to the overall conductivity is reduced and only the most devel-
oped features survive, e.g. at ¢/¢ = 1. In addition, compared to
stronger potential modulation, an overlap of adjacent Landau
bands is reduced and a more sensitive dependence of the con-
ductivity on the oscillatory behaviour of the band width of single
Landau bands as a function of the magnetic field can be expected.
This effect is most pronounced whenever the flat band condition
is fulfilled and the band width approaches its minimum. In
experiment this manifests as suppressed band conductivity and
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Fig. 2 Sample layout and basic transport characterisation. a Optical micrograph of the sample after van der Waals stacking and mesa etching.

b Schematic view of the sample design showing the patterned bottom gate underneath the hBN encapsulated graphene sheet. ¢ Longitudinal resistance R,y
as a function of Vg at three different back gate voltages Vy,, at T=1.5 K. By increasing the modulation strength (V},; =+ 70 V), satellite Dirac peaks start
to occur. The inset shows the overall gate map of the system, R,, as a function of Vpug and Vig. d Longitudinal resistance R, as a function of Vg at
Vg =70 V for different temperatures ranging from T=5 K to T=110 K. By increasing the temperature, superlattice induced satellite Dirac peaks start to

vanish.
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Fig. 3 Brown-Zak oscillations at different carrier densities. Longitudinal resistance R, (a) and transverse resistance R,, (b) as a function of magnetic flux
per superlattice unit cell area ¢p/¢, for different patterned bottom gate voltages Vi, =— 0.5V .. — 1.5V at a back gate voltage of Vi, =80 V. At rational
fractions of the magnetic flux quantum, clear resistance peaks in R,, are visible accompanied by dips in the transverse resistance with the most pronounced

feature at ¢/po=1.

can be observed in the data in Fig. 4c at ¢/¢o=1. This also
becomes apparent in line cuts of the raw R, data (see Fig. 4d).
Around ¢/¢o =1, a BZ peak is visible, but only in between flat
band conditions, which are marked by red lines. Conversely,
WOs are visible in each trace, with their minima at the flat band
positions, but they only appear clearly at the positions where the
BZ oscillations show a maximum, thus modulating the BZ feature
at ¢/¢o = 1. Following from this also the feature at ¢/¢y =2 at
high back gate voltage (see, e.g., Fig. 4b) which is localised in a
certain PBG voltage range can be explained as it appears exactly
between two flat band positions with A =1 and A =2 (see also
Supplemental Fig. S4b). This highlights the importance of both
the oscillating width of the Landau bands and their internal
structure due to the Hofstadter spectrum in the interpretation of
the underlying physics. We note that WOs are usually described

in the regime of weak modulation, but they still remain visible at
stronger modulation potential, see, e.g., the non-vertical ridges in
Fig. 4b running parallel to the flat band conditions. At this strong
modulation, Landau bands overlap and the visibility of BZ
oscillations is only weakly affected by the flat band condition.
Note that strong modulation is present in particular in the bipolar
region. In the unipolar region, we can also find the weak mod-
ulation regime for Vi,; =+ 80 V and a range of V},,. This is seen
more clearly on an adapted gray scale (see Supplemental Fig. S4).
Strong modulation is also present in moiré superlattices, where
the potential cannot be tuned to the weak regime, and BZ
oscillations therefore show no signs of WOs. The visibility of BZ
oscillations is not affected by the overlap of Landau bands, as
bands and gaps in the Hofstadter spectrum depend on the flux
per unit cell, but not the Landau level index.
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Fig. 4 Coexistence of Brown-Zak (BZ) and Weiss oscillations (WO). a Gray scale plot of the second derivative of the conductance d2G/dB? as a function
of magnetic flux ¢/¢o and patterned bottom gate voltage Vg at a back gate voltage Vi,; =80 V. Band conductivity/Brown-Zak oscillations are mainly
visible in the bipolar regime. Observed features at rational fractions of the magnetic flux quantum are highlighted with red dashed lines and labelled with
the corresponding value of ¢/¢o. Also, weak features at ¢/¢o >1 can be observed. b Gray scale plot of d2G/dB? as a function of ¢/¢o and Vg at

Vg = — 80 V. By inverting the polarity of the back gate voltage the features are mirrored with respect to the charge neutrality point. The localized feature
at ¢p/¢po = 2 lies between flat band positions with A=1and 1= 2. ¢ Gray scale plot of d2G/dB? as a function of ¢/¢o and Vpbg at Vg =10 V. Reduction of
band conductivity oscillations at smaller back gate voltage, i.e. weaker potential modulation. A suppression of the most pronounced feature at ¢p/¢o =1 can
be observed whenever the flat band condition for 1=1,2, ..., 6 is fulfilled. d Longitudinal resistance R, at Vg =10 V and V,pg=0.6 V..1.4 V in 0.05 V
steps. In contrast to Fig. 3 (a), the BZ features are much weaker. Instead, WO are visible, governed by the flat band conditions (given by red dots; red lines

are guides to the eye), but only appear clearly at BZ maxima positions, modulating the BZ feature at ¢p/¢po =1.

The experimental observations can be modelled and accurately
reproduced by considering band conductivity corrections due to
the periodic potential, leading to oscillations caused by both the
commensurability between cyclotron diameter and lattice period
(Weiss oscillations, following Eq. (2), see Fig. 5a) and by the
varying number and width of subbands within the Hofstadter
spectrum (see Fig. 5b). The band conductivity correction due to a
superlattice potential is calculated from the Kubo formula, and is
therefore proportional to the square of the band velocity, which in
turn is proportional to the band width.

Once level broadening by impurity scattering is small enough
to allow (partially) resolving the Hofstadter spectrum, the gaps in
the Hofstadter spectrum reduce the Landau band width below its
value obtained from a 1D modulation (Eq. 3). This also reduces
the band velocity, and, as the conductivity is proportional to the
velocity squared, it is still reduced even after summation over the
p Hofstadter subbands. Qualitatively, this suppresses the strong
band conductivity oscillations when going from a 1D modulation
to 2D modulation?$2% (see Fig. 5a, b). On the other hand, for
stronger collision broadening, subband splitting does not lead to a
reduction of the band conductivity oscillations (except for shorter
electron mean free path).

The experimental observations in our devices can now be
understood by considering Fig. 1 once more. For integer values of

inverse flux, ¢o/¢, in other words unit fractions of the flux ¢/¢,,
the Hofstadter spectrum has the full width of the underlying
Landau bands$2° (See Fig. 1b at ¢/¢ =0 or 1). Therefore, the
band conductivity is as large as permitted by the modulation
broadened Landau bands. At other inverse flux values ¢o/¢p = q/p
with small p, e.g. 1/3 or 2/3, there are still sizable subbands in the
Hofstadter-split Landau bands, which are also reflected as visible
conductivity contributions. Outside those regions, the Hofstadter
spectrum is so strongly split that band conductivity is completely
suppressed. As the Hofstadter spectrum only depends on the flux
ratio, not on the density, all vertical dark lines in Fig. 4 can be
traced back to this effect. To understand the density dependent
modulation in the vertical lines (in particular, the ¢/¢o =1 line in
Fig. 4c), we have to consider the flat band condition. Depending
on the flat band condition, the width of each Landau band
oscillates with magnetic field, leading to an oscillating band
conductivity correction?3. For example, in Fig. la, we find two
Landau bands (n =6, 11), where the flat band condition occurs
very close to ¢/¢o = 1, reducing the visibility of the corresponding
conductivity peak, while other Landau bands extend to the
maximum width. We note that the semi-classical formula for the
flat band condition (Eq. 2) is sufficient to describe the data in
Fig. 4. Clearly, the visibility of the BZ oscillations is suppressed,
whenever the flat band condition is satisfied.
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Fig. 5 Gray scale plots of the calculated conductivity contribution, in arbitrary units. a For a 1D superlattice, band conductivity oscillations appear, which
depend on both the carrier density ns and flux quanta per unit cell ¢/¢o. b In the case of a 2D superlattice, the band conductivity oscillations of the 1D case
are mostly suppressed (light regions), except whenever the Hofstadter butterfly has extended regions (dark bands), at rational fractions of ¢/¢o. The
features in the experimental data are reproduced, including the appearance of band conductivity maxima at rational fractions of ¢/¢o and the modulation
of the observed Brown-Zak oscillations by Weiss oscillations (lower part: enhanced contrast). The red continuous lines in both figures show the semi-
classical flat band condition (see Eq. 2). Dashed lines mark rational ¢/¢o <1, red for unit fractions, blue other. Note that the two triangular regions at low
¢/ do and high |ns| do not contain meaningful data due to a limited number of Landau levels in the calculation.

Using the approach outlined above, with more calculation
details given in the “Methods” section, we obtain a semi-
quantitative estimate of the band conductivity. The result is
plotted in Fig. 5b, which reproduces the main experimental fea-
tures. Most importantly, the band conductivity picture repro-
duces the Brown-Zak oscillations, which appear as dark vertical
lines at rational fluxes. Clearly, by considering the subband
structure of the Hofstadter butterfly, BZ oscillations are well
described. We also confirm that unit fractions of the flux per unit
cell (¢/¢o = 1/q) lead to the strongest features and weaker vertical
lines appear for other fractions, as explained above. In particular,
as in experiment, the feature at ¢/¢, = 2 is much weaker, and no
feature is found for ¢/¢, = 3. Owing to commensurability oscil-
lations, the vertical lines at ¢/¢g=1 and ¢/¢y =2 are visibly
modulated, following Eq. (2), but this modulation is absent for
¢/¢o <1 due to thermal broadening. The latter fact is more
clearly visible in a 3D plot of the same data, which we show in the
Supplementary Information, Fig. S7.

In conclusion, we present band conductivity oscillations in an
artificial, electrostatically defined, and gate-tunable 2D graphene
superlattice. Band conductivity oscillations of the Brown-Zak
type are clearly visible for one and two flux quanta per unit cell
and several orders of fractions of flux quanta. In addition, at
sufficiently weak superlattice potential, those oscillations reveal
their internal structure determined by Weiss oscillations, and
partly vanish whenever a commensurability condition between
the cyclotron radius of the electrons and the superlattice period is
fulfilled. Our transport measurements and theoretical description
provide new insight into the magnetic band structure of graphene
superlattices and we show that the manifestation and experi-
mental visibility of superlattice induced features and band con-
ductivity oscillations depends crucially on the occurrence and
width of energy bands in the magnetic band structure.

Methods

Sample fabrication and data acquisition. Few-layer graphene was exfoliated from
natural graphite onto oxidised silicon wafers and patterned by standard electron
beam lithography (EBL) and reactive ion etching (RIE) with O, plasma to form the
patterned bottom gate (PBG). After etching, the PBG was cleaned in Remover PG
(Microchem) at 60°C and annealed in vacuum at 400 °C in order to remove resist
residues. A standard van der Waals pick up technique3? was used to encapsulate
monolayer graphene between two hBN flakes and to transfer the hBN/graphene/
hBN stack onto the PBG. hBN was exfoliated from bulk, high-quality hBN
crystals’!, and single-layer graphene from natural graphite. Flakes were picked up

and assembled using a polydimethylsiloxane/polycarbonate stack on a microscope
glass slide, in a custom made holder in an optical microscope, whose x-y-stage
served to position the flakes to a precision of about 1 um. The sample described in
the main text shows no sign of a moiré pattern, while in a second sample, the
crystal axes of graphene and one hBN crystal were unintentionally aligned, leading
to well-defined moiré superlattice features. The bottom hBN layer had a thickness
of only ~5 nm in order to obtain a well-defined potential modulation. The final
stack was etched into Hall bar geometry by EBL and RIE with SF¢32 and O,, and
edge contacts3? were fabricated by EBL and evaporation of Cr (5 nm)/Au (80 nm).
All transport measurements were conducted in a “He cryostat with standard lock-
in techniques at a source current of 10 nA. Data acquisition was done via the
Lab::Measurement environment?3.

Calculations. For graphene with a one-dimensional superlattice modulation, the
following band conductivity correction is obtained?>:

LR 8(Ey,)
1=0[g(E, ) + 1]°

with g(E) = exp((E — Eg)/(kgT)), and E,,, the unperturbed Landau level energy.
This gives rise to the Weiss oscillations in a 1D superlattice, and also modulates the
visibility of BZ oscillations in the 2D superlattice.

To obtain a semi-quantitative estimate of the band conductivity in a 2D
superlattice?®2, we first calculate the correction due to a 1D potential, following
Eq. (5), where we include all Landau levels within + 10kgT of the Fermi level. For
numerical stability, we restrict the maximum number of Landau levels to 30, which
affects the regions with ¢/¢, < 0.5 and high carrier density. For each magnetic field,
we then obtain the Hofstadter spectrum, and broaden it to only retain gaps
exceeding a minimum size, thus mimicking collision broadening. The reduced
band width due to Hofstadter splitting is taken into account to reduce the overall
conductivity. As the group velocity in each miniband depends on its width, and the
band conductivity is proportional to the square of the group velocity, we sum over
the square of the width of all Hofstadter subbands within each Landau band to
scale down the conductivity value obtained from Eq. (5).

Operp X UE (L) + L, )] ()

Data availability

The Experimental Data used in this study are available upon request in the electronic
publication database of the University of Regensburg under https://doi.org/10.5283/epub.
51676.

Code availability
The Matlab Code used in this study is available upon request in the electronic publication
database of the University of Regensburg under https://doi.org/10.5283/epub.51676.
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