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Neural sampling machine with stochastic synapse
allows brain-like learning and inference
Sourav Dutta 1✉, Georgios Detorakis2, Abhishek Khanna 1, Benjamin Grisafe1, Emre Neftci 2 &

Suman Datta1

Many real-world mission-critical applications require continual online learning from noisy

data and real-time decision making with a defined confidence level. Brain-inspired prob-

abilistic models of neural network can explicitly handle the uncertainty in data and allow

adaptive learning on the fly. However, their implementation in a compact, low-power hard-

ware remains a challenge. In this work, we introduce a novel hardware fabric that can

implement a new class of stochastic neural network called Neural Sampling Machine (NSM)

by exploiting the stochasticity in the synaptic connections for approximate Bayesian infer-

ence. We experimentally demonstrate an in silico hybrid stochastic synapse by pairing a

ferroelectric field-effect transistor (FeFET)-based analog weight cell with a two-terminal

stochastic selector element. We show that the stochastic switching characteristic of the

selector between the insulator and the metallic states resembles the multiplicative synaptic

noise of the NSM. We perform network-level simulations to highlight the salient features

offered by the stochastic NSM such as performing autonomous weight normalization for

continual online learning and Bayesian inferencing. We show that the stochastic NSM can not

only perform highly accurate image classification with 98.25% accuracy on standard MNIST

dataset, but also estimate the uncertainty in prediction (measured in terms of the entropy of

prediction) when the digits of the MNIST dataset are rotated. Building such a probabilistic

hardware platform that can support neuroscience inspired models can enhance the learning

and inference capability of the current artificial intelligence (AI).
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Harnessing the intricate dynamics at the microscopic level
in emerging materials and devices have unraveled new
possibilities for brain-inspired computing such as build-

ing analog multi-bit synapses1–10 and bio-inspired neuronal
circuits10–12. Such emerging materials and devices also exhibit
inherent stochasticity at the atomic level which is often categor-
ized as a nuisance for information processing. In contrast,
variability is a prominent feature exhibited by biological neural
networks at the molecular level are believed to contribute to the
computational strategies of the brain13. Such variability has been
reported in the recordings of biological neurons or as unreliability
associated with the synaptic connections. Typically, a presynaptic
neuronal spike causes the release of neurotransmitters at the
synaptic release site as illustrated in Fig. 1a. Borst et. al.14 reported
that the synaptic vesicle release in the brain can be extremely
unreliable. The transmission rate can be as high as 50% and as
low as 10% measured in vivo at a given synapse. Synaptic noise
has the distinguishing feature of being multiplicative which plays
a key role in learning and probabilistic inference dynamics. In this
work, we propose a novel stochastic synapse that harnesses the
inherent variability present in emerging devices and mimic the
dynamics of a noisy biological synapses. This allows us to realize a

novel neuromorphic hardware fabric that can support a recently
proposed class of stochastic neural network called the Neural
Sampling Machine (NSM)15.

While the functional role of this multiplicative stochasticity in
the brain is still under debate, the biologically inspired stochas-
ticity can be exploited in certain machine learning algorithms. In
particular, NSMs build on the idea of introducing stochasticity at
various levels in a neural network to allow—(1) escaping local
minima during learning and inference16, (2) regularization in
neural networks17,18, (3) approximate Bayesian inference with
Monte-Carlo sampling19,20 and (4) energy efficient communica-
tion and computation21,22. NSM draws inspiration from reg-
ularization techniques such as Dropout17 or DropConnect18 that
randomly drop a subset of neural activation or weights in the
neural network during the forward pass of training. Contrary to
DropConnect where stochasticity is switched off during inference,
the synaptic stochasticity is always present in an NSM. This
“always-on” stochasticity confers probabilistic inference cap-
abilities to the network20 and is consistent with the idea of
continual learning and lifelong learning machines while
improving energy efficiency21,22. Neural networks equipped with
“always-on“ stochasticity have been shown to match or surpass

Fig. 1 Overview of stochastic synapse. a Synaptic stochasticity occurring at the molecular level in biological neural networks. The presynaptic neuronal spike
causes the release of neurotransmitters at the synaptic release site with a probability around 0.1. b Schematic of a Neural Sampling Machine (NSM) incorporating
a Bernoulli or “blank-out” multiplicative noise in the synapse. This acts as a continuous DropConnect mask on the synaptic weights such that a subset of the
weights is continuously forced to be zero. c Illustration of an NSM implemented in a hardware using crossbar array architecture implementing compute-in-
memory. The analog weight cell implemented using eNVMs are placed at each cross-point and are augmented with a stochastic selector element. This
allows selectively sampling or reading the synaptic weights Gij with some degree of uncertainty, based on random binary variables ξij generated for each of the
synapse. d Illustration of a scenario where an input voltage Vin,3 is applied to a row of the synaptic array with conductance states G ¼ fG1;G2;G3;G4; ¼ ;GNg.
Depending on the state of the selectors in the cross-points, an output weighted sum current Iout ¼ f0;G2Vin;3;0;G4Vin;3; ¼ ;0g is generated which is exactly
same as multiplying the weight sum of wijzj with a multiplicative noise ξ ij. WL word line, BL bit line, SL source line, Vin input voltage, Iout output current, G
conductance.
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the performance of contemporary machine learning algorithms.
Together with multiplicative noise incorporated in stochastic
synapses, this new class of NSM provides an important pathway
toward realizing probabilistic inference23 and active learning24,25,

In this work, we propose a hardware implementation of NSM
using hybrid stochastic synapses consisting of an embedded non-
volatile memory (eNVM) in series with a two-terminal stochastic
selector element. We experimentally demonstrate in silico such a
hybrid stochastic synapse by pairing a doped HfO2 FeFET-based
analog weight cell with a two-terminal Ag/HfO2 stochastic
selector. Such hybrid synapses can be integrated within the pre-
vailing crossbar array architecture for CIM that provides a pro-
mising energy-efficiency pathway for building neuromorphic
hardware by reducing data-movement26. We exploit the inherent
stochastic switching of the selector element between the insulator
and the metallic state to perform Bernoulli sampling of the
conductance states of the FeFET both during learning and
inference. A remarkable feature of the multiplicative noise
dynamics is a self-normalizing effect that performs automatic
weight normalization and prevention of internal covariate shift in
an online fashion. Furthermore, the “always-on” stochasticity of
the NSM during the inference mode allows performing Bayesian
inferencing.

Theoretical model of NSM
NSM are stochastic neural networks that exploit neuronal and/or
synaptic noise to perform learning and inference15. A schematic
illustration is shown in Fig. 1b comprising synaptic stochasticity
that injects a multiplicative Bernoulli or “blank-out” noise in the
model. Such a noise can be incorporated in the model as a
continuous DropConnect18 mask on the synaptic weights such
that a subset of the weights is continuously forced to be zero as
shown in Fig. 1b. Next, we lay down a theoretical description of
the NSM.

We use binary threshold neurons with the following activation
function:

zi ¼ sgn ui
� � ¼ �1; if ui < 0

1; if ui ≥ 0

�
ð1Þ

where ui is the pre-activation of neuron i and is given by:

ui ¼ ∑
N

j¼1
ðξij þ aiÞwij zj þ bi ð2Þ

where wij represents the weight of the synaptic connection
between neurons i and j and ξij is the multiplicative Bernoulli
noise modeled using an independent and identically distributed
(iid) random variable with parameter p such that
ξij � Bernoulli p

� � 2 ½0; 1�. bi is a bias term applied per neuron i.
An additional term ai is added per neuron i to counter the scaling
factor issue due to multiplicative noise27. It can be further shown
that for such binary threshold neurons, the probability of a
neuron firing is given by:

P zi ¼ 1jz� � ¼ 1
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where EðuiÞ and Var(ui) are the expectation and variance of ui.
For Bernoulli type noise, the probability of neuron firing

becomes27:
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with β ¼ pþaiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1�pÞ

p capturing the noise in the model and

vi ¼ βi
wi

jjwijj. Here, jjjjdenotes the L2 norm of the weights of
neuron i. Note that the notion behind weight normalization is
to re-parameterize the weight vector using vi ¼ βi

wi
jjwijj

28 which
is exactly the same as that obtained in NSM due to the inherent
stochastic noise in the synapses. Thus, NSM inherently intro-
duces the salient self-normalizing feature and performs
weight normalization in the same sense as28. One important
feature of the NSM is that since this weight normalization
is an inherent feature of the model, NSM offers the
features equivalent to batch normalization in an online fashion.
Additionally, by decoupling the magnitude and the direction of
the weight vector, a potential speedup in convergence is
obtained27.

Implementing NSM using emerging devices operating in
stochastic switching regime
Recent years have seen extensive research on building dedicated
hardware for accelerating DNNs using CIM approach. The core
computing kernel consists of a crossbar array with perpendi-
cular rows and columns with eNVMs placed at each cross-point
as shown in Fig. 1c. The weights in the DNN are mapped to the
conductance states of the eNVM. The crossbar array performs
row-wise weight update and column-wise summation opera-
tions in a parallel fashion as follows: the input (or read) voltages
Vin from the input neuron layer are applied to all the rows and
are multiplied by the conductance of the eNVM at each cross-
point G to create a weighted sum current in each column
Iout ¼ ∑GVin. The output neuron layer placed at the end of the
column converts these analog currents into digital neuronal
outputs.

Implementing an NSM with the same existing hardware
architecture requires selectively sampling or reading
the synaptic weights Gij with some degree of uncertainty, based
on random binary variables ξij generated for each of the
synapse. We show that this can be easily realized by pairing the
eNVM such as FeFET in series with a two-terminal stochastic
selector element at each cross-point as shown illustratively in
Fig. 1c. We choose a selector device such that it operates as a
switch, stochastically switching between an ON state (repre-
senting ξij ¼ 1) and an OFF state (ξij ¼ 0). The detailed
description of such a selector is mentioned later. Figure 1d
shows a scenario where an input voltage Vin,3 is applied to
the third row of the synaptic array while the conductance
of the synapses are set to G ¼ fG1;G2;G3;G4; ¼ ;GNg.
Depending on the state of the selectors in the cross-points,
an output weighted sum current Iout ¼ f0;G2Vin;3; 0;G4Vin;3;
¼ ; 0g is generated. This is the same as multiplying the weight
sum of wijzj with a multiplicative noise ξij as described in
Eq. (2).
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Building blocks for stochastic synapse: FeFET-based analog
weight cell
The idea of voltage-dependent partial polarization switching in fer-
roelectric HfxZr1-xO2 can be leveraged to implement a non-volatile
FeFET-based analog synapse. The FeFET-based synapse can be
integrated into a pseudo-crossbar array following different memory
array topologies such as NOR array, AND array etc.29,30. The illus-
tration of the pseudo-crossbar array shown in Fig. 1c is similar to an
AND memory array architecture. Figure 2a shows the schematic of a
FeFET-based analog synapse (without any additional stochastic
selector element) where the gate, drain and source of the FeFET are
connected to the word-line (WL), bit-line (BL) and source-line (SL),
respectively. The channel conductance G of the FeFET can be gra-
dually modulated by applying write voltage pulses to the gate of the
FeFET. During the write operation, a write voltage ±Vwrite is applied
to the gate of the FeFET through the WL. The source and drain of
the FeFET are kept grounded by applying 0V to the BL and SL.
During the read operation, a read voltage Vread= 1V is applied to the
gate through theWL while Vin is applied to the drain through BL and
the SL is grounded. Note that the applied Vin must be within the
range of the threshold voltages of the selector devices in order to
implement the stochastic synapse as explained later. Thus, during the
readout phase, the output (drain) current from the FeFET becomes
Iout ¼ GV in.

Note that such an array topology is suitable for row-wise
weight update and column-wise summation6,10,31. For example,
in the AND array topology shown in Fig. 1c, the BL and SL run
parallel while the WL is orthogonal. For configuring such an
AND array, two write inhibition schemes can be used: Vwrite/2
and Vwrite/329,30. For the V/2 scheme, the target FeFET to be
programmed or erased experiences the full write voltage Vwrite

across it. On the other hand, the half-selected cells experience a
write disturb voltage of Vwrite/2, while the unselected cells do not
experience any write disturb. For the Vwrite/3 scheme, the half-
selected and unselected cells experience a write disturb voltage of
Vwrite/3 and −Vwrite/3, respectively. Thus, by applying appro-
priate voltages in the BLs and SLs, we can have for row-wise
parallel weight update. However, note that the program and erase
operation needs to be done in two separate phases.

Figure 2b shows the experimentally measured conductance
modulation in a 500 nm × 500 nm high-K metal gate FeFET
fabricated at 28 nm technology node32. For online learning on
crossbar arrays, typically potentiation and depression pulse
schemes with identical pulse amplitudes and widths are preferred.
Nonetheless for a proof-of-concept, we used an amplitude
modulation scheme where write voltage pulses Vwrite of increasing
amplitude from 2.8 V to 4 V and pulse widths of 1 μs are
applied to modulate the conductance of the FeFET. Applying

Fig. 2 FeFET-based analog synapse. a Schematic of a stand-alone FeFET-based analog synapse. The channel conductance can be modulated by applying
write pulses ±Vwrite to the gate of the FeFET while reading out the conductance state is achieved by applying a small read voltage Vread to the gate terminal.
b Experimentally measured conductance modulation in a 500 nm × 500 nm high-K metal gate FeFET fabricated at 28 nm technology node. An amplitude
modulation scheme is used where positive and negative write voltage pulses Vwrite of increasing amplitude from 2.8 V to 4 V and pulse widths of 1 μs are
applied to modulate the conductance of the FeFET. c Measured continuous change in the conductance state of the FeFET upon applying multiple
potentiation and depression pulses of varying amplitude. d The FeFET-based analog weight cell is modeled in the NSM by fitting the conductance update
scheme for both potentiation and depression with the closed-form expression as shown in the figure. WL word line, BL bit line, SL source line, Vin input
voltage, Iout output current, Vwrite write voltage, G conductance, LRS low resistance state, HRS high resistance state.
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progressively increasing negative pulses causes the FeFET to
transition from the initial low resistance state (LRS) with lower
threshold voltage (VT) to high resistance state (HRS) as shown by
the current-voltage characteristics in Fig. 2b. Similarly, applying
progressively increasing positive pulses causes a change in the
conductance from HRS to LRS. Figure 2c shows a continuous
change in the conductance state of the FeFET upon applying
multiple potentiation and depression pulses of varying amplitude
and constant pulse width of 1 μs. The cycle-to-cycle variation in
the measured conductance states observed in Fig. 2c arises due to
the inherent stochastic switching dynamics of the individual
ferroelectric domains33. Such inherent stochasticity also results in
a device-to-device variation of the conductance states. To incor-
porate such variability, we measured the conductance modulation
both for potentiation and depression across ten devices as
shown in Fig. 2d. We incorporate the model of FeFET-based
analog weight cell in the NSM by fitting the conductance update
scheme for both potentiation and depression with the closed-
form expression ΔG ¼ αþ βð1� e� jVwritej�V0ð Þ=γÞ where α, β, γ
and V0 are the fitting parameters.

Building blocks for stochastic synapse: Ag/HfO2 stochastic
selector
Next, we describe the characteristics of our stochastic selector
device. Figure 3a shows a schematic and a transmission electron
microscopy of a fabricated stack of [Ag/TiN/HfO2/Pt] with 3 nm
TiN and 4 nm HfO2. A stochastic synapse is realized by aug-
menting this stochastic selector in series with the FeFET-based
analog weight cell as shown in Fig. 3b. The [Ag/TiN/HfO2/Pt]
metal ion threshold switch device, from here on referred to as the
Ag/ HfO2 selector device, operates based on the principle of metal
ion migration through a metal oxide medium similar to con-
ducting bridge RAM. Starting from an initial OFF state, under an
applied external bias, Ag atoms ionize and respond to the electric
field migrating via interstitial hopping from top electrode to
bottom electrode until a continuous filament of Ag+ atoms
bridge the top and bottom electrodes. This is accompanied by
several orders of magnitude change in conductivity as the device
turns ON. As the field is reduced, the inclination for Ag atoms to
form clusters with other Ag atoms, rather than linear chains of
atoms in contact with Pt allows for the spontaneous rupture of
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Fig. 3 Introducing multiplicative noise through stochastic selector. a Schematic and TEM of a fabricated stack of [Ag/TiN/HfO2/Pt] with 3 nm TiN and
4 nm HfO2. b A stochastic synapse is realized by augmenting this stochastic selector in series with the FeFET-based analog weight cell. c Measured
current-voltage characteristics showing abrupt electronic transition from insulating state to metallic state due to the formation of a continuous filament of
Ag+ atoms bridge the top and bottom electrodes. A wide window of variation in the threshold voltage VT that triggers the spontaneous formation of the Ag+

filament is observed. The stochasticity can be exploited by applying the input voltage Vin within the variation window of the VT. dMeasured threshold voltage
VT over multiple cycles. e Stochastically reading an LRS and an HRS of the FeFET through the stochastic selector. f Measured device-to-device variation
across 17 selector devices. Error bar denotes standard deviation across the mean. g–i The stochasticity switching of the selector device is modeled using an
Onrstein-Uhlenbeck (OU) Process. The model shows excellent agreement with the experimental data. WL word line, BL bit line, SL source line, Vin input
voltage, Iout output current, LRS low resistance state, HRS high resistance state.
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the atomic filament, turning OFF the device34. The role of TiN in
the stack is to limit the initial migration of Ag during the elec-
troforming sweep, such that device reliability is enhanced35. We
perform DC current-voltage (IV) characterization of the selector
device as shown in Fig. 3c. It is seen that upon repeated DC
cycling, there is considerable variation in the threshold voltage VT

that triggers the spontaneous formation of the Ag+ filament
through HfO2 insulating matrix. To precisely capture the
threshold switching voltage and hold voltage of the selector
device, we apply long pulses of 10 ms rise and fall time and 10 ms
pulse width. Note that ultra-fast switching speed of the Ag/HfO2

selector has been previously reported to be around 28 ns35. With
shorter read pulses (<50 ns), the required trigger voltage will
increase. However, the stochastic nature of the selector will still be
retained. Figure 3d shows the cycle-to-cycle variation in VT,
measured across 2000 cycles.

The stochastic switching can be exploited by applying an input
voltage Vin within the variation window of the VT as shown in
Fig. 3c. This would allow stochastic sampling of the conductance
state of the FeFET in series. Figure 3e shows two examples of
stochastically reading an LRS and an HRS of the FeFET through
the stochastic selector. We additionally performed switching
measurements on 17 selector devices to capture the device-to-
device variation as shown in Fig. 3f. Overall, this validates the
proposed idea of using such a hybrid structure as a truly sto-
chastic synapse for implementing NSM on the hardware.

The stochastic switching of the selector device is incorporated
in the NSM by modeling it as an Onrstein-Uhlenbeck (OU)
Process. The OU process is a stochastic process (similar to dif-
fusion), which was introduced as a generalized Brownian motion
model (see Methods section for details). Using this modeling
framework, the dynamics of the VT can be described as:

dVT ¼ θ μ� VT

� �
dt þ σdW ð5Þ

where W is the Wiener process, θ describes the magnitude of the
mean-reverting force toward the mean μ. σ captures the diverting
variance. We calibrated the parameters of Eq. (5) using experi-
mentally measured variation in the threshold voltage for all the
17 selector devices. Details of the OU calibration is included in
the Methods section. The calibrated OU process shows excellent
agreement with our experimental results as shown in Fig. 3g–i in
terms of the cycle-to-cycle variation of VT, overall distribution of
VT and autocorrelation.

Hardware NSM and image classification task
We test the performance of our hardware NSM incorporating
FeFET-based analog weight cell and stochastic selector as the
hybrid stochastic synapse on image classification task using the
MNIST handwritten digit dataset as an example. Figure 4a shows
the network architecture consisting of an input layer with 784
neurons, three fully connected hidden layers with 300 neurons
and a softmax output layer of 10 neurons for 10-way classifica-
tion. For comparison, we chose three networks with the same
architecture—(1) deterministic feedforward multilayer percep-
tron (MLP), (2) theoretical NSM model with full precession
synaptic weights and a Bernoulli multiplicative noise for the
stochastic synapses and (3) simulated hardware-NSM using the
FeFET-based analog weight cell and the stochastic selector. The
hardware NSM is trained using backpropagation and a softmax
layer with cross-entropy loss and minibatch size of 100. While
training of the hardware NSM, during the backward pass, the
weight update is applied using the derivative of Eq. (4) and the
closed-form equation in Fig. 2d. Like Dropout and Dropconnect
schemes, the proposed NSM also uses a stochastic blank-out
mask in the learning phase. This allows stochastically accessing

the weights for the backward pass during the learning phase.
However, in contrast to the Dropout or Dropconnect, the weights
in an NSM are also accessed stochastically during the inference
phase, leading to the concept of Monte-Carlo Dropout or
"Always-on Dropout". We implement this by calculating the VT

of each selector device in the cross-points in every iteration using
the OU process described by Eq. (5) and constructing a Boolean
matrix Ξ such that if VT ≥VT;mean, ξij ¼ 1, else ξij ¼ 0. Subse-
quently, we evaluate Eqs. (1) and (2).

The exact nature of the multiplicative noise injected by the
stochastic selector is understood by comparing the measured
switching probability with the theoretically predicted probability
of switching for a Bernoulli process. Figure 4b shows an exact
match between the measured and theoretically predicted prob-
ability, highlighting that our stochastic selector device can inject
Bernoulli multiplicative noise. Figure 4c, d shows the perfor-
mance of the hardware NSM in terms of the test accuracy and
comparison with the theoretical NSM model and conventional
MLP network. It is seen that the theoretical model outperforms
the conventional MLP network as highlighted in ref. 27. The
simulated hardware-NSM shows comparable test accuracy with
the conventional MLP, the performance mainly limited by the
dynamic range and non-idealities of the FeFET-based synaptic
weight cell such as cycle-to-cycle and device-to-device variations,
non-linearity and asymmetric change in conductance (potentia-
tion and depression) as seen in Fig. 2c, d.

Inherent weight normalization and robustness to weight
fluctuations
As explained earlier, NSM allows decoupling the weight matrix as
vi ¼ βi

wi
jjwijj which provides several advantages. Firstly, an inher-

ent weight normalization can be effectively achieved without
resorting to any batch normalization technique by performing
gradient descent (calculating derivatives) with respect to the
variables β in addition to the weights w as27:

∂L

∂βi
¼

∑
j
wij∂vijL

jjwijj
ð6Þ

∂L

∂wij
¼ βi

jjwijj
∂L

∂vij
� βi

jjwijj2
wi

∂L

∂βi
ð7Þ

This allows the distribution of the weights in the NSM to remain
more stable than a conventional MLP without any additional
weight regularization applied. Figure 4e shows the evolution of
the weights of the third layer during learning for three cases—(1)
an MLP without any regularization, (2) MLP with additional
regularization added and (3) hardware NSM. It is seen that the
distribution of NSM weights is narrower and remains con-
centrated around its mean (low variance). On the other hand, the
variance of the weight distribution is larger for the MLP network
without weight regularization. While we only show the evolution
of the weights for the third layer during learning as a repre-
sentative example, we expect similar behavior for the first and
second layers. However, the effect might be smaller compared to
the third layer.

Mitigation of internal covariate shift
The internal covariate shift is defined as the change in the dis-
tribution of network’s activations due to a change in network’s
parameters during training. In a deep neural network, the output
of a previous layers acts as the input for the next layer. As such, a
large change in the parameters of a particular layer can highly
impact the distribution of the input into the next layer. These
large shifts in the input distribution, a.k.a., the internal covariate
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shift, becomes problematic as the number of layers in the neural
network increases. Recently, batch normalization has been pro-
posed as an effective way to mitigate this problem36. Similar to
batch normalization, the proposed NSM also exhibits a self-
normalizing feature that prevents the internal covariate shift. To
highlight this, we compare the 15th, 50th and 85th percentiles of
the input distributions to the last hidden layer during training for
all the three networks as shown in Fig. 4f. The internal covariate
shift is clearly visible in the conventional MLP without any
normalization incorporated as the input distributions change
significantly during the learning. In contrast, the evolution of the
input distribution in the hardware NSM is remains stable, sug-
gesting that NSMs prevents internal covariate shift through the
self-normalizing effect that inherently performs weight normal-
ization as shown in Fig. 4e.

Bayesian inferencing and capturing uncertainty in data
Next, we showcase the ability of our simulated hardware-NSM to
perform Bayesian inferencing and produce classification con-
fidence. For this, we train our hardware NSM on the standard
MNIST dataset. During inference, we evaluate the ability to
classify rotated images of digits from the MNIST dataset.

Figure 5a, f shows digits 1 and 2 from the MNIST dataset, each
rotated continuously by 60. For each of the rotated images, we
perform 100 stochastic forward passes and record the softmax
input (output of the last fully connected hidden layer in Fig. 4a)
as well the softmax output. We highlight the response of three
representative neurons—1, 2 and 4 out of all the 10 neurons that
show the highest activity. It is seen that when the softmax input of
a particular neuron is larger than all the other neurons, the NSM
will predict the class corresponding to that neuron. For example,
in Fig. 5b–d, for the first seven images, the softmax input for
neuron 1 is largest. Consequently, the softmax output for neuron
1 remains close to 1 and the NSM predicts the images as
belonging to class 1. However, as the images are rotated more, it
is seen that even though the softmax output can be arbitrarily
high for neuron 2 or 4 predicting that the image belongs to the
class 2 or 4, respectively, the uncertainty in the softmax output is
high (output covering the entire range from 0 to 1). This signifies
that the NSM can account for the uncertainty in the prediction.
We quantify the uncertainty of the NSM by looking at the
entropy of the prediction, defined as H ¼ �∑p � log p

� �
, where p

is the probability distribution of the prediction. As shown in
Fig. 5d, e, when the NSM makes a correct prediction (classifying
image 1 as belonging to class 1), the uncertainty measured in

Fig. 4 Hardware NSM performing image classification and exhibiting self-normalization. a Network architecture of the NSM consisting of an input layer,
three hidden fully connected layers and an output layer. b Exact match witnessed between the measured switching probability of the stochastic selector
device and theoretically predicted probability for a Bernoulli distribution, highlighting that our stochastic selector device can inject Bernoulli multiplicative
noise. c Evolution of the test accuracy for the simulated hardware-NSM using the FeFET-based analog weight cell and the stochastic selector as a function
of the epochs. d Comparison of the performance of the simulated hardware-NSM with a deterministic feedforward multilayer perceptron (MLP) and the
theoretical NSM model with full precession synaptic weights and a Bernoulli multiplicative noise for the stochastic synapses. e Evolution of the weights of
the third layer during learning for three different networks- an MLP without any regularization, an MLP with additional regularization added and the
simulated hardware-NSM. f Evolution of the 15th, 50th and 85th percentiles of the input distributions to the last hidden layer during training for all the
three networks. Overall, NSM exhibits a tighter distribution of the weights and activation concentrated around its mean, highlighting the inherent self-
normalizing feature. MLP multilayer perceptron, NSM neural sampling machine, Q quantile.
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terms of the entropy remains 0. However, in the case of wrong
predictions (classifying rotated image of 1 as belonging to class 2
or 4), the entropy associated with the prediction becomes large.
This is in contrast to the results obtained from a conventional
MLP network where the network cannot account for any
uncertainty in the prediction and the entropy remains zero as
shown in Fig. 5. Similar results are highlighted when presenting
the NSM with rotated images of digit 2 as shown in Fig. 5f–j.

Discussion
Stochasticity works a powerful mechanism in introducing many
computational features of a deep neural network such regular-
ization and Monte-Carlo sampling. This work builds upon the
inherent weight normalization feature exhibited by a stochastic
neural network, specifically the NSM. Such normalization acts as
a powerful feature in most modern deep neural networks28,36,37,
mitigating internal covariate shift and providing an alternative
mechanism for divisive normalization in bio-inspired neural
networks38. The proposed theoretical NSM model provides sev-
eral advantages: (1) it is an online alternative for otherwise used
batch normalization and dropout techniques, (2) it can mitigate
saturation at the boundaries of fixed range weight representa-
tions, and (3) it provides robustness against spurious fluctuations
affecting the rows of the weight matrix.

We demonstrate that the required stochastic nature of the
theoretical NSM model can be realized in emerging stochastic
devices. This allows seamless implementation of NSM on a

hardware using the compute-in-memory architecture. We
demonstrate the capability of our proposed hardware NSM to
perform image recognition task on standard MNIST dataset with
high accuracy (98.25%) comparable to state-of-the-art determi-
nistic neural network. We also showcase the ability of our
hardware NSM to perform probabilistic inferencing and quantify
the uncertainty in data. Note that while this work focuses on
using FeFET as the analog weight cell and Ag/HfO2 as the sto-
chastic selector, a hardware NSM can also be realized using other
emerging devices. For example, one can utilize emerging memory
candidates such as PCM and RRAM instead of FeFET as the
analog weight cell can.

For the stochastic selector, other candidates can be explored
including ovonic threshold switch39, mixed ionic electronic
conductor40, and insulator metal transition (IMT) oxides41 such
as vanadium dioxide (VO2)42,43 and niobium oxide (NbOx)44,45.
Note that while the endurance cycling of Ag/HfO2 based sto-
chastic selector (>108 cycles35,46,47) is sufficient for inference
application. However, for on-chip training we can resort to
insulator-to-metal phase transition (IMT)-based selectors such as
vanadium dioxide (VO2)48 and niobium oxide (NbOx)44 that
exhibits higher endurance cycling exceeding 109.

The NSM hardware proposed in this work is primarily focused
on an efficient and local implementation of the inference phase.
An efficient and local implementation of the learning dynamics
on-chip provides few additional challenges as the gradient
backpropagation through the NSM requires backpropagating the
errors through the network. This presents primarily three

Fig. 5 Bayesian inferencing and uncertainty in data comparison between simulated hardware-NSM and a conventional MLP network. a, f Continuously
rotated images of the digits 1 and 2 from the MNIST dataset, used for performing Bayesian inferencing. We perform 100 stochastic forward passes during
the inference mode for each rotated image of digits 1 and 2 and record the distribution of the (b, g) softmax input and (c, h) softmax output for few
representative output neurons. d, i Classification result produced by the NSM for each rotated image. e, j The uncertainty of the NSM associated with the
prediction, calculated in terms of the entropy H=−Σp*logðpÞ, where p is the probability distribution of the prediction. When the NSM makes a correct
prediction (classifying image 1 and 2 as belonging to class 1 and 2, respectively), the uncertainty measured in terms of the entropy remains 0. However, in
the case of wrong predictions, the uncertainty associated with the prediction becomes large. MLP multilayer perceptron, NSM neural sampling machine.
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challenges: (a) bidirectional and symmetric connections, (b)
multiplying errors by derivative of the activation functions as
given in Eq. (4), and (c) computation of Eqs. (6) and (7). Chal-
lenges (a) and (b) are common to many other contemporary
architectures for local learning on crossbar arrays. Challenge (a)
can be sidestepped by using approximations of the gradient
backpropagation such as feedback alignment or by using local
loss functions (e.g., contrastive losses, or greedy layer-wise clas-
sifiers). The computation of the Gaussian activation Eq. (4) can
be avoided by using “straight-through estimators”49 where the
derivative function is replaced by 1, or using surrogate gradient
functions without compromising the accuracy. Challenge (c) is
however unique to the proposed NSM model. We speculate that it
would require us to read the value of every afferent synaptic
weight of a neuron to compute the norm. Furthermore, we
speculate that Eqs. (6) and (7) could be computed approximately
and more efficiently by ensuring that the norm of the weight
(jjwijj) remains constant. However, further details on these
approximations are beyond the scope of this work.

Methods
Fabrication of Ag/HfO2 stochastic selector. Ag/TiN/HfO2/Pt devices are fab-
ricated on 250 nm SiO2/Si substrates. Bottom electrodes are patterned with e-beam
lithography and 15 nm/60 nm Ti/Pt deposited via e-beam evaporation. A 4 nm
thick HfO2 film is deposited using atomic layer deposition of TDMAH and H2O at
120 C, followed directly by 3 nm thick TiN deposition with TiCl4 and N2 at 120 C
without breaking vacuum. The 150 nm thick Ag top electrode is then patterned and
deposited using e-beam evaporation, followed by a blanket TiN isolation etch in
CHF3 and electrical testing.

Details of Onrstein-Uhlenbeck (OU) process. The OU process is a stochastic
process which was introduced as a generalized Brownian motion model. When the
velocity of a moving particle within a liquid or gas is modeled as a Brownian
motion, the position of the particle at the next time step follows a Gaussian dis-
tribution with a zero mean and a variance αt, where α is a positive constant and t is
time. However, the trajectories of the Brownian process are not differentiable,
meaning that the time derivative does not exist, and the variation is unbounded in
any finite time interval. The OU processes provide a way to overcome the problem
and thus can be seen as a generalization of the standard Brownian motion model
(Wiener process)50.

We calibrate the parameters of Eq. (5) using the experimentally measured
threshold voltage VT of 17 selector devices such as shown in Fig. 3f. We use the
method of linear regression, which has been established in51 to recast the Eq. (5) to:

y ¼ ax þ bþ ϵ ð8Þ
where a is the slope, b is the interception term and ϵ is a white noise term. The
solution of Eq. (5) after discretization using the Euler-Maruyama method is given
by:

VT tþ1 ¼ VTt
e�θΔt þ μ 1� e�θΔt

� �
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2θΔt

2θ

r
N 0; 1ð Þ ð9Þ

By comparing Eqs. (8) and (9), we have a ¼ e�θΔt , b ¼ μ 1� e�θΔt
� �

and

sdðϵÞ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e�2θΔt

2θ

q
. Solving for a, b and sd(ϵ), we obtain the OU parameters

μ ¼ b
1�a ; θ ¼ � lna

Δt and σ ¼ sdðϵÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2lna

Δtð1�a2Þ
q

. We have to compute a, b and the

variance of the error of the linear regression in order to calibrate the OU

parameters μ, θ and σ. The least square regression terms are Sx ¼ ∑
n

i¼1
Si�1; Sy ¼

∑
n

i¼1
Si; Sxx ¼ ∑

n

i¼1
S2i�1; Sxy ¼ ∑

n

i¼1
Si�1Si and Syy ¼ ∑

n

i¼1
S2i where S represents a sample

drawn from the experimental data. Upon further simplification, we end up with
computing the following equations:

a ¼ nSxy � SxSy
nSxx � S2x

ð10Þ

b ¼ Sy � aSx
n

ð11Þ

sdðϵÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nSyy � S2y � a nSxy � SxSy

� 	

nðn� 2Þ

vuut ð12Þ

The parameter σ is computer as the ratio of sd ϵð Þffiffiffiffi
Δt

p , where Δt is the sampling step

for the experimental data or the time step of the Euler-Maruyama method.

Training process of NSM. The MLP network described in Fig. 4a was trained with
the backpropagation algorithm52, the Cross-entropy as loss function and an
adapted version of Adam optimizer with a learning rate of 0.0003 and betas (0.9,
0.999). We adapted the Adam optimizer to accommodate for the updates of the
conductance in the FeFet model (see paragraph: Building Blocks for Stochastic
Synapse: FeFET-based Analog Weight Cell). The training and testing batch sizes
were both set to 100. We trained the network for 200 epochs and at each epoch we
used the full 60,000 samples training MNIST set. The learning rate was linearly
decreased after 100 epochs with a rate of 0:0003 ´min 2� x

100 ; 1

 �

, where x is the
number of a specific epoch. Every two epochs we measured the accuracy of the
network using the full 10,000 samples testing MNIST set over an ensemble of
100 samples of the forward pass of the neural network. The accuracy was measured
as the ratio of successfully classified digits to the total number of samples within the
test MNIST set (10,000). All the experiments ran on a Nvidia GPU Titan X with
12GB of physical memory and a host machine equipped with a Intel i9 with 64 GB
physical memory running Arch Linux. The source code is written in Python
(Pytorch, Numpy, Sklearn) and it will [be freely available online upon acceptance
for publication].

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.

Code availability
The simulation codes used for this study are available from the corresponding author
upon request.

Received: 18 May 2021; Accepted: 18 February 2022;

References
1. Yu, S. et al. Scaling-up resistive synaptic arrays for neuro-inspired architecture:

challenges and prospect. In Technical Digest—International Electron Devices
Meeting, IEDM (2015).

2. Gao, L. et al. Fully parallel write/read in resistive synaptic array for
accelerating on-chip learning. Nanotechnology 26, 455204 (2015).

3. Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training
using analogue memory. Nature 558, 60–67 (2018).

4. Kuzum, D., Jeyasingh, R. G. D., Lee, B. & Wong, H. S. P. Nanoelectronic
programmable synapses based on phase change materials for brain-inspired
computing. Nano Lett. 12, 2179–2186 (2012).

5. Burr, G. W. et al. Experimental demonstration and tolerancing of a large-
scale neural network (165 000 synapses) using phase-change memory as
the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507
(2015).

6. Jerry, M. et al. Ferroelectric FET analog synapse for acceleration of deep neural
network training. in Technical Digest—International Electron Devices Meeting,
IEDM (2018).

7. Sun, X., Wang, P., Ni, K., Datta, S. & Yu, S. Exploiting hybrid precision for
training and inference: a 2T-1FeFET based analog synaptic weight cell. in
Technical Digest—International Electron Devices Meeting, IEDM (2019).

8. Luo, Y., Wang, P., Peng, X., Sun, X. & Yu, S. Benchmark of ferroelectric
transistor based hybrid precision synapse for neural network accelerator. IEEE
J. Explor. Solid-State Comput. Devices Circuits 5, 142–150 (2019).

9. Jerry, M. et al. Ferroelectric FET based Non-Volatile Analog Synaptic Weight
Cell (University of Notre Dame, 2019).

10. Dutta, S. et al. Supervised learning in all FeFET-based spiking neural network:
opportunities and challenges. Front. Neurosci. 14, 634 (2020).

11. Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic
phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

12. Dutta, S. et al. Programmable coupled oscillators for synchronized
locomotion. Nat. Commun. 10, 3299 (2019).

13. Knill, D. C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural
coding and computation. Trends Neurosci. 27, 712–719 (2004).

14. Borst, J. G. G. The low synaptic release probability in vivo. Trends Neurosci.
33, 259–266 (2010).

15. Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M. & Cauwenberghs, G.
Stochastic synapses enable efficient brain-inspired learning machines. Front.
Neurosci. 10, 241 (2016).

16. Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. A learning algorithm for
boltzmann machines. Cogn. Sci. 9, 147–169 (1985).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30305-8 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2571 | https://doi.org/10.1038/s41467-022-30305-8 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


17. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R.
Improving neural networks by preventing co-adaptation of feature detectors.
Preprint at https://doi.org/10.48550/arXiv.1207.0580 (2012).

18. Wan, L., Zeiler, M., Zhang, S., LeCun, Y. & Fergus, R. Regularization of neural
networks using DropConnect. In 30th International Conference on Machine
Learning, ICML 2013 (2013).

19. Buesing, L., Bill, J., Nessler, B. & Maass, W. Neural dynamics as sampling: a
model for stochastic computation in recurrent networks of spiking neurons.
PLoS Comput. Biol. 7, e1002211 (2011).

20. Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In 33rd International Conference on
Machine Learning, ICML 2016 (2016).

21. Levy, W. B. & Baxter, R. A. Energy-efficient neuronal computation via quantal
synaptic failures. J. Neurosci. 22, 4746–4755 (2002).

22. Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. Neuron
75, 762–777 (2012).

23. Doya, K., Ishii, S., Pouget, A. & Rao, R. P. N. Bayesian Brain: Probabilistic
Approaches to Neural Coding (MIT Press, 2007).

24. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev.
Neurosci. 11, 127–138 (2010).

25. Cohn, D. A., Ghahramani, Z. & Jordan, M. I. Active learning with statistical
models. J. Artif. Intell. Res. 4, 129–145 (1996).

26. Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc.
IEEE 106, 260–285 (2018).

27. Detorakis, G. et al. Inherent weight normalization in stochastic neural
networks. In Advances in Neural Information Processing Systems 3286–3297
(2019).

28. Salimans, T. & Kingma, D. P. Weight normalization: a simple reparameterization
to accelerate training of deep neural networks. In Advances in Neural Information
Processing Systems (2016).

29. Ullmann, M., Goebel, H., Hoenigschmid, H. & Haneder, T. Disturb free
programming scheme for single transistor ferroelectric memory arrays. Integr.
Ferroelectr. 34, 155–164 (2001).

30. Ni, K., Li, X., Smith, J. A., Jerry, M. & Datta, S. Write disturb in ferroelectric
FETs and its implication for 1T-FeFET and memory arrays. IEEE Electron
Device Lett. 39, 1656–1659 (2018).

31. Jerry, M. et al. A Ferroelectric field effect transistor based synaptic weight cell.
J. Phys. D. Appl. Phys. 51, 434001 (2018).

32. Trentzsch, M. et al. A 28nm HKMG super low power embedded NVM
technology based on ferroelectric FETs. In Technical Digest—International
Electron Devices Meeting, IEDM (2017).

33. Ni, K., Chakraborty, W., Smith, J., Grisafe, B. & Datta, S. Fundamental
understanding and control of device-to-device variation in deeply scaled
ferroelectric FETs. (2019).

34. Shukla, N., Ghosh, R. K., Gnsafe, B. & Datta, S. Fundamental mechanism
behind volatile and non-volatile switching in metallic conducting bridge
RAM. In Technical Digest—International Electron Devices Meeting, IEDM
(2018).

35. Grisafe, B., Jerry, M., Smith, J. A. & Datta, S. Performance enhancement of
Ag/HfO2 metal ion threshold switch cross-point selectors. IEEE Electron
Device Lett. 40, 1602–1605 (2019).

36. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training
by reducing internal covariate shift. In 32nd International Conference on
Machine Learning, ICML 2015 (2015).

37. Ren, M., Liao, R., Urtasun, R., Sinz, F. H. & Zemel, R. S. Normalizing the
normalizers: comparing and extending network normalization schemes. In 5th
International Conference on Learning Representations, ICLR 2017—Conference
Track Proceedings (2017).

38. Querlioz, D., Bichler, O., Vincent, A. F. & Gamrat, C. Bioinspired
programming of memory devices for implementing an inference engine. Proc.
IEEE 103, 1398–1416 (2015).

39. Kau, D. et al. A stackable cross point phase change memory. In Technical
Digest—International Electron Devices Meeting, IEDM (2009).

40. Shenoy, R. S. et al. MIEC (mixed-ionic-electronic-conduction)-based access
devices for non-volatile crossbar memory arrays. Semiconductor Sci. Technol.
29, 104005 (2014).

41. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod.
Phys. 70, 1039–1263 (1998).

42. Berglund, C. N. & Guggenheim, H. J. Electronic properties of VO2 near the
semiconductor-metal transition. Phys. Rev. 185, 1022–1033 (1969).

43. Wentzcovitch, R. M., Schulz, W. W. & Allen, P. B. VO2: Peierls or Mott-
Hubbard? A view from band theory. Phys. Rev. Lett. 72, 3389 (1994).

44. Cha, E. et al. Comprehensive scaling study of NbO2 insulator-metal-transition
selector for cross point array application. Appl. Phys. Lett. 108, 153502 (2016).

45. Kim, W. G. et al. NbO2-based low power and cost effective 1S1R switching for
high density cross point ReRAM application. In Digest of Technical Papers—
Symposium on VLSI Technology (2014).

46. Midya, R. et al. Anatomy of Ag/Hafnia-based selectors with 1010 nonlinearity.
Adv. Mater. 29, 1604457 (2017).

47. Li, Y. et al. High-uniformity threshold switching HfO2-based selectors with
patterned Ag nanodots. Adv. Sci. 7, 2002251 (2020).

48. Radu, I. P. et al. High performance oxide diode. In Solid State Devices and
Materials Conference-SSDM 586–587 (2013).

49. Bengio, Y., Léonard, N. & Courville. A. Estimating or propagating gradients
through stochastic neurons for conditional computation. Preprint at https://
doi.org/10.48550/arXiv.1308.3432 (2013).

50. Kovalenko, I. N., Kuznetsov, N. Y. & Shurenkov, V. M. Models of Random
Processes: A Handbook for Mathematicians and Engineers (CRC Press, 1996).

51. Dixit, A. K. & Pindyck, R. S. Investment Under Uncertainty, Princeton
university press (2012).

52. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by
back-propagating errors. Nature 323, 533–536 (1986).

Acknowledgements
We are grateful to M. Trentzsch, S. Dunkel, S. Beyer, and W. Taylor at Globalfoundries
Dresden, Germany for providing 28 nm HKMG FeFET test devices. This project was
supported by the National Science Foundation (NSF), and the Nanoelectronics Research
Corporation (NERC), a subsidiary of the Semiconductor Research Corporation (SRC),
through Extremely Energy Efficient Collective Electronics (EXCEL).

Author contributions
S. Dutta, G.D., E.N. and S. Datta developed the main idea. S. Dutta and A.K. performed
all the measurements. B.G. helped with fabrication of the selector devices. G.D. and E.N.
performed the simulations for NSM. All authors discussed the results, agreed to the
conclusions of the paper and contributed to the writing of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Sourav Dutta.

Peer review information Nature Communications thanks Sangbum Kim and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30305-8

10 NATURE COMMUNICATIONS |         (2022) 13:2571 | https://doi.org/10.1038/s41467-022-30305-8 | www.nature.com/naturecommunications

https://doi.org/10.48550/arXiv.1207.0580
https://doi.org/10.48550/arXiv.1308.3432
https://doi.org/10.48550/arXiv.1308.3432
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Neural sampling machine with stochastic synapse allows brain-like learning and inference
	Theoretical model of NSM
	Implementing NSM using emerging devices operating in stochastic switching regime
	Building blocks for stochastic synapse: FeFET-based analog weight cell
	Building blocks for stochastic synapse: Ag/HfO2 stochastic selector
	Hardware NSM and image classification task
	Inherent weight normalization and robustness to weight fluctuations
	Mitigation of internal covariate shift
	Bayesian inferencing and capturing uncertainty in data
	Discussion
	Methods
	Fabrication of Ag/HfO2 stochastic selector
	Details of Onrstein-Uhlenbeck (OU) process
	Training process of NSM

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




