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Monte Carlo study of the pseudogap and
superconductivity emerging from quantum
magnetic fluctuations
Weilun Jiang1,2, Yuzhi Liu 1,2, Avraham Klein 3, Yuxuan Wang4, Kai Sun 5, Andrey V. Chubukov 6 &

Zi Yang Meng 1,7✉

The origin of the pseudogap behavior, found in many high-Tc superconductors, remains one

of the greatest puzzles in condensed matter physics. One possible mechanism is fermionic

incoherence, which near a quantum critical point allows pair formation but suppresses

superconductivity. Employing quantum Monte Carlo simulations of a model of itinerant

fermions coupled to ferromagnetic spin fluctuations, represented by a quantum rotor, we

report numerical evidence of pseudogap behavior, emerging from pairing fluctuations in a

quantum-critical non-Fermi liquid. Specifically, we observe enhanced pairing fluctuations and

a partial gap opening in the fermionic spectrum. However, the system remains non-

superconducting until reaching a much lower temperature. In the pseudogap regime the

system displays a “gap-filling" rather than “gap-closing" behavior, similar to the one observed

in cuprate superconductors. Our results present direct evidence of the pseudogap state,

driven by superconducting fluctuations.
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Even though unconventional and high-Tc superconductivity
arises in a diverse set of materials, many of them share
similar features in their phase diagram. One prominent

feature is a superconducting (SC) dome, which emerges near the
termination point of a non-SC phase with either spin or charge
order. The second feature is anomalous transport and non
Fermi-liquid (nFL) behavior around the putative quantum cri-
tical points (QCP). These features have led to the proposal that
soft quantum-critical fluctuations of the order parameter serve as
the source for the universal behavior and mediate singular
interaction that gives rise to superconductivity with nontrivial
pairing symmetry, strange metal behavior, and intertwined
orders.

In many unconventional superconductors, most notably the
cuprates, there is a third feature: the “pseudogap(PG)", a gap-like
feature in the fermionic spectrum above the SC phase. Despite
decades of investigation, the origin (or origins) of the PG remain
intensely debated. One class of proposals names exotic, possibly
topological order in the particle-hole channel as the origin1–3,
while another points to pairing fluctuations in the strong coupling
regime4–10. Substantial numerical efforts have been dedicated to
the understanding of PG, see e.g., refs. 1,11,12 and references
therein.

The understanding of the coupling between fermionic excita-
tions near the Fermi surface (FS) and bosonic quantum critical
fluctuations14–18 is crucial to describe these three features. The
development of quantum Monte Carlo (QMC) algorithms for a
class of models of this type, pioneered by ref. 19, has created a
feasible way to study this physics in an unbiased manner (see the
reviews20,21 and references within). In QMC models, FS fermions
couple to bosonic fluctuations, representing certain collective
modes of low-energy fermions22–29. The bosonic part is bestowed
with independent (non-fermionic) dynamics and can be tuned to
criticality to mimic the situation in real materials. Crucially, these
models are free of the sign-problem plaguing most fermionic
QMC, allowing for a realistic test of theory.

In this work, we investigate the PG physics via such a sign-free
QMC simulation of fermions near a ferromagnetic QCP. We find
robust signatures of a PG above the SC state and are able to study
its spectral properties and its interplay with the dynamics of the
ferromagnetic degrees of freedom. We also compare the numer-
ical results with several theoretical predictions, and reconcile
many key aspects of the two.

Results
Overview. Before going into the details of our work, we present
an overview of the essential features of our model and a summary
of the main results.

The model we choose to implement is a variant of a quantum
critical model, in which the bosons represent critical ferromag-
netic(FM) spin fluctuations (a “spin-fermion” model). When
looking for a spectral property of the superconductivity, such as a
PG, such a model has an advantage over analogous ones, e.g.,
antiferromagnetic or nematic models (see e.g.,21) because of the
simplicity of the momentum structure of the FS (e.g., no hot or
cold spots). Furthermore, compared to earlier sign-free QMC
studies on ferromagnetism, the coupling strength of our model is
stronger in two aspects. First, the spin system is an XY quantum
rotor model that is inherently more strongly fluctuating than an
Ising model, analyzed earlier30,31. Second, the coupling constant
K between the fermionic and bosonic sectors is set to larger values
than in previous works. The larger coupling pushes the region of
SC fluctuations up to temperatures, where they are discernible in
the numerical data. This in contrast with earlier works, where
coupling strength was optimized to study normal state properties.

As we see below, the larger coupling allows us to reveal the PG
behavior.

In the normal state, at low enough temperatures we find in the
bosonic sector near the QCP an overdamped dynamics with
linear frequency response (z= 2 scaling). This is different from
the z= 3 behavior, found in Ising systems, and is a result of a
non-conservation of the order parameter in our model.

In the temperature range, where the bosonic susceptibility is
linear in frequency, we observe several remarkable features. The
uniform susceptibility deviates from Curie-Weiss behavior and
actually becomes weaker at smaller T. In the fermionic sector, we
find a gap-like feature in the density of states (DOS). Unlike in a
BCS superconductor, the size of the gap remains roughly
independent on temperature, while the DOS becomes progres-
sively depleted (filled) upon lowering (raising) temperature.
Importantly, the scaling behavior of the pairing susceptibility
clearly shows that the system is not in a SC state. We thus identify
the spectral gap in such a state as a PG.

We note that the “gap-filling" behavior observed in our
numerical results has also been observed in tunneling and
photoemission experiments on the cuprates32, and has been
obtained in a class of γ−models of quantum-critical pairing 6.
Our results, obtained from unbiased large-scale QMC simula-
tions, confirm the existence of a PG behavior from pairing
fluctuations in a quantum-critical system with itinerant fermions.

The quantum-critical spin dynamics and normal state
fermionic properties that we find are consistent with recent
theoretical predictions for nFLs at finite temperature, obtained
within the modified Eliashberg theory31,33,34. This allows us to
benchmark our simulations and extract relevant parameters from
the observables (see Supplementary Note 4 for details). The onset
temperature for PG behavior, TPG, and SC Tc, extracted from
QMC, are consistent with theoretical predictions (see ref. 6 and
Methods). Our results therefore provide an attempt to numeri-
cally realize the transition from nFL to PG and eventually to
superconductivity, lending support to the scenario of pairing
fluctuations driven PG phenomena.

Crucially, we view our finding of a PG as the evidence of a
universal mechanism for the formation of a PG from SC
fluctuations near a QCP, not limited to the specific model of
FM spin fluctuations that we used. We do not claim that we
present a model for PG formation in a specific material, but in
view of our findings we do expect SC fluctuations to be a
contributing factor to PG formation in any system close enough
to a QCP, independently of the specific origin of the
pairing boson.

The PG, obtained in our work, comes from pairing fluctuations
in a situation when the pairing is in turn mediated by a
propagator of a FM order parameter. While our model does not
directly describe experimental situation in the cuprates, where
antiferromagnetic fluctuations are often considered to be a
pairing glue, we argue that the mechanism for the PG formation,
studied in our work, is a universal phenomenon of the pairing
near a quantum-critical point6, and in this sense goes beyond the
specific model with FM flucutations. We do expect the SC
fluctuations to be a contributing factor to PG formation in any
system close enough to a QCP, independently of the specific
origin of the pairing glue.

Model
We consider a model of itinerant fermions coupled to SO(2)
quantum rotors, as shown in Fig. 1a (rotors are in the middle
layer). The model is described by

Ĥ ¼ Ĥqr þ Ĥf þ Ĥqr�f ; ð1Þ
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where

Ĥqr ¼
U
2
∑
i
L̂
2
i � tb ∑hi;ji

cos θ̂i � θ̂j

� �

Ĥf ¼ �t1 ∑
hi;jiσλ

ĉyiσλĉjσλ � t2 ∑
hhi;jiiσλ

ĉyiσλĉjσλ � μ∑
iσλ

n̂iσλ

Ĥqr�f ¼ �K
2
∑
iλ

ĉyiλσ
xĉiλ � cos θ̂i þ ĉyiλσ

yĉiλ � sin θ̂i
� �

:

ð2Þ

The first term Ĥqr describes a quantum rotor model on a
square lattice. Here L̂i is the angular momentum of 2D rotor θ̂i at
site i. The second term Ĥf describes two identical copies of spin-
1/2 fermions on a square lattice, with layer index λ= 1 and 2
representing the top and the bottom layers. Fermions in each
layer can hop between nearest-neighbor (next-nearest-neighbor)
sites with hopping amplitudes t1 (t2), and the chemical potential μ
controls the fermion density. The last term Ĥqr�f couples quan-
tum rotors and fermions via an on-site FM interaction that tends
to align XY component of a fermion spin with the direction of a
rotor on each site.

In the absence of fermion-rotor coupling, rotors develop quasi-
long-range FM order via a Kosterlitz-Thouless(KT) transition13,35.
At zero temperature, FM order becomes long range. The KT
transition line in (T, U) plane terminates at a QCP at
ðU=tbÞc ¼ 4:25ð2Þ13,36,37. As we turn on the fermion-rotor cou-
pling, fermion contributions shift the KT phase boundary towards
larger U and T. More importantly, the phase transition now
involves fermion spins, which at T= 0 also order ferromagnetically
below Uc. This allows us to study quantum phenomena near a FM
QCP in a metal38. Due to the anti-unitary symmetry and the pre-
sence of two copies of fermions, this model can be simulated via
QMC techniques without the sign problem (see Supplementary
Note 1 for details). This setup then allows us to analyze the uni-
versal behavior near a QCP with high numerical accuracy and large
system sizes.

We express all quantities in units of tb. In the simulations we
set K= 4, t1= 1, t2= 0.2 and μ= 0. We varied U and the tem-
perature T and constructed the phase diagram of the model,
Fig. 1b, which features a paramagnetic-ferromagnetic transition
and several other transitions/phases. The magnetic transition at a
finite temperature is of KT type. As U increases, the transition
temperature decreases and terminates at a QCP at Uc. The T= 0
transition upon varying U belongs to XY universality class as the
coupling to rotors creates an easy plane for fermion spins. Fer-
mion spins order ferromagnetically in the XY plane, breaking a
spin-rotational symmetry.

Pseudogap and superconductivity properties. We observe a SC
dome around the QCP. Above the dome, we find evidence of PG
behavior in the range of T, whose width is comparable to Tc.

First, by measuring correlation functions of Cooper pairs in
various pairing channels, we found that the dominant
pairing channel is spin-triplet and odd under the interchange
between the top and the bottom layers (layer-singlet), i.e.,
ΔðrÞ ¼ 1ffiffi

2
p ð̂cr1"ĉr2# � ĉr2"ĉr1#Þ ¼ 1ffiffi

2
p ð̂cr1"ĉr2# þ ĉr1#ĉr2"Þ, where 1

and 2 label layers. In the classification of 2D irreducible
representations, this is an s-wave gap, as Δ(0) is finite. We
verified (see Supplementary Figs. 1 and 2) that the susceptibility
in this channel strongly increases when the system approaches a
superconducting instability, while the susceptibilities in all other
pairing channels remain small and do not increase. This
observation is a direct evidence that superconductivity originates
from the interaction mediated by soft bosonic fluctuations,
associated with the QCP. Indeed, it has long being known that
near a FM quantum phase transition, soft dynamical bosonic
fluctuations introduce an effective interaction that is attractive in
the spin-triplet channel. In the geometry of our model, there are
two distinct types of spin-triplet pairing—one is odd under
momentum inversion in a layer and even under layer interchange
(e.g., p-wave layer-triplet), the other is even within each layer and
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Fig. 1 Model and Phase diagram. a Sketch of the model in Eq. (1). Deep yellow dots and grids of the top and bottom layers represent fermion degrees of
freedom with nearest hopping strength t1 (e.g., ĉ

y
i ĉj) and next-nearest hopping t2 (e.g., ĉ

y
i ĉk). Blue arrows and grid in the middle layers denote bosonic parts

with an unit vector representing θ∈ [0, 2π) of the rotor on each site. The interaction between two rotors on nearest sites (e.g., θm and θn) is tb. The on-site
coupling K between fermions and bosons is shown by the vertical dashed lines. The system size is L × L. b U− T phase diagram of the model obtained from
QMC simulation. The inset zooms in to the vicinity of the pseudogap (PG, yellow), ferromagnetic (FM, blue) and superconducting (SC, orange) regions.
The blue points on the FM phase boundary are determined by finite size scaling with fixed T or U. Notably, for U= 5.9, as temperature gets lower, the
system first enters into the FM phase at T≈ 0.13, then exits it at T≈ 0.08. The yellow points of the PG boundary are determined from the onset of a PG in
the single-particle spectrum, as shown in Fig. 2. The red points denoting an onset of s-wave superconductivity are determined from the onset of a full gap in
the spectrum as well as Kosterlitz-Thouless scaling of the pairing susceptibility. The maximum of SC phase transition temperature Tc is ~0.05. The green
points and dashed line, are the phase boundary of the (uncoupled) quantum rotor model13. See the Supplementary Note 3 for additional details as well as a
discussion of SC fluctuations above Tc. The errorbars of the points on the FM phase and SC phase boundaries are determined by the data collapse with
fixed T or U. For the PG phase boundary, the errorbars come from the uncertainty in identifying the onset of the minimum at ω= 0 for distinct
temperatures of DOS.
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odd under layer interchange (s-wave layer-singlet). By analogy
with previous studies of the pairing mediated by small q
fluctuations30, one expects the leading instability to be towards
the s-wave layer-singlet, spin-triplet order. The numerical finding
of the largest pairing correlations in this channel thus affirms the
crucial role of soft FM bosonic fluctuations in the formation of a
SC dome.

Second, we obtained the fermionic spectral function, and then
integrated it over k− space to obtain the DOS N(ω). For this, we
first computed the imaginary-time fermion Green’s function and
then converted it to real frequency via stochastic analytic
continuation (SAC) method (See Methods for details). We show
the results for N(ω) in Fig. 2a. At low T, inside the SC dome, there
is clear evidence for an s-wave gap. The data shows that, that as T
increases, the magnitude of the gap slightly increases, rather than
shrinks, as would be the case in a BCS superconductor.
Simultaneously, N(ω) for ω smaller than the gap increases and

gradually fills in the states within the gap, ultimately restoring its
normal-state value. This phenomenon has been termed gap-
filling. It is qualitatively in agreement with experimental
observations in many strongly-correlated unconventional super-
conductors at T ≥ Tc5,9,10,39, At smaller T ≤ Tc, the DOS displays
gap-closing behavior, like in a conventional BCS superconductor.
Guided by the experimental evidence9,10 that gap-filling behavior
holds at T ≥ Tc, we defined the PG region as the one where the
DOS gets filled in upon increasing T. We set the lower boundary
of this region to where the DOS at the Fermi energy significantly
deviates from thermally activated behavior of e�Δ=kBT . The upper
boundary of the PG region is set at TPG, at which the dip of N(ω)
at the Fermi energy becomes invisible. The PG region, obtained
this way, is plotted in yellow in Fig. 1b.

Third, to determine the actual SC transition temperature, Tc,
we performed scaling analysis of the pairing susceptibility
Ps ¼ 1

L2
R β
0 ∑iðΔyðri; τÞΔð0; 0ÞÞ, using KT scaling for the pairing

susceptibility Ps ¼ L2�ηf ðL � expð� A
ðT�TcÞ1=2

ÞÞ for T > Tc with

ηKT= 1/428,40,41. We show the results in Fig. 2b. The data for
Ps for various system sizes and temperatures collapse onto a
single curve. We fitted the curve by the formula above and
extracted Tc= 0.048. This agrees with the lower boundary of the
PG region. The upper boundary, TPG, is about twice larger in our
simulations, TPG ~ 0.1. We also computed the superfluid density,
ρs(T), which has been widely used to estimate Tc in QMC
simulations. This is done by detecting the temperature Tρ at
which ρs(Tρ)= αTρ, where α is a dimensionless constant41,
usually set to 2/π, based on the analysis of the XY model42. This
criterion, although qualitatively correct, typically overestimates
Tc40. In our case, we found Tc < Tρ ~ TPG. We discuss our analysis
of ρs in some length in Supplementary Note 3.

We analyzed the QMC data within the quantum critical theory
of itinerant ferromagnets43,44, extended to finite T34 and modified
to include two layers of itinerant fermions and superconductivity.
We computed fermionic and bosonic self-energies near Uc and
found good agreement with the simulations in the normal state
(see Supplementary Note 4). We extracted the effective fermion-
boson coupling from this comparison, and used it to compute the
onset temperature for the pairing within the Eliashberg theory for
quantum-critical pairing6. This theory does not differentiate
between pair formation and superconductivity, hence the result
has to be compared with TPG, extracted from simulations. We
obtained theoretical TPG ~ 0.08, quite consistent with TPG ~ 0.1,
extracted from QMC data, see Fig. 1b. Further, Eliashberg
calculations below TPG show gap-closing behavior at small T and
gap-filling behavior at T ≤ TPG. The boundary between two
regimes has been associated with the actual Tc, based on the
analysis of phase fluctuations6. We show this in the phase
diagram in Fig. 1b. Based on this comparison, we argue that our
unbiased numerical QMC simulations are consistent with the
theory and provide strong evidence for PG behavior, originating
from preformed pairs above Tc, near a FM QCP in a metal.

We note that previous QMC work (see e.g.,22,23 for an
antiferromagnetic model) found an SC dome surrounded by a
region of SC fluctuations. These were determined by comparing
Tρ determined from the BKT criterion for ρs (see above), and the
temperature Tdia at which the system showed diamagnetic
behavior, as evidenced by a sign-change of the appropriate
current-current correlator. While we too find such fluctuations
(see Supplementary Note 3). We stress that the region of gap-
filling behavior is predominantly at Tc < T < TPG ~ Tρ, and is
therefore distinct from fluctuations on the scale of Tdia. Indeed,
from our numerics we observe that TPG < Tdia. We emphasize that
in the thermodynamic limit, TPG and Tdia do not correspond to
phase transitions, but rather mark crossover regions.

a

Le A T Tc

L
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T
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Fig. 2 Pseudogap and superconductivity. a Local DOS N(ω) for various
temperatures at U= 6 with L= 12. For T= 1/4, far above the PG, the
system exhibits a Fermi liquid spectrum. At TPG≈ 0.1, the SC fluctuations
begin to play important role and a noticable gap forms at ω= 0. This gap-
forming temperature is consistent with the corresponding intermediate
temperature scale in the dynamic bosonic susceptibility χ in Fig. 4b. The
gap minimum N(ω= 0) goes down with temperature and eventually
reaches zero at T≈ 0.05, indicating the onset of a SC state as detected by
the pairing susceptibility in b. At T < 0.05, fully gapped spectrum
corresponds to the behavior of the SC state. b Data collapse of the pairing
susceptibility Ps versus temperature at U= 6 for system sizes L= 12, 14, 16,
18 with statistical errors obtained by QMC simulations, consistent with a
KT transition. The best fit coefficients are A= 0.75, Tc= 0.048, which is
consistent with the temperature of the fully-gapped spectrum in a.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30302-x

4 NATURE COMMUNICATIONS |         (2022) 13:2655 | https://doi.org/10.1038/s41467-022-30302-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Magnetic dynamics and re-entrance effect. The pairing beha-
vior also has an impact on the magnetic phase transition and the
quantum dynamics of the rotors. As shown in Fig. 1b, the phase
boundary of the paramagnetic-ferromagnetic transition exhibits
a re-entrance behavior at U ~ 5.9, close to the QCP. For exam-
ple, at U= 5.9, upon reducing the temperature, the system first
enters the FM state and then returns to the paramagnetic one,
i.e., there is a “back-bending” of the transition line to the FM
state. This can also be seen from the Fermi surface behavior. In
Fig. 3, we plot the Fermi surface, G(k, τ= β/2) ~N(k, ω= 0),
evolution with temperature. At intermediate temperature
T= 0.1, the Fermi surface splits due to the ferromangetic order.
However, the split vanishes both either increasing or lowering
the temperature. We believe that the re-entrance phenomenon is
a consequence of the PG and SC fluctuations, which suppress
the fermion DOS and hence the electron-hole contribution to
magnetic order45,46. Similar behavior has been seen previously
in an antiferromagnetic model22, but no PG was reported there.
We emphasize that the paramagnetic-ferromagnetic phase
boundary starts to bend to the left roughly at TPG, which is well
above the SC dome, indicating that SC fluctuations without
phase coherence in the PG region are responsible for the mag-
netic dynamics.

We note, that in the absence of an SC dome, previous works
(see e.g.,38,44,47,48) have shown that itinerant FM QCPs are
unstable to a first-order transition driven by normal state
magnetic fluctuations, which can cut off the FM phase at larger
U’s, similar to the behavior seen in our simulations. In our results,
we do not observe clear evidence of a first-order magnetic
transition, and the correlation of the back-bending with TPG
implies that for the parameters that we used the physics is driven
chiefly by SC rather than magnetic fluctuations.

In addition, we measured the inverse dynamical bosonic
susceptibility of the rotors across different regions of the phase
diagram. Our results are summarized in Fig. 4, showing data for
three representative U at various temperatures. To study the
dynamics, we subtract the static part of the inverse susceptibility
and focus on the spin polarization χ−1(q, ω)− χ−1(q= 0, ω= 0)
(for details of what follows see Supplementary Note 2 and 3).
Deep in the FM phase, Fig. 4a, we find an ω2 dependence
(dynamical exponent z= 1). This is similar to that of the bare
rotor model, and indicates that the fermionic contribution to the
dynamics is negligible because of the spin gap. Similarly, deep in
the Fermi liquid phase, Fig. 4c, we find an ω2 dependence, except
at the lowest frequencies, which furthermore extrapolates to a
nonzero value. The saturation is readily understood as resulting
from the non-analyticity of the Lindhard function which implies
χ−1(q= 0, ω→ 0) ≠ χ−1(q→ 0, ω= 0) at weak coupling. In the
quantum-critical regime, Fig. 4b, we find a qualitatively different
behavior indicating strong fermionic correlations.

First, at higher frequencies we find a linear frequency
dependence (z= 2), which does not saturate to a finite value.
This is surprising at first glance, since Landau damping for a
ferromagnet has an ω/q form (z= 3) rather than linear ω. We
note that, in purely electronic models χ−1(q, ω) is required to be
non-analytic at any coupling strength due to spin conservation,
and non-analytic behavior was seen previously in simulations of
Ising-ferromagnets. However, in our simulations of the XY
model, the order parameter is not conserved, leading to linear
frequency dependence, in direct contrast to Ising model studied
in refs. 30,31.

Second, at lower Matsubara frequencies accessible at lower
temperatures, the ω2 behavior is again restored even in the
quantum-critical region. As discussed above, this is again a direct
result of the formation of a gap—this time the pseudogap, which
depletes the low-energy fermion density of states and reduces the
fermionic feedback on the bosons.

Fig. 3 Re-entrance. Evolution of the Fermi surface (FS) from non-
interacting system with Hf in a, to the nFL FS subjected to strong FM
correlation at U= 5.9, T= 0.1 in b, and eventually to the FS in the PG phase
at U= 5.9, T= 0.05 in c. The spectral weights are normalized with the
same scale. The system size is L= 12 and the twisted boundary condition in
the fermion hopping is applied such that the momentum resolution is 4
times larger in both kx and ky directions.
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Fig. 4 Magnetic dynamics. Inverse bosonic dynamic susceptibility χ versus ωn in three different regions, at U= 3, 6, 8, corresponding a in the FM phase,
b in PG and SC phases, and c disordered phase. a log-log plot for various system size L= 6, 8, 10, 12, 14, each of which includes various β= 12, 16, 20, 24.
Red line is a quadratic line of χ−1 ~ω2 for low frequency part ωn < 1. b log-log plot for various β= 10, 16, 20, 24, 30 with L= 12. At temperature T= 0.1
(β= 10), the fermions are in the quantum critical regime, the bosonic susceptibility is the linear function of ω, as indicated by the orange line. When
temperature gets lower, the fermion goes into PG phase, prompting the bosonic scaling behavior to deriviate from linear function. And upon entering the
SC phase, the χ−1 ~ω2 (the blue line, a guide to the eye) as in the FM phase. c Bosonic susceptibility in the disordered phase at U= 8 plotted for system
size L= 6, 8, 10, 12 with various β= 12, 16, 20, 24. At high frequency all data points successfully merge together, as indicated by the red line quadratic in ω
for ω > 1. At low frequency, the χ−1 ~ω as indicated by the blue line, which is a guide to the eye, due to the non-conserved rotor order parameter.
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From the analysis above, we see that the spin dynamics is
consistent with the quantum-critical behavior and PG physics.

Discussion
In this work, we performed a large-scale quantum Monte Carlo
simulation of a FM spin-fermion model. We reported direct
spectral and thermodynamic evidence of the formation of a PG
prior to the SC transition. Within such a PG phase, the tem-
perature evolution of the fermion spectral gap exhibits a gap-
filling behavior, in sharp contrast with that of a conventional
superconductor. Moreover, we found that the dynamics of the
spin fluctuations display a different behavior than the well-known
Landau damping behavior with z= 3.

Remarkably, we were able to reconcile all these features with
theoretical predictions of Eliashberg theory and its generalization
to the γ-model. Experimentally, PG phases have been observed in
various unconventional superconductors49,50, most notably the
cuprates51. Our results imply that a PG arising from strong
dynamical fluctuations should be ubiquitous in quantum-critical
metals, and we expect this to be a fruitful direction for future
research.

Methods
QMC simulations and data analysis. We employ the determinant quantum Monte
Carlo (DQMC) method20,30 to simulate the Hamiltonian in Eq. (1). The quantum rotor
model plays the role of the auxiliary field in the conventional DQMC and the quantum
rotor model can be efficiently simulated with non-local update scheme developed in our
previous work13. For each realization of the rotor in space-time, the fermion deter-
minant is evaluated with the kinetic part and the coupling part of the Hamiltonian
included as the configurational weight and the Markov chain of the Monte Carlo
process is carried out according the weight. Detailed measurements of the physical
observables are given in the Supplementary Note 2.

In order to obtain real-frequency spectral functions, the SAC scheme is
employed to obtain the spectral function N(ω) from the imaginary-time correlation
function G(τ),

GðτÞ ¼
Z 1

�1
dω

e�ωðτ�β=2Þ

2 coshðβω=2ÞNðωÞ ð3Þ

It is known that the problem of inverting the Laplace transform is equivalent to
find the most probable spectra N(ω) out of its exponentially many suggestions
to match the QMC correlation function G(τ) with respect to its stochastic
errors, and such transformation has been converted to a Monte Carlo sampling
process52–54. This QMC-SAC approach has been successfully applied to
quantum magnets and interacting fermion systems ranging from the simple
square lattice Heisenberg antiferromagnet55 to deconfined quantum critical
point and quantum spin liquids with their fractionalized excitations56–58 and
to the continuum model of twisted bilayer graphene and benchmarked with the
exact solution at the chiral limit59,60.

Theoretical analysis. We analyzed the QMC data for fermionic and bosonic
response using the modified Eliashberg theory, which is a low energy effective
dynamical theory for itinerant fermions near a QCP at finite temperatures. The
theory accepts as parameters the static properties of a coupled fermion-boson
system near a QCP, e.q. fermion bandstructure, bosonic susceptibility, etc., and
computes the dynamical response of the system in terms of the fermionic self
energy Σ(k, ωn) and bosonic self energy (polarization) Π(q, Ωn), taking into
account the low energy excitations near the FS. It accounts for deviations from the
canonical T→ 0 quantum critical behavior, e.g., deviations from the Σ � ω2=3

n nFL
self energy, and from the Landau damping Π ~Ωn/(vF∣q∣) as discussed in the main
text. For details on the method see refs. 31,34.

We applied the theory to our QMC data, both to verify our assumptions on
the normal state of the system and to extract the effective fermion-boson
coupling. In the bare theory, the coupling �g � K2, but it is renormalized by
fermions with energies of order of the bandwidth, so it should be extracted by
fitting from the QMC data. We present results for U= 6 which is almost above
the QCP in Supplementary Fig. 13, showing good agreement between theory and
data. For details of the fitting procedure and a discussion of the quality of the fits
are presented in Supplementary Note 4. We found �g ¼ 6:3 ± 0:2, representing
about a 20% renormalization of the bare vertex K, which is consistent with
earlier works34.

Finally, we used the obtained �g to predict TPG within Eliashberg theory (the
γ−model). Our model corresponds to γ= 1/3. The analytical prediction for TPG
can be found in ref. 6, and details of the conversion from our �g to the γ−model

parameters are in the Supplementary Note 4. We found TPG ≈ 0.08, in good
agreement with the QMC TPG ~ 0.1.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
All numerical codes in this paper are available upon reasonable request to the authors.
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