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High-throughput analysis of single human cells
reveals the complex nature of DNA replication
timing control
Dashiell J. Massey 1 & Amnon Koren 1✉

DNA replication initiates from replication origins firing throughout S phase. Debate remains

about whether origins are a fixed set of loci, or a loose agglomeration of potential sites used

stochastically in individual cells, and about how consistent their firing time is. We develop an

approach to profile DNA replication from whole-genome sequencing of thousands of single

cells, which includes in silico flow cytometry, a method for discriminating replicating and non-

replicating cells. Using two microfluidic platforms, we analyze up to 2437 replicating cells

from a single sample. The resolution and scale of the data allow focused analysis of repli-

cation initiation sites, demonstrating that most occur in confined genomic regions. While

initiation order is remarkably similar across cells, we unexpectedly identify several subtypes

of initiation regions in late-replicating regions. Taken together, high throughput, high reso-

lution sequencing of individual cells reveals previously underappreciated variability in repli-

cation initiation and progression.
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Faithful duplication of the genome is a critical prerequisite to
successful cell division. Eukaryotic DNA replication initiates
at replication origin loci, which are licensed in the G1 phase

of the cell cycle and fired at different times during the S phase. In
many eukaryotes, sequencing of cells at different stages of the cell
cycle has been used to profile DNA replication timing, which
measures the relative time that different genomic regions are
replicated during S phase (reviewed in1). This replication-timing
program is highly reproducible across experiments2, suggesting
strict regulatory control; and conserved across phylogeny3,4,
suggesting selection under evolutionary constraint. However, the
molecular mechanisms that determine the locations and preferred
activation times of replication origins in mammalian genomes
remain unclear. Furthermore, debate persists over whether the
reproducible nature of the replication-timing program reflects the
consistent activity across cells of specific individual replication
origins or stochastic firing of different origins in different cells
within a given region. Ensemble replication-timing measurements
have been interpreted to indicate that replication is organized in
broad domains, spanning hundreds of kilobases to several
megabases, with consistent replication timing governed by the
activity of clusters of replication origins5,6. Furthermore, some
recent replication origin-mapping methods have indicated that
replication origins are highly abundant and highly dispersed
throughout the human genome1,7, suggesting that many sites may
function as origins used in a subset of cell cycles. In contrast,
high-resolution measurements of hundreds of human replication-
timing profiles8,9, or replication timing across multiple S-phase
fractions10, support initiation of replication from more localized
genomic regions. While these replication-timing methods reveal
genomic regions that reproducibly replicate at characteristic times
during S phase, it remains contested whether these represent a
conserved pattern across cells or reflect the average behavior of
single cells. Previous work has modeled how the stochastic firing
of replication origins could be sufficient to explain the
replication-timing profile11,12, and single-molecule experiments
(e.g., with DNA combing) have suggested that cells may use
different subsets of origins in each cell cycle13,14.

Recently, replication timing has been analyzed by single-cell
sequencing of several hundred mouse or human cells15–17. These
studies focused on cells in the middle of S phase and analyzed
replication at the level of domains, concluding that stochastic
variation exists in replication timing and is the highest in the
middle of S phase. However, single-molecule and single-cell
studies have been limited in their throughput and biased toward
early S-phase or mid-S-phase, respectively. Analyzing many cells
is particularly important, given that even when the whole genome
is captured, a single cell provides only a snapshot of DNA
replication at a single moment in time. By assaying many cells at
different stages of S phase, it is possible to string these snapshots
together to construct a picture of replication states over time.
However, the resolution of this picture will be dependent both on
capturing cells at many stages of S phase and on assaying a large
number of cells.

Here, we report the analysis of whole-genome sequencing of
thousands of single replicating cells across ten human cell lines.
We developed an in silico approach to sort cells by cell cycle state,
allowing us to capture cells throughout the full duration of S
phase, and to analyze them in any number of sub-S-phase frac-
tions down to single-cell resolution. We found that single cells
within a given cell line largely used a consistent set of replication-
initiation regions, which were discrete genomic loci rather than
megabase-scale domains. Furthermore, these initiation regions
fired in a predictable, albeit not fixed, order. Some initiation
regions were consistently fired early in S phase across cells, while
others were fired consistently late. However, we also identified a

subset of rarely fired initiation regions with a preference for early
firing and another subset that fired throughout S phase. We
conclude that a consistent set of replication origins explains the
vast majority of replication-initiation events in single cells, and
that existing models of replication timing fall short of explaining
the diversity of firing-time patterns.

Results
High-throughput measurement of single-cell replication. Pre-
vious sequencing-based studies measured DNA replication timing
in a relatively small number of cells, mostly limited to mid-S-phase
cells15,16. To analyze single cells, these studies performed DNA
amplification using degenerate oligonucleotide-primed PCR
(DOP-PCR), with one reaction per cell. Due to technical noise
introduced during amplification, these studies were limited to
analyzing replication timing at the level of large chromosomal
domains (typically on the order of megabases). As an alternative
approach, we devised a method to study DNA replication timing
across the entire span of S phase, in hundreds to thousands of cells,
and with higher spatial resolution than previous methods. Speci-
fically, we used two microfluidic systems that isolate and barcode
single-cell DNA: the 10x Genomics Single Cell CNV platform,
which performs multiple-displacement amplification (MDA) on
pooled barcoded cells, and direct DNA transposition single-cell
library preparation (DLP+)18, which is an amplification-free
method. Both library-preparation methods were followed by
whole-genome sequencing of single cells. With each platform,
automation of labor-intensive steps allows for dramatic increases in
throughput. In addition, recent studies suggest that improved
MDA protocols may have reduced noise relative to previous single-
cell amplification methods19.

As an initial proof-of-principle, we analyzed 5793 cells from
the human lymphoblastoid cell line (LCL) GM12878 isolated with
the 10x Genomics system, following fluorescence-activated cell
sorting (FACS) of G1-, G2-, and several fractions of S-phase cells.
The resulting sequencing data were sufficient to distinguish
replicating cells from nonreplicating cells across a fivefold range
of sequencing read depths (50–250 reads per Mb). Specifically,
local read depth fluctuated more in replicating cells relative to
nonreplicating cells of similar coverage (Fig. 1a). To validate that
these fluctuations could be used to computationally distinguish
replicating cells from nonreplicating cells within an unsorted
population, we quantified them using MAPD (median absolute
deviation of pairwise differences between adjacent genomic
windows20), which scales proportionally to read depth (Methods).
Indeed, FACS-sorted G1- and S-phase cells had distinct linear
relationships between scaled MAPD and average read depth
(Fig. 1b). Therefore, we were able to computationally assign each
cell as “G1” or “S” (Fig. 1b), and compare the resulting fractions
to the FACS labels. In silico sorting was highly concordant with
FACS labels (Fig. 1b; Supplementary Fig. 1), allowing us to
perform additional experiments without FACS. Accordingly, we
sequenced an additional three GM12878 samples without cell
sorting, recovering an additional 3787 cells in total. We analyzed
these cells together with the sorted cell libraries, as described
below.

Post hoc in silico cell sorting from single-cell sequencing has
two major benefits over sequencing single cells isolated from
multiple flow cytometry-sorted populations. First, sequencing
biases (particularly, GC-content bias21) are known to vary
between sequencing libraries, a concern alleviated by using
control cells from within the same library as the cells of interest.
Second, this approach minimizes experimental manipulations,
does not require DNA staining, and reduces interexperimental
variation, for instance, in defining FACS gates. However, other
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strategies may be more cost-effective: typical mammalian cell
cultures contain up to ~30% of cells in S phase at any given time.

Using a conservatively defined subset of nonreplicating cells
identified by this in silico cell-sorting approach, we defined
variable-size, uniform-coverage genomic windows that accounted
for the effects of mappability and GC-content biases, as well as
copy-number variations, on sequencing read depth22. (We note
that in silico sorting cannot distinguish G2 cells from G1 cells
because, in principle, both have a uniform copy number genome-
wide. We will therefore refer to these cells as “G1/G2 cells”
throughout.) We counted the number of sequencing reads in each
window for each cell (Supplementary Fig. 2), and then used a
two-state hidden Markov model (HMM) to infer whether each
window contained replicated or unreplicated DNA (Methods).
This confirmed the uniform DNA copy number across the

genome in G1/G2 cells, and fluctuating regions of replicated and
unreplicated DNA in S-phase cells (Fig. 1c). We further validated
the HMM by simulation, estimating that, on average, 96.4% of
20-kb windows were called accurately in each cell (Supplementary
Fig. 3).

Our proof-of-principle FACS experiment also revealed cross-
contamination between fractions: in silico sorting labeled ~24.3%
of cells in the G1-phase FACS fraction as “S” and reciprocally
~25.1% of cells in the S-phase fractions as “G1/G2” (Supplemen-
tary Fig. 1). However, because the objective of in silico sorting is
to identify high-confidence G1/G2 cells to use as controls, it is
designed to be conservative in labeling cells as “G1/G2”. We
therefore suspected that this estimate of S-phase cells in the G1

FACS fraction was inflated. Indeed, after HMM processing, 260/
323 cells in the G1 fraction initially called as “S” were reassigned

Fig. 1 Discrimination of replicating and nonreplicating cells by in silico flow cytometry. a Nonreplicating G1-phase cells (e.g., Cell 1) display relatively
uniform read depth across the genome, whereas S-phase cells (e.g., Cell 4630) display fluctuations in read depth, consistent with two underlying copy-
number states. Dots represent read count in 200 kb windows. b Flow-sorted single cells (left) can be accurately sorted in silico (right). Replicating S-phase
cells display a higher degree of read-depth fluctuation relative to nonreplicating G1-phase cells sequenced to equivalent coverage (quantified by scaled
MAPD, median absolute pairwise difference between adjacent genomic windows). Left: cells are labeled as G1- (gray) or S-phase (green) based on FACS.
Only G1- and S-phase fractions are shown. Right: the same cells are labeled as G1 or S based on scaled MAPD, revealing widespread cross-contamination.
c Replication profiles were inferred for each single cell, using a two-state hidden Markov model. Nonreplicating cells (e.g., Cell 1) display a single copy
number (2N), while replicating cells (e.g., Cell 4630) display two distinct copy-number states (2N, 4N). Dots represent inferred replication state in 20 kb
windows. The same region is shown from a. d Aggregating data across S-phase cells into one or more fractions reveals a consistent structure of replication
progression at different times in S phase. Top: ensemble replication timing inferred from all S-phase cells (green) was highly correlated with bulk-
sequencing replication timing for the same cell line (black). Middle, bottom: single cells were aggregated into 10 or 100 fractions based on S-phase
progression. Triangular pileups of high read depth (caused by replication in most/all cells in the fraction) are observed in discrete locations across the
chromosome, suggesting bidirectional replication progression originating at fixed loci. Each row represents one fraction (containing multiple cells).
Columns represent 20 kb windows. Low-mappability regions (white) have been masked.
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as G1/G2. The remaining 63 cells (4.7% of the G1 fraction) were
confirmed S-phase cells, displaying copy-number profiles con-
sistent with early S-phase and indistinguishable from early
S-phase cells in the S-phase fraction (Supplementary Fig. 1).
We further analyzed a published dataset of 1475 cells from the
human melanoma cell line COLO-829, for which FACS was used
to isolate exclusively G1 cells23. In this dataset, in silico sorting
labeled 233 cells (15.8%) as “S”, of which 32 cells were confirmed
to be in S-phase (cross-contamination: 2.2%; Supplementary
Fig. 4). Thus, in silico sorting using single-cell sequence DNA is a
viable strategy for identifying control (G1/G2) cells within an
unsorted library, and when used in combination with the HMM,
provides greater sensitivity to FACS.

A discrete benefit of single-cell data is the ability to aggregate
similar cells together, effectively increasing the coverage without
masking important heterogeneity between subsets of cells.
Because the partitioning happens in silico, we can consider many
different single-cell aggregates of the same data, from a single
fraction (spanning all of S phase) down to single cells (wherein
each cell is its own fraction). We generated several such
aggregates, partitioning cells based on their progression through
S phase (% of genome replicated) and summing per-window read
counts across cells (Fig. 1d). Validating this approach, the single-
fraction profile—analogous to an ensemble S/G1 replication-
timing profile22— was highly correlated to a bulk replication-
timing profile for the same cell line (r= 0.90). Partitioning cells
into 10 fractions, a structure emerged similar to that seen in high-
resolution Repli-seq10: triangular pileups of high read depth
(corresponding to active replication) around peaks observed in
bulk sequencing. Many of these regions of high read depth were
evident in every fraction, although some (e.g., Fig. 1d, ~13.8 Mb)
first appear later in S phase. This same structure was observed—at
higher resolution—when cells were partitioned into 100 fractions.
Thus, by this approach, we can capture sub-S-phase events across
all of S phase without the risk of FACS cross-contamination, at a
resolution for which FACS is infeasible (i.e., 100 fractions), and
with the ability to examine the same population of cells at
multiple levels of resolution.

The logical extension of this partitioning approach is to
consider each cell as comprising its own fraction. After filtering
out cells that were not replicating or for which a twofold
relationship was not observed between copy-number states, we
analyzed 2437 single GM12878 cells. At this single-cell resolution,
we observed consistent pileups of distinct replicated and
unreplicated segments across cells (Fig. 2a). These pileups were
in the same regions observed as peaks in the bulk-sequencing
profile and sub-S-phase fractions, underscoring that these regions
correspond to locations of active replication progression, centered
at one or more replication origins. Even at single-cell resolution,
these pileups were triangular (Fig. 2a, insets), consistent with
symmetric bidirectional replication-fork progression from a
common origin locus (or a tight cluster of replication origins),
and appeared visually to be highly localized. Thus, we
demonstrate the ability to measure single-cell replication timing
in thousands of single cells, in an unbiased manner, and without
the need for FACS. This represents roughly ten times more cells
than have been reported in previous single-cell replication-timing
analyses, which have focused primarily on mid-S-phase cells15,16.

We repeated this analysis using single-cell data for 3040 cells
from the LCL GM18507, prepared using DLP+18. We identified
759 replicating cells within this dataset, and again observed
pileups in consistent genomic regions, close to peaks in the S/G1

aggregate replication-timing profile (Fig. 2b). This dataset enabled
us to benchmark our analysis strategy in the absence of
amplification bias, ensuring that the observed single-cell pileups
were not a persistent technical artifact of the 10x Genomics

amplification method and validating the ability to accurately
profile single-cell replication timing in hundreds to thousands of
cells across multiple single-cell sequencing technologies.

Sites of replication initiation are consistent in single cells. The
nature of DNA replication initiation events is among the most
debated aspects of mammalian DNA replication, both regarding
its spatial scale (specific loci24–27, localized regions28–30, or broad
domains5,6) and the degree of spatial and temporal stochasticity
across cells1,11,12. Our comprehensive single-cell DNA replication
data enable us to rigorously address these subjects.

We focused first on the spatial dimension of variability among
cells. As noted above, visual inspection of replicated-region
pileups revealed very little variation across single cells (Fig. 2;
Fig. 3a). To analyze this axis of variation systematically, we began
by identifying replicated segments in each single cell. Each
replicated segment, which we termed a track (by analogy to
single-molecule DNA combing tracks), represents the activity of
at least one replication origin. Theoretically, if a replication track
corresponds to a single replicon, initiating from one origin and
expanded by symmetric progression of sister replication forks, the
origin of replication should be located at the center of that
replication track. Thus, as a first approximation of origin
locations, we assigned the midpoint of each replication track as
the most likely location of replication initiation for that track.
(We excluded tracks longer than 1Mb in this initial analysis to
reduce the likelihood of including tracks that reflected the activity
of multiple independent origins that have converged).

Consistent with previous work suggesting that replication-
initiation potential is diffuse throughout the genome7, we found
that 49.7% of mappable 20kb genomic windows were called as a
probable initiation site in at least one cell. However, these
probable initiation sites were not uniformly distributed across the
genome. Rather, highly frequent initiation sites were neighbored
by gradually less frequent initiation sites, creating peaks around
these local maxima (Fig. 3a). This structure suggests that a more
limited group of genomic loci might give rise to replication
initiation, as ambiguity in identifying the boundaries of replica-
tion tracks would result in slight shifts in the probable initiation
site from the true midpoint to a neighboring locus and the
observed gradual decrease in initiation frequency with increasing
distance from that true midpoint.

Based on the conclusion that noise in individual cells was likely
contributing substantially to variation in initiation-site location,
we devised an approach to cluster these sites into larger initiation
regions (IRs) shared across cells, which did not rely on a 1-Mb
length cutoff to determine which replication tracks were
informative about individual origins and which represented the
activity of multiple independent origins. Instead, replication
tracks that overlapped multiple shorter replication tracks were
treated as agnostic to IR location because they could plausibly be
explained by firing of multiple of the overlapped origins or of a
single central origin. These uninformative tracks were thus
excluded from use in clustering. By this process, we identified a
total of 7522 IRs.

As noted above, single-cell pileups corresponded visually to
peaks in the S/G1 aggregate replication-timing profile (Fig. 2;
Fig. 3a). Indeed, 90.9% of peaks in the aggregate profile coincided
with an IR. Of these aggregate peaks that overlapped an IR, 48.7%
corresponded to multiple IRs (e.g., Fig. 3b, left), while the
remaining 51.3% corresponded to a single IR (e.g., Fig. 3b, right).
This suggests that origins are often clustered in hotspots along the
chromosome; the replication-timing peaks corresponding to
single IRs could either be regions of lower origin density or,
conversely, represent hotspots too dense for individual origins to
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be detected at this resolution. Thus, single-cell data are
concordant with the ensemble replication-timing profile, but also
caution that smoothing of ensemble profiles likely removes
information about distinct initiation sites.

We then assigned all replication tracks shorter than 1Mb to
the IR whose center was closest to the midpoint of the track. This
includes tracks that potentially overlap multiple fired IRs;

however, when all replication tracks assigned to a given IR were
sorted by length, a symmetric triangle was observed around the
IR center (Fig. 3c), consistent with sister replication forks
progressing away from a single origin or tight cluster of origins
at the IR center with similar processivity. For each IR, we
calculated how tightly the midpoints of these replication tracks
were clustered to assess how precisely the most probable

Fig. 2 Single-cell replication-state data, generated by multiple library preparation protocols. a Single-cell replication profiles for 2242 GM12878 cells
(including both sorted and unsorted cells), following single-cell isolation and library preparation with the 10x Genomics Single-Cell CNV Solution.
Consistency of the replication program is observed across cells at chromosome scale and at the level of individual peaks (inset). Pileups reflect sharply
defined and consistently replicated regions, which overlap peaks in the bulk replication-timing profile. Variation in activation time during S phase among
initiation sites is also observed to mirror the replication-timing profile. Each row represents a single cell, sorted by the percent of the genome replicated,
and each column represents a fixed-size window of 20 kb. In total, 195 cells are not shown due to copy-number aberrations on this chromosome. Low-
mappability regions and cell-specific copy-number alterations have been masked (white). Insets show smaller regions. b Single-cell replication profiles for
519 GM18507 cells, following amplification-free direct DNA transposition single-cell library preparation (DLP+). Due to noise, only 480–614 of the 759
S-phase cells were analyzed for any given chromosome. Raw data are from18.
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Fig. 3 Consistency of single-cell replication-initiation sites. a Peaks in the aggregate replication-timing profile inferred from all GM12878 S-phase cells
(top) correspond to consistently replicated segments across single cells (middle), and to regions of dense initiation-site calls (bottom). b Replicated regions
in single cells are centered at consistent locations, termed initiation regions (IRs), overlapping peaks in the aggregate replication-timing profile. For each IR
(black line), a subset of cells contained a replicated track (green) overlapping the IR center but not extending into either neighboring IR. Some aggregate
peaks corresponded to multiple IRs. c Assignment of replicated tracks to the nearest IR revealed a triangle centered at each IR, consistent with symmetric
replication-fork progression. In contrast to b, some tracks extended into a neighboring IR (likely reflecting passive replication). This larger set of replication
tracks was used to define IR location: the midpoint of each track was called as an initiation site and IRs were defined as the region between the 25th and
75th percentile of their corresponding initiation sites. Black lines indicate the IR center (median). IR width is displayed on the right y axis. d The location of
each IR was identified at kilobase scale (median width: 87.5 kb). IRs supported by <5 replication tracks were excluded. e About 78.9% of IRs were localized
to a region 100 kb or narrower. In the example shown, 59 replication tracks overlapped the IR. The 25th–75th percentile of midpoint locations for these
tracks fell within a 60 kb range (dotted lines). f Broad IRs may reflect the presence of multiple distinct initiation events that were not disambiguated,
technical noise, or mild asymmetry in replication-fork progression. In the example shown, 62 cells overlapped the IR. Visually there appear to be multiple
distinct clusters of track midpoints. See Supplementary Fig. 5.
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initiation site within the IR was identified. IRs were localized to a
median width of 87.5 kb (~4 windows, Fig. 3d), which
corresponds to an inter-IR distance of 50–920 kb (median:
260 kb). Most IRs (78.9%) were 100 kb or narrower (e.g., Fig. 3e).
Visual inspection of broad IRs (>120 kb) suggested that many
contain multiple initiation events that were grouped together
because of overlap between replication tracks (Fig. 3f; Supple-
mentary Fig. 5). Thus, while we cannot determine whether IR
width (and variability in IR width) reflects technical noise,
inconsistency between cells in the precise location of initiation, or
mild asymmetry in sister replication-fork progression, we
conclude that initiation events are relatively localized and that
at least some of the IR widths are likely overestimated. Localized
initiation regions are also apparent in the early S fractions of the
10- and 100-fraction profiles (Fig. 1d), where the impacts of noise
are averaged across many cells.

In our analysis of IRs, we did find evidence of ectopic replication
initiation: only 29.2% of IRs contained a peak in the S/G1 aggregate
profile, and 31.5% of IRs were supported by a single replication
track. However, these potentially ectopic events comprised a small
fraction of all observed initiation events. Rather, 2595 IRs (34.5%)
accounted for 90% of all replication tracks, indicating that about a
third of the IRs are used consistently across cells. Thus, contrary to
previous studies that analyzed single-cell replication profiles at the
level of large chromosomal domains15,16, our data reveal localized
initiation regions, which we assume correspond to individual, or
tight clusters of, replication origins.

Consistent yet nondeterministic order of replication initiation.
Given that single cells appear to initiate replication primarily
from a consistent set of genomic locations, we turned our focus to
the temporal axis of variation: how consistent is the order in
which single cells initiate replication at these loci?

We first asked whether the single-cell data were compatible
with strictly determined replication timing, such that every cell
initiates replication at every IR in the same order. Strict
determinism provides a straightforward prediction to test: the
number of IRs replicated in any given cell should predict which
IRs have been replicated in that cell. For example, a cell that has
replicated one IR is predicted to have replicated the IR with the
earliest replication timing; a cell that has replicated 100 IRs is
predicted to have replicated the 100 IRs with earliest replication
timing; and so on. To test how well these predictions matched our
data, we counted the number of IRs that were replicated in each
cell and used that to assign each IR in that cell an “expected” state
—either unreplicated or replicated—assuming that the firing
order was fixed (Fig. 4a, b). For a given IR, the observed
replication state matched the predicted state in the vast majority
of cells (Fig. 4c), indicating that the firing of IRs in single cells
follows a highly predictable order. However, we did observe that,
on average, an IR differed from its expected state in 11.1% of cells
(Fig. 4d). Thus, we can formally rule out the hypothesis that
replication timing is strictly determined; IR firing order at the
single-cell level is orderly but not entirely predictable.

Having observed variation across cells, we next asked if that
variation was uniform across S phase or concentrated at specific
times during S phase. We found a parabolic relationship between
replication timing of an IR and the proportion of cells that fired
that IR out of the strictly determined order. Thus, variability was
lowest at the beginning and end of S phase and highest in the
middle of S phase, such that 83.4% of the above-average
variability occurred in the 53.7% of IRs with aggregate replication
timing between 1 and −1. A similar parabolic trend was
previously described by Takahashi et al.15 and was robust in
our larger sample size.

We next considered the extent of firing-time variability, asking
when in S phase IRs fire in the instances that they fire out of the
predicted order. To answer this question, we identified the least-
replicated (i.e., earliest) cell in which an IR was observed to fire
and the most-replicated (i.e., latest) cell in which it had yet to fire
(Fig. 4e). We found that there was an association between the
earliest time that an IR fired and its replication timing in the S/G1

aggregate replication profile (r=−0.64, Fig. 4f), indicating that
IRs with late aggregate timing (hereafter, “ensemble late IRs”)
tended to start replicating later in S phase than those with early
aggregate timing (“ensemble early IRs”). However, most IRs were
observed to have fired in a subset of early S-phase cells: 49% of
GM12878 IRs fired at least once in a cell with <10% of its genome
replicated, 83% in a cell <25% replicated, and 96% in a cell <50%
replicated. Thus, many ensemble late IRs were not restricted to
firing in late S phase. There was also an association between how
late into S phase an IR remained unfired and its aggregate
replication timing (r=−0.66, Fig. 4g). Thus, ensemble early IRs
tended to finish firing across all cells relatively early in S phase,
while ensemble late IRs tended to remain unfired into late
S phase.

After determining these earliest and latest cells for each IR, we
considered them in a paired manner to determine the range of
firing times of each IR (Fig. 4h). Given that range is sensitive to
outliers (i.e., a duplication called as “replicated” or a deletion
called as “unreplicated”), we focused on IRs for which the
minimum and maximum values were “corroborated” by a second
cell within 10% of S phase from the extreme. Ensemble early IRs
tended to first fire in early S phase and to complete their
replication before the genome was 50% replicated. In contrast,
ensemble late IRs tended to also first fire in early S phase, but to
remain unfired in some cells until the end of S phase. Therefore,
the firing time of ensemble early IRs was constrained to early S
phase, while ensemble late IRs appeared to be less constrained.
However, we did observe a small number of IRs that fired
exclusively in late S phase across cells; these had a more
constrained range. We thus proceeded to further analyze these
different behaviors in regions with late aggregate replication
timing.

Ensemble late-initiation regions comprise multiple subtypes.
Our analysis of single-cell replication timing indicated that IRs
are fired in a consistent order across most cells, but that ensemble
late IRs fire across a larger portion of S phase relative to ensemble
early IRs (Fig. 4h). We further dissected the nature of these IRs
with large firing ranges to better understand whether we were
capturing rare occasions of extremely premature firing or perhaps
observing a capacity of IRs to fire throughout S phase. In other
words: do these IRs fire substantially ahead of schedule in some
cells, or do they not have a scheduled time to fire at all?

We found that each of these two explanations for a large range
of firing times were supported by a substantial fraction of IRs, and
that neither behavior was sufficient to explain all cases on its own
(Fig. 5a). This indicates that some ensemble late IRs tend to fire
late but sometimes fire very early, while others fire at many
different times in S phase. Specifically, 12% of IRs (27.3% of
ensemble late IRs) fired inconsistently throughout S phase
(Fig. 5b, e), with earlier aggregate timing corresponding to more
cells firing the IR (compare Fig. 5b top left vs. top right). On the
other hand, 27% of IRs (63.7% of ensemble late IRs) fired rarely
and almost all the replication tracks associated with these IRs
were from cells <50% replicated (Fig. 5c, e). Finally, 4% of IRs
(9.0% of ensemble late IRs) were never observed to fire in a cell
<50% replicated (Fig. 5d, e). Comparing these three classes, IRs
that fired throughout S phase tended to have the earliest aggregate
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Fig. 4 Variation in the order and timing of replication initiation in single cells across S phase. a An example region illustrates analyses of IR firing order
(b–d) and firing time (e–h). Black lines indicate the three IRs in b and e. Purple asterisks indicate the earliest and latest observed firing times. b IRs differ in
their degree of consistency across cells. IRs were ranked from earliest to latest, allowing prediction of their replication state under a strict firing ordering.
Cells that have replicated an IR not predicted to fire are considered “premature” (red), while those that have not replicated an IR predicted to have fired
already are “delayed” (blue). c IRs are fired in the expected order in most cells. Columns represent IRs, ranked from earliest to latest (left-to-right). d IR
firing varies most for IRs expected to fire in mid-S phase. On average, IRs behaved differently than expected in 11.1% of cells (range: 0.3–29.7%). Dots
represent IRs. The purple line shows a second-order polynomial fit. e IR firing range spanned from the earliest observed fired cell to the latest observed
unfired cell. S-phase progression was measured as percent of the genome replicated. f, g For each IR, we identified the least-replicated and most-replicated
cell containing a replication track assigned to that IR. Dots represent IRs: black dots indicate IRs for which a second cell within 10% S-phase progression
“corroborated” the earliest and latest firing time. h Aggregate early IRs tended to have narrower ranges of firing times than aggregate late IRs. Vertical lines
represent IR firing range for IRs with corroborated values, color-coded by the % of S phase during which that IR fires (i.e., the length of the line). A small
number of constitutively late IRs (short red lines with late aggregate replication timing) can be observed.
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replication timing (median: −0.32 and as early as 0.54), while
constitutively late IRs had the latest aggregate timing (median:
−1.22, Fig. 5f). These unexpected results demonstrate that the
late-replicating regions observed in ensemble assays contain
origins with heterogeneous firing behavior; these results cannot
be fully explained by either a deterministic timing model (which
posits these regions contain constitutively late-firing origins) or
existing stochastic firing models (which posit that these regions
contain low-efficiency origins that become increasingly likely to
fire as S phase progresses11).

Single-cell replication timing across cell lines throughout S
phase. Having established a workflow for high-throughput
replication analysis of unsorted cells, we performed whole-
genome sequencing of 9658 single cells across eight additional cell
lines: two LCLs, three embryonic stem cell lines (ESCs), and three
cancer cell lines. As with GM12878, we performed in silico cell
sorting to distinguish replicating and nonreplicating cells within
each library (Supplementary Fig. 6a). For each cell line, we gen-
erated an aggregate S/G1 profile that was highly correlated to an
S/G1 bulk replication-timing profile for the same cell line

Fig. 5 Three distinct classes of IRs with late aggregate replication timing. a–d Ensemble late IRs can be classified into three classes based on their
behavior across single cells: some fire throughout S phase (b), some fire rarely but often fire early when they do fire (c), and some were never observed to
fire early (d). The IRs indicated with black lines in a are shown in the top row of b, c, and d. Additional examples are shown below. e About 27% of IRs with
late aggregate replication timing fire infrequently but with a preference for early S phase, while 12% fire throughout S phase. Constitutive late firing is rare
(4% of IRs). f IRs that fire throughout S phase (pink) tend to have earlier replication timing than the other two classes of IRs, while those that were
constitutively late (orange) had the latest average replication timing.
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(r= 0.84–0.97, Supplementary Fig. 7). We then generated repli-
cation profiles for between 110 and 501 S-phase cells across the
different cell lines (Fig. 6a, b; Supplementary Fig. 7).

The aneuploid breast cancer cell line MCF-7 highlights the
broader applicability of in silico sorting. While we apply this
method to focusing our analysis only on replicating cells, it is also
valuable in single-cell analysis of copy-number aberrations
(CNAs) in cancer. In that context, it is necessary to remove

replicating cells prior to CNA calling, since both replication and
duplications/deletions affect copy-number estimation. MAPD has
previously been used to filter out noisy cells in this type of
analysis23. However, aneuploidy inflates MAPD values (Supple-
mentary Fig. 6a, compare MCF-7 to other cell lines), making it
difficult to effectively set a threshold for filtering. In contrast,
explicit modeling of G1/G2 and S cell populations with distinct
linear relationships between read coverage and MAPD efficiently

Fig. 6 Comprehensive measurement of single-cell replication timing across cell types. a, b As in Fig. 2a, for the embryonic stem cell line H7 (a) and for
the breast cancer cell line MCF-7 (b). c Replication-timing variation between cell types is observed at the single-cell level. Top panel: bulk-sequencing
consensus replication-timing profiles for LCL (green) and hESC (blue). Lower panels: single-cell data reveal that the bulk-sequencing peaks at ~62Mb and
~65.5Mb reflect the presence of hESC-specific initiation sites. d Single cells follow cell-type-specific trajectories of S-phase progression, as determined by
principal component analysis (PCA). PCA was performed on replication states in all genomic windows across autosomes. PC1 corresponds to the % of the
genome replicated (r= 0.99), with negative values of PC1 reflecting early S phase and positive values reflecting late S phase. Cell types segregate along
PC2. Each dot represents a single cell. e, f All three categories of IRs with late aggregate replication timing described in Fig. 5 were also observed in H7 (e)
and MCF-7 (f).
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discriminates cells of interest (either for replication analysis or
CNA analysis, Supplementary Fig. 6b).

It has been well demonstrated in ensemble experiments that
cell types have distinct replication-timing programs, which are
shared by cell lines of the same cell type3,31,32. Thus, we asked
whether cell-type differences among these nine cell lines were
preserved at the single-cell level. Indeed, cell-type differences
among the aggregate replication-timing profiles were found to be
consistent at the single-cell level (Fig. 6c; Supplementary Fig. 8).
These differences in replication state between cell types were
sufficient to cluster single cells by cell line and cell type (Fig. 6d),
suggesting that individual cells of the same cell type follow a
similar trajectory through S phase. Two types of replication-
timing differences can be observed at the ensemble level:
differences in peak locations (i.e., in the location of fired origins)
and differences in peak amplitude (i.e., in the timing at which a
shared origin is fired). We observe both of these classes of
variation at the single-cell level: cell-type-specific peaks in the S/
G1 aggregate profile that reflect the presence of a cell-type-specific
initiation site (e.g., Supplementary Fig. 8a, right) and peaks of
different amplitude in the S/G1 aggregate that correspond to early
vs. late firing of a shared initiation site (e.g., Supplementary Fig. 8b,
left). Most intriguingly, we also observe a novel type of cell-type
difference invisible to ensemble profiling methods: a subset of cell-
type differences that appears to be driven by inconsistent usage of
an initiation site in one cell type (e.g., Supplementary Fig. 8a, left
~196.1Mb).

We proceeded to call IRs in each cell line and repeated the
above analyses of IR order and timing variability. Despite having
~10 times fewer cells relative to GM12878, we were able to
identify 1811–5055 IRs (compared with 7522 in GM12878) per
cell line in all cell lines, except for HCT-116 (discussed below). To
directly test the hypothesis that we identified fewer IRs because of
the smaller number of cells, we performed downsampling of the
GM12878 cell line and confirmed that the number of IR calls
rapidly increases with increasing sample size (Supplementary
Fig. 9). IRs called for other cell lines were slightly broader than
the GM12878 IRs, but still localized (median: 110–220kb,
Supplementary Fig. 10a). This suggests that increasing the
number of cells analyzed will likely yield additional IRs in all
cell lines and also further narrow their localization.

Patterns of initiation-site localization and timing variability
across cell lines were broadly consistent with those observed in
GM12878, even though the specific locations of IRs differed
between cell types. IRs were fired in a predictable but not fixed
order (Supplementary Fig. 10b) that was more disordered for
those IRs with mid-S-phase aggregate timing (Supplementary
Fig. 10c). With regard to firing time, ensemble late IRs fired early
in S phase in a subset of cells, although with the smaller sample
size, fewer IRs had multiple cells corroborating this behavior
(Supplementary Fig. 11a, b). This is consistent with how rarely
these events occurred per IR in GM12878 and suggests that these
events would be observed more frequently in other cell lines when
looking across a larger number of cells. However, the fact that so
many rare events are observed even in a sample size of ~200 cells
suggests that the full scope of variability remains underestimated,
including in GM12878.

Finally, the three classes of ensemble late IRs were present in
each cell line (except HCT-116), and two features were common
between GM12878 and other cell lines. First, rarely-used IRs with
a preference for early firing were more common than IRs that
fired throughout S phase; second, a small fraction (4–11% in most
cell lines) of IRs were constitutively late (Fig. 6e, f; Supplementary
Fig. 11c).

The outlier cell line was the colorectal cancer cell line HCT-
116, for which we recovered only 110 replicating cells and

identified only 768 IRs. In addition to wider IRs, with a median
width of 280 kb, 78% of IRs identified in HCT-116 were ensemble
early IRs. (In other cell lines, this value was close to 50%, in line
with the genome-wide replication-timing values.) This bias
toward discovering IRs in early-replicating regions creates the
impression that variability increases monotonically across S
phase, particularly when examining HCT-116 alone. These results
are presented alongside those of the other cell lines to illustrate
how a low cell count can bias IR identification and conclusions
drawn from subsequent analyses. However, while not particularly
informative about IRs in late-replicating regions, the data from
HCT-116 are not incompatible with the trends observed for early
IRs across cell lines.

In addition, we repeated all analyses for the DLP+GM18507
library. Single-cell replication profiles for this cell line were
noisier (Fig. 2b), and we called 12,952 IRs from 759 cells.
GM18507 IRs recapitulated the results from the 10x Genomics
cell lines, with the caveat that these cells were strongly skewed
toward mid-S phase (Supplementary Fig. 10; Supplementary
Fig. 11).

In summary, data from ten human cell lines encompassing
LCLs, ESCs, and cancer cell lines support the conclusion that
replication initiation occurs in localized regions that are largely
consistent across cells. Furthermore, patterns of heterogeneity in
origin firing order and firing time appear to be generalizable
across cell lines and cell types.

Discussion
While ensemble replication-profiling methods cannot capture
(and may be confounded by) cell-to-cell heterogeneity, previous
single-molecule and single-cell methods have been largely limited
in their throughput or accuracy. Here, we report a scalable
method for analysis of thousands of single replicating cells, across
multiple cell lines, and at kilobase resolution. We describe an in
silico strategy to sort cells across S phase, analogous to and more
accurate than traditional flow cytometry, and demonstrate how
this method enables simultaneous analysis of replication initia-
tion at population, subpopulation, and single-cell resolutions.
In addition, by focusing specifically on replication initiation
events called from single cells, we are able to identify which
cells are informative about which replication initiation sites,
capturing information that is analogous to that collected from
lower-throughput single-molecule studies. In a parallel study,
Gnan et al.33 developed a similar approach to use single-cell
sequencing data to infer DNA replication timing at large scale.

We find that single cells primarily initiate replication at con-
sistent loci, corresponding to peaks in the replication-timing
profile. Across cells, we are able to pinpoint the locations of 78.9%
of these initiation events to regions no larger than 100 kb (likely
overestimated due to low coverage), challenging the model that
there are megabase-long replication domains that are replicated
simultaneously5,6. Analogously, our data do not support the
existence of large constant replication regions (CTRs)34, parti-
cularly in early-replicating regions, for which we have more data.
While it is conceivably straightforward to envision how mea-
surements with limited resolution would give the impression of
domains or CTRs where none exist, it appears more difficult to
reconcile the sharp and discrete initiation peaks in our single-cell
data with the idea of large regions with constant replication
timing. In contrast, our data are consistent with recent high-
resolution studies that suggest that replication initiation is con-
fined to regions of several tens of kilobases7,10,30,35. Our obser-
vation that even tight peaks in ensemble replication-timing
profiles often encompass multiple discrete single-cell initiation
events lends further credence to the argument that initiation
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events are even more localized than measured here, with the
caveat that we cannot distinguish in our data between single
origins and tight clusters of nearby origins. We find evidence for
ectopic initiation from regions outside these commonly used
initiation regions (as in7), although these events comprise a small
fraction of overall events. While many previous studies of
mammalian replication origins relied on biochemical enrich-
ments of DNA-synthesis events and are therefore more prone to
false-positive identification of apparent initiation events, single-
cell DNA sequencing more reliably represents productive and
internally validated DNA replication1.

While spatial variability in replication initiation is rare, tem-
poral variation is more common. In general, initiation regions
(IRs) expected to fire in the middle of S phase are more variable
than those expected to fire earlier or later, consistent with pre-
vious reports15. At the level of individual IRs, we find that many,
particularly those with early aggregate replication timing, have a
preferred time of firing that is captured by the aggregate
replication-timing profile. IRs with early aggregate replication
timing tend to be fired in all cells early in S phase, while those
with late aggregate replication timing fire across a broader range
of S phase. We further find that late-replicating IRs can be
divided into multiple classes, with only a small subset (<10%)
firing constitutively late. Instead, most late IRs can and do fire
early—sometimes rarely and sometimes often.

Our data do not rule out the possibility of a global regulator (or
regulators) that dictates replication timing in a semideterministic
manner. However, they are also consistent with the more parsi-
monious model that origin-specific firing probabilities produce a
relatively consistent replication-timing landscape in single cells.
IRs with late aggregate replication timing that occasionally fire
early in S phase are consistent with this hypothesis: these rarely
early IRs could contain an inefficient origin (or clusters of inef-
ficient origins) that rarely fires but can be early firing when it does
fire, and this low efficiency is what is measured by the aggregate
replication-timing profile. The constitutively late IRs have
even later aggregate replication timing; under this same hypoth-
esis, they would be expected to fire early in S phase even less
often. Thus, we cannot rule out the possibility that the IRs we
observed to be constitutively late do sometimes fire early, but at
so low a frequency that this behavior was not captured in
our sample.

While our data are consistent with an important role for origin
firing efficiency in determining replication timing, the distinct
classes of initiation regions we describe also highlight a short-
coming of considering origin efficiency at the level of individual
loci: while low-efficiency origins would be expected to rarely fire
in early S phase, their probability of firing should remain constant
or even increase as S phase progresses11. In other words, origins
in late-replicating regions of the genome should fire throughout S
phase. Instead, we see that the majority (63.7%) of the inefficient
IRs have a low probability of firing in early S phase, and a neg-
ligible probability of firing later in S phase (Fig. 5e), suggesting
that the context of replication initiation changes across S phase in
a manner that has not been previously characterized.

Our results suggest that origin-specific firing efficiencies play a
key role in producing the replication-timing program; as such,
they underscore the value of future work parsing out the con-
tributions of DNA sequence, gene expression, chromatin acces-
sibility, and doubtless other factors to these firing efficiencies. At
the same time, a future model for replication timing must also
explain why many origins appear to have their highest probability
of firing at the beginning of S phase, rather than becoming
increasingly likely to fire as S phase progresses—and also why
that does not result in large regions of underreplication that
persist into G2 phase, as modeled in11.

While single-cell sequencing provides insight into cell-to-cell
variability that ensemble measurements cannot capture, such
experiments are also more expensive, more time-consuming, and
require more complex analysis methods. The approach we
describe here is limited by the high cost of existing commercial
microfluidics-based library-preparation methods, especially given
that not every cell will be informative about every locus. Thus,
there is a trade-off between sample size and information content
per cell. In this study, we have demonstrated that low per-cell
sequencing coverage is sufficient for distinguishing the twofold
copy-number difference between replicated and unreplicated
regions at ~20-kb resolution. However, we are unable to reliably
distinguish smaller differences in copy number, i.e., between 2
and 3, or between 3 and 4 copies. Increased resolution and/or
allele-specific mapping15,16 would be required to identify cases of
allelic asynchrony, especially those specific to individual cells. In
addition, single-cell sequencing is, at least currently, not the
optimal technology for identifying individual replication origins,
and existing origin-mapping methods (e.g., OK-seq30, EdUseq-
HU35, high-resolution Repli-seq10, or optical replication
mapping7) are better suited to this purpose. Origins identified by
these methods overlap well with ensemble replication-timing
profiles, as do the IRs we identified here.

Single-cell DNA sequencing of proliferating cell samples,
without experimental manipulation (e.g., cell synchronization or
sorting), can reveal the dynamics of DNA replication in exquisite
detail. Applying this approach across cell types, genetic back-
grounds, and experimental conditions will reveal how replication
is altered at the spatiotemporal level in different physiological
contexts. With constantly improving methods for high-
throughput single-cell isolation and accurate whole-genome
amplification19,36,37, this approach promises to become ever
more informative for the understanding of the DNA replication
timing program.

Methods
Cell culture. Lymphoblastoid cell lines (GM12878, GM12891, and GM12892) were
obtained from the Coriell Institute for Medical Research and cultured in Roswell
Park Memorial Institute 1640 medium (Corning Life Sciences, Tewksbury, MA,
USA), supplemented with 15% fetal bovine serum (FBS, Corning). Embryonic stem
cell lines (H1, H7, and H9) were obtained from the WiCell Research Institute
(Madison, WI, USA) and cultured feeder-free on Matrigel culture matrix in
mTeSR™ 1 medium (WiCell). Tumor-derived cell lines (MCF-7, RKO, and HCT-
116) were obtained from the American Type Culture Collection. MCF-7 and RKO
cells were cultured in Eagle’s minimum essential medium (Corning), supplemented
with 10% FBS. HCT-116 cells were cultured in McCoy’s 5a medium (Corning),
supplemented with 10% FBS. All cell lines were grown at 37 °C in a 5% CO2

atmosphere.

Library preparation and sequencing. For sorted libraries, GM12878 cells
were stained with Vybrant™ DyeCycle™ Green Stain (ThermoFisher Scientific,
Waltham, MA, USA) and sorted into five fractions (G1-, G2-, early S-, late S-, and
full S-phase) with a BD FACSMelody™ Cell Sorter (BD Biosciences, Franklin Lakes,
NJ, USA).

For both sorted and unsorted libraries, isolation, barcoding, and amplification
of single-cell genomic DNA was performed on the 10x Genomics Chromium
Controller instrument, using the 10x Genomics Single Cell CNV Solution kit (10x
Genomics, Pleasanton, CA, USA). Paired-end sequencing was performed for 100
cycles with the Illumina NovaSeq 6000 (10x Genomics), 150 cycles with the
Illumina HiSeq X Ten (GENEWIZ, Inc., South Plainfield, NJ, USA), or 36 or 75
cycles with the Illumina NextSeq 500 (Cornell University Biotechnology Resource
Center, Ithaca, NY, USA). For libraries sequenced multiple times, FASTQ files were
merged prior to downstream processing. See Table S1 for details.

Processing of single-cell barcodes. Single-cell barcodes were processed with a
custom python script. Specifically, the first 16 bp of each R1 read (containing the
cell-specific barcode) was trimmed with seqtk (v1.2-r102-dirty). Raw barcode
sequences were compared with a whitelist of 737,280 sequences (10x Genomics)
and filtered by abundance to produce a list of barcodes present in the library.
Specifically, a set of high-count barcodes was identified as those that were repre-
sented at least 1/10 as often as the highest-abundance barcode. A minimum
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barcode-abundance threshold was then set as 1/10 the 95th percentile of the high-
count abundances.

Next, we attempted to correct barcode reads that were not found in the set of
valid barcodes. To be corrected, we required that the barcode read contain no more
than one base position with a quality score <24 and that there was only one valid
barcode with a Hamming distance of 1.

Processing of sequencing reads. After filtering out sequencing reads without a
valid barcode, reads were aligned to the human reference genome hg37
(humanG1Kv37) using the Burrows–Wheeler maximal exact matches (BWA-
MEM) algorithm (bwa v0.7.13). Barcodes were then merged into the aligned BAM
files using a custom awk script, and barcode-aware duplicate marking was per-
formed using Picard Tools (v2.9.0). High-quality (MAPQ ≥ 30) primary mate-pair
alignments were included in further analysis. Members of a mate pair were counted
together if they were mapped within 20 kb of one another (weight of 0.5/read), and
separately (weight of 1/read) if not. After read alignment, all downstream analyses
were performed in MATLAB (v2019a).

Identification of G1/G2 cells and definition of G1 windows. Reads were counted
in fixed-size windows of 20 kb. After removing low-mappability windows (in which
fewer <75% of nucleotide positions were uniquely mappable38), sets of 50 windows
were aggregated together to calculate the median absolute deviation of pairwise
differences between adjacent windows (MAPD)20. MAPD was then divided by the
square root of the mean number of reads per aggregated window (mean coverage/
Mb), to produce a linear relationship between coverage and scaled MAPD. For
each sequencing library, an expectation-maximization procedure was used to fit the
data as a mixture of two Gaussian functions. The linear fit predicting the smal-
ler scaled MAPD value at the maximum observed coverage was assumed to model
the G1/G2 relationship between coverage and scaled MAPD, and cells with a
residual ≤0.05 from this model were assigned as G1/G2.

Next, we defined a set of variable-size, fixed-coverage windows using a G1

control, along the lines of Koren et al.22. In this case, the G1 control was created in
silico by aggregating reads from a subset of G1/G2 cells, prioritizing high-coverage
G1/G2 cells. (The number of cells used varied between libraries and was determined
as the number of cells that would define windows of ~20 kb.) This was performed
independently for each sequencing library prepared from the same cell line. Per-
cell read counts were calculated in these G1 windows, to account for mappability
and GC-content bias, as well as any copy-number variations that were common to
many cells within the library.

Finally, we identified and filtered out cell-specific copy-number aberrations
(CNA). To do this, we fit a two-component mixed Poisson model to aggregated
read counts (15 windows, ~300 kb), and searched for the genomic region with the
lowest probability of being observed under either rate coefficient, λ. If the median
probability of each window within this region was less than the median probability
of all windows genome-wide, we determined it to be a CNA and masked the read
counts in that region. This process was performed iteratively until no new regions
were discovered. Cells with an autocorrelation in read counts >0.15 after filtering
were assumed to have residual undetected CNAs and were excluded from analysis.

Replication-state inference. For each cell, we assigned each G1-defined window
as “replicated” or “unreplicated” using a two-state hidden Markov model (HMM).
To initialize the model, we again fit a two-component mixed Poisson model to
aggregated read counts (15 windows, ~300 kb) and assigned each window to the
mean it was closer to. If this initial model did not converge, or if the ratio between
the two mean copy numbers was not ~2 (between 1.5 and 2.5), the cell was
excluded. Otherwise, we refined the initial window assignments using the HMM,
which modeled read counts as the mixture of two Poisson processes.

Because the HMM does not model the expected twofold relationship between
replicated and unreplicated regions, we assessed the quality of the HMM output
using this ratio. Specifically, we calculated the ratio between the average number of
reads in windows assigned as replicated to the average number of reads in windows
assigned as unreplicated. To be included in further analysis, this ratio was required
to be between 1.5 and 2.5. This filter removed cells poorly modeled by the HMM,
which could be explained by a variety of biological and technical factors, including
large CNAs, large replication defects, ineffective selection of cell-specific
initialization parameters, and atypical noise.

In addition, to find any cells that contained uncorrected CNAs, we performed
three filtering steps. First, we calculated the average copy number assigned to each
chromosome and excluded cells for which the standard deviation between
chromosomes was greater than 0.4. Second, any cell that contained both a fully
unreplicated chromosome and a fully replicated chromosome was excluded. Third,
we calculated the pairwise correlations between cells for each chromosome
individually. If the mean pairwise correlation between a cell and all other cells was
negative, or if the pairwise correlation between a cell and one of its 10 closest
neighbors was a statistical outlier, that chromosome was excluded for that cell.

Finally, for the ease of analysis, we interpolated the data back onto fixed-size
20 kb windows. Interpolated values for fixed-size windows that overlapped multiple
G1-defined windows were not always integers. Thus, windows assigned a
noninteger copy number were masked, as were low-mappability windows.

Assessment of HMM resolution. To assess the resolution of HMM copy-number
inferences, read counts were simulated for 2500 single GM12878 cells following a
strictly determined replication-timing program. First, the bulk replication-timing
profile was divided into 1000 equally spaced bins (corresponding to ~0.046
replication-timing units). For each vertical “time point” slice through the bulk
profile, windows with earlier replication timing were assigned “4N” and windows
with later replication timing were assigned “2N”. For each simulated cell, one of
these 1000 possible time points was randomly selected, and an average coverage
was drawn from the distribution of observed coverage values for the unsorted
GM12878 library. Then, read counts for 2N and 4N windows were drawn from two
Poisson distributions, with rate coefficients selected to produce the desired average
coverage. Finally, the simulated read counts were run through the replication-
state inference pipeline.

Bulk-sequencing replication-timing profiles. Replication-timing profiles from
bulk-sequencing assays were used to benchmark single-cell replication profiles. For
GM18507, an LCL consensus profile22 was used. For all other cell lines, a profile for
the specific cell line was used. For Illumina Platinum LCLs (GM12878, GM12891,
and GM12892)39 and hESCs (H1, H7, and H9)8, these data are previously
published.

Aggregate replication-timing profiles. For each cell line, we generated an
aggregate S/G1 profile, as in22, except that we generated the G1 and S fractions in
silico by aggregating reads across all cells assigned to that fraction. Briefly, the G1

fraction was used to generate variable-size windows with a fixed number of reads
(n= 200), and the number of S-phase reads was then counted in the same win-
dows. This profile was smoothed in a gap-aware fashion with a cubic smoothing
spline (MATLAB function csaps), with a smoothing parameter of 10−16, and
normalized to a mean of 0 and standard deviation of 1.

Sub-S-phase fraction profiles. To generate a profile for 10 sub-S-phase fractions,
we partitioned cells into 10 bins of equal cell population, based on the % of the
genome replicated. We summed the read counts (in G1-normalized windows)
across all cells within each partition. To normalize read counts between fractions,
we then scaled these values, setting the 1st percentile value as 2 and the 99.9th

percentile value as 4. The same procedure was used to generate 100 fractions.

Identification of initiation regions. To identify single-cell replication-initiation
sites, we began by defining all replicated segments (“replication tracks”) across the
genome of each cell. These segments were defined as contiguous windows
with inferred copy number of 4, containing no more than 5 consecutive
masked windows. As a first approximation of the locations of replication initiation,
the midpoint of each replication track was assigned as the most likely site of
initiation. (Replication tracks longer than 1Mb were excluded from this
initial analysis.)

To cluster single-cell initiation sites, we grouped together replication tracks that
overlapped one another. We considered three possible midpoints for each
replication track: the observed midpoint as well as the midpoint if either the left or
right boundary had been misplaced by 2.5 windows. Starting with the shortest
replication tracks, we asked whether each replication track overlapped any
previously defined initiation regions (IRs). Tracks overlapping a single IR were
attributed to activity of that IR (as long as its midpoint overlapped at least one track
already assigned to that IR), while tracks that did not overlap any IRs were used to
define a novel IR. Tracks that overlapped multiple IRs were inferred to reflect the
activity of multiple initiation events and were not used to define IRs. This
clustering procedure considered only relative replication-track length, and no
global threshold value was used to exclude tracks.

After defining IRs, we reconsidered any track less than 1Mb in length that had
not been attributed to an IR (i.e., tracks that overlapped multiple IRs). These tracks
were then assigned to the IR closest to its midpoint. The width of each IR was
calculated from the 25th percentile to the 75th percentile of the midpoints of
replication tracks attributed to the IR, and the center was set at the 50th percentile.
IRs supported by fewer than 5 tracks were not included when calculating the
median IR width.

Variation in firing order across cells. To assess variation in the order in which
IRs were fired across cells, we compared the data to a null model under which every
cell fires the same IRs in the same order. Under this model, the number of IRs
inferred to be replicated also dictates which IRs those are. Thus, we counted the
number of replicated regions overlapping IRs in each cell, and then predicted
which regions those would be under the null model. For each IR, we then calcu-
lated how many cells did not match our prediction.

Variation in firing time across cells. To determine the range of firing orders for
each IR, we identified the earliest cell containing a replication track attributed to an
IR, and the latest cell in which the center of the IR was inferred to be unreplicated
(after excluding outlier cells that had not replicated any of the neighboring IRs).
The percent of the genome replicated in each of these cells was used as a proxy for
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time during S phase. Given that range is a metric extremely sensitive to outliers, we
considered an IR’s range to be “corroborated” if a second cell was observed within
10% of its earliest and latest firing time. We focused on these IRs with corroborated
ranges in subsequent analyses.

Finally, we classified IRs that fired in fewer than 50% of cells into three groups
based on their firing behavior throughout S phase. To do this, we considered the
percent of the genome replicated in each cell containing a replication track
attributed to that IR. IRs that were not associated with any cells <50% replicated
were considered constitutively late firing, while those associated with more than 5
cells >50% replicated were considered to fire throughout S phase. The remaining
IRs, which were associated with 1–5 cells in early S phase, were considered to be
rarely fired with a preference for early firing.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data generated in this paper were deposited at the Sequence Read Archive
(SRA) under accessions PRJNA770772 (single cell) and PRJNA419407 (bulk). Bulk-
sequencing replication-timing profiles used for comparison are available at http://www.
thekorenlab.org/data. The human reference genome assembly humanG1Kv37 used in
this study was downloaded from the International Genome Sample Resource (IGSR,
http://www.internationalgenome.org) [http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
technical/reference/human_g1k_v37.fasta.gz]. Source data for the FACS sorting of
GM12878 cells are provided with this paper.

Code availability
All scripts used in data processing, analysis, and visualization are available on GitHub at
https://github.com/TheKorenLab/Single-cell-replication-timing (https://doi.org/10.5281/
zenodo.6463446)40.
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