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The representation of context in mouse
hippocampus is preserved despite neural drift
Alexandra T. Keinath 1✉, Coralie-Anne Mosser 1 & Mark P. Brandon 1✉

The hippocampus is thought to mediate episodic memory through the instantiation and

reinstatement of context-specific cognitive maps. However, recent longitudinal experiments

have challenged this view, reporting that most hippocampal cells change their tuning prop-

erties over days even in the same environment. Often referred to as neural or representational

drift, these dynamics raise questions about the capacity and content of the hippocampal code.

One such question is whether and how these long-term dynamics impact the hippocampal

code for context. To address this, we image large CA1 populations over more than a month of

daily experience as freely behaving mice participate in an extended geometric morph para-

digm. We find that long-timescale changes in population activity occur orthogonally to the

representation of context in network space, allowing for consistent readout of contextual

information across weeks. This population-level structure is supported by heterogeneous

patterns of activity at the level of individual cells, where we observe evidence of a positive

relationship between interpretable contextual coding and long-term stability. Together,

these results demonstrate that long-timescale changes to the CA1 spatial code preserve the

relative structure of contextual representation.
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H ippocampal subregion CA1 represents a mixture of
external and internal cues—including the shape of the
environment1, visual landmarks2,3, objects4, task-relevant

information5, and past experience6–9—through changes to the
spatial tuning properties of its principal cells10. Often collectively
referred to as a cognitive or hippocampal map11, this code is
hypothesized to support spatial and episodic memory by rein-
stating content at later times, for example by reinstantiating
the same map across repeated visits to the same environment.
However, recent longitudinal experiments in mice have
challenged this view12–16. These studies report that the majority
of cells change their spatial tuning properties, such as firing
rates13 and field locations14, over a timescale of days, yielding
maps of the same environment that, across time, are as
different as maps between environments when assessed by var-
ious population-level measures. Despite these population-level
dynamics, however, a minority of cells can maintain their spatial
tuning properties across a months-long timescale under at least
some circumstances.

These long-term dynamics raise a variety of questions about
the representational capacity and content of the hippocampal
code17, questions which might be resolved in multiple ways. On
one hand, some suggest that these dynamics reflect the una-
voidable biological realities of this code rather than its repre-
sentational content17–19. That is, while the hippocampal code
might serve a traditional mapping function, it is constrained by
inherently variable and plastic circuits. Thus, this account claims,
its representation will drift over time, i.e. the representation will
change even in the absence of changes to the content of the
representation. On the other hand, it is possible that these
dynamics instead faithfully reflect changes in the content of
the representation. Although the environment remains the same
across repeated visits in a spatial sense, each visit differs due to a
variety of factors such as time, intervening experience, and
idiosyncratic external cues which might elude the control of the
experimenter. Given the responses of the CA1 spatial code to
such diverse content on short timescales, it is thus plausible that
the long-term dynamics are not a biological accident but instead
accurately recapitulate the heterogenous dynamics of its content.
Yet another possibility is that these dynamics point toward a
necessary revision of function beyond a mapping framework, for
example one that emphasizes the temporal structure over the
spatial correlates of this code.

Central to the debate between these views is the relationship
between the representational capacity and the long-term
dynamics of the CA1 code. While prior work has informatively
characterized long-term dynamics within the same environment
and across two highly distinct environments13–16, such work is in
some ways limited in its ability to speak to this relationship.
Repeated recordings in the same environment characterize only
effects occurring within that spatial context, whereas recording in
two distinct environments has yielded representations which
begin and remain orthogonal throughout, and therefore any
changes to the relative representational structure cannot be
characterized beyond orthogonality.

To address this knowledge gap, we imaged large CA1 popu-
lations over more than a month of daily experience as freely
behaving mice explored six differently-shaped environments in
an extended geometric morph paradigm8. This paradigm elicited
partially-correlated population-level maps, allowing us to char-
acterize how the relative representational structure evolved over
long timescales. We found that individual cells represented spatial
context through heterogenous but stereotyped changes to their
spatial tuning properties which led to a dynamic attractor-like
population response. Characterizing the full representational
structure of all sessions revealed that long-timescale changes in

population activity occurred orthogonally to the representation of
context in network space. Thus, despite continued representa-
tional changes over the course of the experiment, the relative
representational structure of the environments was preserved,
allowing for consistent readout of contextual information across
weeks. These population-level dynamics were supported by het-
erogeneous responses at the level of single cells, with many cells
exhibiting interpretable patterns of contextual coding with little
evidence of drift and vice versa. Together these results demon-
strate that neural drift, i.e., the long-timescale changes to the
CA1 spatial code observed even across repeated visits to the same
environment, does not distort the relative structure of contextual
representation in mouse hippocampus.

Results
Assaying contextual representation across extended experience.
We recorded daily from large CA1 populations via calcium
imaging (Fig. 1a) as mice freely explored open environments for
32 days in an extended version of a geometric morph paradigm
(5 mice, 160 sessions total; Fig. 1b and Fig. S1). In this paradigm,
mice were initially familiarized with two geometrically-distinct
environments and later tested in these environments as well as
four deformed (morphed) versions of these environments span-
ning the shapespace between the two familiar environments. On
each test day, activity was recorded in a single environment, after
which the mice received additional unrecorded top-up experience
in the remaining familiar environment(s). The test phase began
with recording both familiar environments across 2 days (order
randomized across mice). Next, activity was recorded in each
morph environment (in random order) over 4 days. Then the
familiar environments were recorded again to bookend that
morph sequence. This pattern was repeated for 32 test days at
which point five full bookended morph sequences were recorded.
The order of unrecorded experiences was randomized on each
day. All sessions (including all unrecorded top-up experiences)
lasted 20 min per environment. Only one environment was
recorded per day to reduce the risk of photobleaching.

We first characterized these data within each morph sequence.
Following motion correction20, cells were segmented and calcium
traces were extracted via constrained nonnegative matrix
factorization21,22 (CNMFE; Fig. S1). The rising phase of
transients was extracted from the filtered calcium traces, and
this binary vector was treated as the firing rate in all further
analyses. Cell identity was tracked across recording sessions on
the basis of mean imaging frame landmarks and the spatial
footprints extracted by CNMFE, i.e., the spatial component of the
matrix factorization which corresponds to the location and shape
of each cell extracted in the field of view (n= 4070 cells)23.
Although all mice continued to sample the environments
thoroughly throughout the experiment (Fig. S2), to ensure that
spatial sampling differences between environments and across
time did not impact our findings we subsampled our data to
match the spatial sampling distributions between all comparisons
(see Methods)24. Measures of place code quality remained high
across mice and throughout all sessions (Fig. S3).

We observed heterogeneous but stereotyped responses at the
level of individual cells (Fig. 1c), similar to previous reports from
acute versions of the geometric morph paradigm8,9. Some cells
exhibited attractor-like properties in their spatial tuning, with
either an abrupt transition in their preferred firing locations over
the course of the morph sequence or the expression of a punctate
field in only a contiguous subset of the shapespace. Other cells
continued to fire at geometrically-similar locations across all
environments spanning the shapespace. At a population level,
these single-cell responses drove sigmoidal changes in mean rate
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map similarity across the shapespace, such that maps remained
similar to the nearby familiar environment map, with an abrupt
transition in similarity near the midpoint of the shapespace,
echoing previous acute reports8,9 (Fig. 1d and Fig. S4). In four of
the five mice, the point of transition remained near the midpoint
of the morph sequence across all five sequences; in one mouse it
began near the midpoint of the first morph sequence, but
gradually shifted over time (Fig. 1e), similar to a previous report8.
In all cases, the familiar and morph environments remained
partially correlated with one another, though final morph
sequences were significantly more decorrelated than the first
morph sequence (Fig. 1f). This increased decorrelation might be a
result of ongoing learning from experience with the morph
sequence itself and/or the daily unrecorded top-up experience in
each of the familiar environments. Altogether, these results
demonstrate that our adapted geometric morph paradigm
replicates many phenomena observed within-sequence in acute
versions of this paradigm and suggests that these dynamics may
continue to evolve with experience.

Context and drift are distinct at the population level. Next,
we explored how population-level representational similarity

changed across the 32 days of recording. Because of variability in
whether the same cell met traditional within-session place cell
criteria across sessions (Fig. S5), and to avoid any biases that
subselecting cells based on functional tuning properties might
introduce, all cells were eligible for inclusion regardless of their
spatial tuning during a given session. Furthermore, to ensure that
our results were not driven by unequal numbers of cells tracked
across session comparisons, we subsampled our data to match the
minimum number of tracked cells across all pairwise compar-
isons for each mouse.

With these details in mind, we first computed the mean rate
map similarity across equal numbers of tracked cells for each
pairwise comparison of sessions (Fig. 2a). These matrices
exhibited structural features which generalized across mice: mean
rate map correlations vary from high values for pairs of sessions
close in time toward zero for sessions pairs separated further in
time, with additional modulation by context. To make this
structure explicit, we reduced this similarity matrix to a two-
dimensional embedding via nonmetric multidimensional scaling
(nMDS; see Methods)25. MDS is a set of unsupervised techniques
for transforming a potentially high-dimensional pairwise distance
matrix into a set of points in a low-dimensional space while
preserving the relative distances between points as well as
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Fig. 1 An adapted geometric morph paradigm can characterize the CA1 spatial code across extended experience. a Schematic of the miniscope
recording procedure (top) and resulting calcium traces (bottom). b Schematic of the behavioral paradigm. c Example of nine simultaneously recorded cells
from mouse AKCA135 tracked across one morph sequence exhibiting a diversity of dynamics. Imaging footprints for all eight sessions are shown left of rate
maps. Rate maps normalized from zero (blue) to the peak (yellow) within each session. d Rate map correlations between each environment and the two
familiar environments for all five eight-day bookended morph sequences for one example mouse. Mouse ID in the lower left. Lines and shading denote
mean ± 1 SEM across all cells whose within-session split-half reliability exceeded the 95th percentile of a shuffled distribution for at least one of the
compared sessions. e Transition point as a function of the sequence number. f Decorrelation between the familiar environment rate maps as a function of
the sequence number for all five mice. Familiar environment rate maps were more decorrelated in the final sequence than the initial sequence (two-tailed
paired t-test: t(4)= 3.12, p= 0.0354). Source data provided as Source Data file. *p < 0.05.
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possible, as defined by some cost function. In the case of
nonmetric MDS, the cost function aims to preserve the rank
order relationships between points but tolerates a nonparametric
monotonic scaling of distances, which is useful when measured
distances are not expected to scale linearly as is the case with
correlation distances. A strength of MDS is its applicability to
cases where the relative similarity between conditions is
measured, not the raw position of each condition in a common
feature space, as is the case here. Thus, in the current application
nMDS will map the mean pairwise rate map similarity matrix to a
two-dimensional embedding where each session is a point and
the relative position of sessions indicates their similarity, while
the raw scale and overall orientation of the arrangement are
arbitrary.

The resultant embeddings revealed two dimensions that
strongly determined representational similarity in this paradigm:
a contextual component and a drift component (Fig. 2b). These
components were pronounced in every mouse. Quantification of
the embedded representations revealed that the contextual and
drift components defined nearly orthogonal dimensions in this
2D subspace, with absolute angular differences between context
and drift dimensions centered around 90° (see Methods; all
angles: [84.7°, 86.4°, 89.4°, 94.1°, 99.7°]; Rayleigh’s test versus
uniformity on the 0° to 180° range: p= 2.4e-3, z= 4.82).
Estimations of the direction of drift from repeated visits across
time to both familiar environments were similar to one another

(absolute angular difference between drift direction estimates:
[4.4°, 13.9°, 20.5°, 22.4°, 24.1°]). A qualitatively similar distinction
between contextual and drift components was observed when
embedding in three dimensions (Fig. S6) and when using
population vector correlations as the measure of similarity
between pairwise session comparisons (Fig. S7).

To situate these findings, we constructed a computational
model in which individual CA1 cells were simulated as the
rectified sum of spatially-tuned inputs modulated by drift,
contextual group (grouping together each half of the shapespace),
and the shape of the environment (Fig. 2c; see Methods). Next, we
varied the dynamics of the drift input, such that drift accrued
dependent on the specific environment, the context group, or
simply as a function of time (global drift). Each drift dynamic
resulted in a different stereotyped nMDS embedding (Fig. 2d).
Global drift yielded an embedding in which drift and contextual
components were orthogonal, and the direction of drift estimated
from both familiar environments were consistent (Fig. 2e).
Context group-dependent drift also resulted in roughly orthogo-
nal drift and context components; however, estimates of the
direction of drift differed between the two familiar environments.
Environment-specific drift yielded a qualitatively distinct inside-
outward radial embedding in which each environment became
more distinct over time, leading to roughly opposing estimates
of the direction of drift between the familiar environments.
Thus, only global drift reproduced essential characteristics of
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Fig. 2 Nonmetric multidimensional scaling reveals distinct temporal and contextual components governing the CA1 spatial code. a Population-level
representational similarity matrices across all recording sessions for all five mice. Each RSM is computed by taking the mean rate map correlation across all
tracked cells for each pairwise comparison of sessions. Mouse name at the top of each column. b Session similarity structure when embedded in a two-
dimensional space via nonmetric multidimensional scaling (nMDS). Dot size indicates session number, with earliest sessions indicated by the smallest dots
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nearly orthogonal in this embedding (see Methods). c CA1 populations were modeled as a combination of spatial inputs which were modulated by drift,
contextual group, and the shape of the environment. d Example nMDS embeddings of modeled populations for different drift dynamics. e Distributions of
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the representational structure of the CA1 spatial code in this
paradigm.

Accurate contextual information can be read out across weeks.
If neural drift preserves the relative structure of the representation
of context, then we should be able to accurately predict context
information across time, even on the basis of a temporally-
contiguous subset of the data. To address this possibility, we
attempted to predict both context group identity (grouping
together each half of the shapespace) and the specific environ-
ment identity on the basis of population vector rate map simi-
larity to each session in a contiguous six-day predictor morph
sequence (Fig. 3a). Specifically, we took the sessions from a given
six-day morph sequence and a target session outside of the pre-
dictor set and predicted the context group and exact environment
identity from the best matching predictor set session. Then we
repeated this process for all target sessions and using each 6-day
morph sequence as the predictor set once, and aggregated the
results according to the lag in days between the target session and
the nearest predictor set session. We conducted this analysis
while treating inactive/unidentified cells in two different ways. In
one case, we included only the active cells which were tracked
between each pair of comparisons when computing the popula-
tion vector correlation. In another case, we included all cells,
substituting zeros for the cases where cells were inactive/not
identified on a given session.

In all cases, prediction accuracy remained high even with 19+
days (>3 sequences) separating the predictor sequence and target
day, with ANOVAs indicating no significant differences between
epochs (Fig. 3b, c). Notably, prediction accuracy remained high
even though the similarity between the target session and the best
matching predictor set session significantly decreased as a
function of lag, reflecting the ongoing drift (Fig. 3b, c). Together,
these results provide additional evidence that drift preserves the
relative representational structure of context, allowing accurate
readout of context information across a weeks-long timescale.

Heterogeneous single-cell selectivity for context and drift. The
preceding results indicate that the differences in neural activity
which distinguished context were distinct from the differences in
neural activity which accompanied the passage of time at the level
of the population. This structure might arise from varying degrees
of selectivity at the level of individual cells. To address these
possibilities, we next examined the relationship between context
coding and long-term stability at the level of individual cells. We
did so in two ways. First, we took a generalized linear modeling
(GLM) approach. For each cell, we computed the pattern of
similarity between all pairs of sessions for which that cell was
identified, with similarity quantified by the rate map correlation,
which we termed the representational similarity matrix (RSM) for
that cell. Then, for each cell with a sufficient number of com-
parisons (identified on at least 16/32 sessions; 120 pairwise
comparisons), we attempted to explain the variance in its RSM
via a GLM as a function of three factors (and their interactions):
drift, context group, and shape (Fig. 4a). The drift factor specified
a linear decrease in similarity as a function of the number of days
between each pairwise session comparison. The context group
factor specified high similarity between sessions from the same
side of the shapespace and low similarity otherwise, with the
within-sequence transition point determining the cut-off between
sides of the shapespace (i.e., Fig. 1e). The shape factor specified a
linear decrease in similarity as a function of the distance in the
shapespace between each session pair. These three factors (and
their interactions) provided an effective characterization at the
level of the population, explaining the majority of the variance of
the population RSM (i.e., mean RSM across cells) for all animals
[full model r2: 0.747, 0.787, 0.816, 0.835, 0.894].

Applying this full model to a given cell RSM provided a
quantification of how much RSM variance could be explained by
all three factors. Next, we sought to isolate the contributions of
separate factors to this full model explained variance. To do so,
we dropped individual factors (and interactions with those
factors) from the model, recomputed the resulting explained
variance, and compared the reduction in explained variance
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against the full model. This reduction provided a quantification of
the RSM variance attributable to a given factor. For ease of
interpretation, we removed both context group and shape
together when dropping factors to estimate their combined
contribution, referring to the outcome as a context-attributable
variance.

This analysis revealed significant heterogeneity in the factors
which explained RSM variance at the level of individual cells
(Fig. 4b). For many cells, RSM variance was explained by either
the drift factor or the contextual factors, but not both (Fig. 4c). To
situate these results, we compared the distribution of attributable
explained variance to a shuffled distribution, in which we shuffled
the RSM values across eligible cells independently for each
pairwise comparison of sessions. This shuffled distribution
preserves the population RSM and estimates the distribution of
variance attributable to drift and contextual factors that one
would expect on the basis of the variability within the population
alone. For each cell, we then computed the Mahalanobis distance
from this shuffled distribution, yielding a measure of significance.
A large portion of cells exhibited patterns of attributable
explained variance which deviated significantly from this shuffled
distribution (p < 0.01, n= 453 of 1647, 27.5%; binomial test,
p= ~0.0), with many of these cells primarily loading onto either
drift or context factors, but not both. Similar results were

observed when varying inclusion criteria and the details of the
model (Fig. S8).

Our GLM approach revealed evidence of heterogeneous RSM
patterns at the level of individual cells, isolating cells with strongly
context-loading patterns with little evidence of drift, and vice
versa. In our second approach, we sought to address this potential
relationship directly. To do so, we must quantify both contextual
coding and long-term stability using distinct subsets of the data to
ensure that any relationship we observe is not the product of
biases induced by resampling the same data.

With this in mind, we first characterized the extent to which
the pattern of activity for a given cell during a given six-day
morph sequence resembled an interpretable contextual code. To
operationalize interpretable contextual coding in a way which
tolerates the heterogeneous but stereotyped responses we
observed between cells in our within-sequence analysis (i.e.,
Fig. 1c), for each cell we first computed its within-sequence
contextual RSM, a matrix which summarizes the similarity of
each environment to every other environment for a given morph
sequence (Fig. 5a and Fig. S9). Next, we fit this contextual RSM
with a five-parameter sigmoidal model that could capture a wide
range of interpretable dynamics (Fig. 5b). Finally, we took the
(inverse) mean squared error of this model fit as our measure of
interpretable contextual coding. As our measure of long-term
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stability, we computed the mean rate map correlation for the
same environments across each pair of six-day morph sequences,
excluding the morph sequence used to quantify the extent of
interpretable contextual coding (Fig. 5a). Note that this measure
of stability assumes nothing about the relative similarity across
different environments and only indexes the similarity of the
representation of the same environment across time. We repeated
this process using each 6-day morph sequence for the contextual
fit once and combined the results, averaging across equivalent
lags between sequences when estimating long-term stability.
Across all lags, these measures of context coding and stability
were correlated (Fig. 5c), indicating that cells with a more
interpretable contextual RSM during a given sequence tended to
have more stable rate maps across withheld sequences, even when
withheld sequences were separated by weeks.

Notably, however, both of these measures were correlated with
firing rate: cells which had higher firing rates tended to have lower
contextual fit errors (Spearman’s rank correlation: ρ=−0.358,
p=~0.0, n= 3042) and higher rate map stability across sequences
(Spearman’s rank correlation: Lag of 1 sequence: ρ= 0.190,
p= 3.347e-24, n= 2817; Lag of 2 sequences: ρ= 0.209, p= 2.040e-
29, n= 2852; Lag of 3 sequences: ρ= 0.160, p= 1.788e-16, n= 2608;
Lag of 4 sequences: ρ= 0.178, p= 3.103e-12, n= 1512). To mitigate
the influence of this potential confound when assessing the
relationship between contextual coding and long-term stability, we
took the following approach. First, we again computed the contextual

RSM fit error for a given 6-day morph sequence for each cell tracked
across this sequence. Next, we divided these cells into six groups
according to the sextile of their contextual fit error. We then
randomly subsampled the cells in each of these six sextile groups to
match the mean firing rate distributions during this contextual fit
sequence across all six groups (Fig. 5d). Finally, we computed the
stability between all remaining pairwise comparisons of morph
sequences for each group of subsampled cells, excluding the
contextual fit sequence. We repeated this process using each 6-day
morph sequence for the contextual fit once and aggregated the results
across similar lags. This analysis revealed that cells with a more
interpretable contextual RSM on a given sequence tended to have
more stable rate maps across withheld sequences, even when
controlling for covarying firing rate differences (Fig. 5e).

Discussion
Here we recorded from CA1 in freely behaving mice over 32 days
of experience in an adapted geometric morph paradigm. On a
shorter within-sequence timescale, the hippocampal representa-
tion resembled prior acute reports8,9,26, exhibiting sigmoidal
population-level contextual similarity dynamics across the sha-
pespace which were driven by heterogeneous but stereotyped
single-cell patterns of activity. Characterizing the representational
structure across all 32 days revealed that changes indicative of
context were orthogonal in network space to changes which
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Fig. 5 Interpretable contextual coding is associated with long-term stability at the level of individual cells. a Schematic for quantifying the relationship
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their five-parameter sigmoidal fits. c The relationship between contextual RSM goodness-of-fit and long-term stability at the single-cell level, aggregated by
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accompanied the passage of time. This specific structure was well
described by a global drift model whereby drift is accrued inde-
pendently of context identity. This structure enabled consistent
readout of contextual information across a timescale of weeks
even on the basis of a temporally-contiguous predictor set, sug-
gesting that downstream contextual readout tuned to the repre-
sentation at a particular time can successfully generalize across
long timescales. Lastly, individual cells exhibited a relationship
between interpretable contextual coding and long-term stability
even when controlling for covarying differences in firing rate,
suggesting that propensity to drift is heterogeneous at the level of
individual cells and possibly linked to functional content. Toge-
ther, these results demonstrate that the relative structure of the
hippocampal representation of context is preserved despite
ongoing changes to the spatial code on a timescale of weeks.

Recent results have provoked claims of representational drift at
unexpected rates not only in the hippocampus13–16 but also in
cortical sensorimotor regions19,27,28. In each of these cases, a
claim of drift is made on the basis of critical assumptions about
the form and content of the representation, specifically that the
content of the representation is known and that the way this
representation is encoded is also known. For example, for claims
of drift within the hippocampus, it is implicit in the analysis that
the content of the representation is spatial and that the form of
this representation is a population-wide rate code. While each of
these assumptions are well motivated by prior work, there are
alternative views that might accommodate the observed long-
timescale dynamics without a claim of representational drift.
Mounting cross-species experimental29–33 and theoretical34–39

work suggests that the hippocampal representation is funda-
mentally superspatial and includes a temporally-correlated
dimension, either implicitly36,40 or explicitly34,37,38. Moreover,
it is known that the activity of hippocampal neurons is remark-
ably structured and coordinated on short timescales40–43, sug-
gesting that a rate code (spatially-conditioned or not) may
provide only a partial assay of representational content in this
region. Because of these alternatives, the degree to which long-
timescale changes to the hippocampal code reflect representa-
tional content versus drift remains open to debate, perhaps more
so than in sensory regions where the coded content might be
more completely understood.

The results we present here speak to this debate. Character-
ization of the population-level representational structure via
dimensionality reduction revealed that changes in network
activity which were indicative of spatial context were orthogonal
to changes accompanying the passage of time, thus preserving the
relative structure of contextual representation. While the changes
accompanying the passage of time could reflect global drift
independent of spatial context, this component could alter-
natively reflect a faithful reproduction of representational content
which also varied on this timescale, for example representations
of continuous experiences, ongoing learning, predictive relation-
ships, or time itself. Consistent with this, across two different
analytical approaches we observed corroborative evidence of a
relationship between interpretable contextual coding and long-
term stability, even when controlling for known firing rate
covariates44. This link suggests that long-term instability in spa-
tial tuning properties might be driven by the representation of
content beyond the spatial context. CA1 is known for genetic45,
anatomical, and functional heterogeneity46–48 in the responses of
individual cells, which is linked to biases in upstream inputs49,50.
In addition to differences in their coding properties and content,
these inputs also differ radically in their long-term stability15,51,
providing a potential link between representational content and
long-term dynamics within CA1. This possibility thus motivates
future work dissecting circuit-specific contributions to the

representation of specific content and accompanying long-term
dynamics.

Currently, it is unknown whether and how long-timescale
changes attributed to drift are coordinated across the brain. One
possibility is that drift is coordinated in such a way that incon-
gruences between regions are continuously corrected19. On the
other hand, here we show that information about the spatial
context can be predicted with high accuracy across weeks despite
ongoing representational changes, even on the basis of
temporally-contiguous training data. This suggests that a down-
stream readout of contextual information trained at a particular
moment in time will continue to generalize well on long time-
scales, even in the absence of continued coordination between the
hippocampus and this hypothetical reader.

Here we leveraged the partial correlation between hippocampal
maps of similar spaces to characterize the relationship between
representational content and long-timescale dynamics. While
necessary for this characterization, we are therefore limited in our
ability to speak to ongoing changes in other portions of
the representational statespace. Thus, while our results suggest
that a global model in which long-timescale changes accrued
independently of spatial context is most appropriate, we cannot
rule out globally-inconsistent dynamics in other portions of the
representational space.

In sum, our results demonstrate that the relative structure of
contextual representation in CA1 is preserved despite continuous
representational changes on the timescale of weeks. These results
speak to an ongoing debate about representational content and
drift throughout the brain, with fundamental implications for the
nature of hippocampal coding. Finally, these results motivate
future experiments dissecting the relationship between functional
properties and long-term dynamics within and beyond the hip-
pocampal formation.

Methods
Subjects. Naive male mice (C57Bl/6, Charles River) were housed in pairs on a 12-h
light/dark cycle at 22 °C and 40% humidity with food and water ad libitum. All
experiments were carried out during the light portion of the light/dark cycle, and in
accordance with McGill University and Douglas Hospital Research Centre Animal
Use and Care Committee (protocol #20157725) and with Canadian Institutes of
Health Research guidelines.

Surgeries. During all surgeries mice were anesthetized via inhalation of a com-
bination of oxygen and 5% Isoflurane before being transferred to the stereotaxic
frame (David Kopf Instruments), where anesthesia was maintained via inhalation
of oxygen and 0.5–2.5% Isoflurane for the duration of the surgery. Body tem-
perature was maintained with a heating pad and eyes were hydrated with gel
(Optixcare). Carprofen (10 ml kg−1) and saline (0.5 ml) were administered sub-
cutaneously at the beginning of each surgery. Preparation for recordings involved
three surgeries per mouse.

First, at the age of 6 to 10 weeks, each mouse was transfected with a 350 nl
injection of the calcium reporter GCaMP6f via the viral construct AAV5.CaMKII.
GCaMP6f.WPRE.SV40 (CAMCA130) or AAV9.syn.GCaMP6f.WPRE.SV40 (all
other mice). The original titer of the AAV9.syn.GCaMP6f.WPRE.SV40 construct,
sourced from University of Pennsylvania Vector Core, was 3.26e14 GC-ml and was
diluted in sterile PBS (1:1 AKCA170; 1:5 AKCA127; 1:10 AKCA130; 1:15
AKCA135) before surgical microinjection. The original titer of the
AAV5.CaMKII.GCaMP6f.WPRE.SV40 construct, sourced from Addgene, was
2.3e13 GC-ml and was diluted in sterile PBS (1:3) before surgical microinjection.

One to 3 weeks post-injection, either a 1.8 mm (AKCA127, AKCA130,
AKCA135) or 0.5 mm (AKCA170, CAMCA130) diameter gradient refractive index
(GRIN) lens (Go!Foton) was implanted above the dorsal CA1 (Referenced to
bregma: ML= 2.0 mm, AP=−2.1 mm; Referenced to brain surface:
DV=−1.35 mm). Implantation of the 1.8 mm diameter GRIN lens required
aspiration of intervening cortical tissue, while no aspiration was required for
implantation of the 0.5 mm diameter GRIN lens. Results observed using 1.8- or
0.5-mm diameter GRIN lenses were similar. In addition to the GRIN lens, two
stainless steel screws were threaded into the skull above the contralateral
hippocampus and prefrontal cortex to stabilize the implant. Dental cement (C&B
Metabond) was applied to secure the GRIN lens and anchor screws to the skull. A
silicone adhesive (Kwik-Sil, World Precision Instruments) was applied to protect
the top surface of the GRIN lens until the next surgery.
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One to 3 weeks after lens implantation, an aluminum baseplate was affixed via
dental cement (C&B Metabond) to the skull of the mouse, which would later secure
the miniaturized fluorescent endoscope (miniscope) in place during recording. The
miniscope/baseplate was mounted to a stereotaxic arm for lowering above the
implanted GRIN lens until the field of view contained visible cell segments and
dental cement was applied to affix the baseplate to the skull. A polyoxymethylene
cap with a metal nut weighing ~3 g was affixed to the baseplate when the mice were
not being recorded, to protect the baseplate and lens, as well as to simulate the
weight of the miniscope.

After surgery, animals were continuously monitored until they recovered. For
the initial 3 days after surgery mice were provided with a soft diet supplemented
with Carprofen for pain management (MediGel CPF, ~5 mg kg−1 each day).
Familiarization with both environments (while recording in the room A-associated
environment to monitor imaging quality and habituate the mouse to recording)
began 3 to 7 days following the baseplate surgery.

Data acquisition. In vivo calcium videos were recorded with a UCLA miniscope
(v3; miniscope.org) containing a monochrome CMOS imaging sensor
(MT9V032C12STM, ON Semiconductor) connected to a custom data acquisition
(DAQ) box (miniscope.org) with a lightweight, flexible coaxial cable. The DAQ was
connected to a PC with a USB 3.0 SuperSpeed cable and controlled with Miniscope
custom acquisition software (miniscope.org). The outgoing excitation LED was set
to between 2–8% (~0.05–0.2 mW), depending on the mouse to maximize signal
quality with the minimum possible excitation light to mitigate the risk of photo-
bleaching. The gain was adjusted to match the dynamic range of the recorded video
to the fluctuations of the calcium signal for each recording to avoid saturation.
Behavioral video data were recorded by a webcam mounted above the environ-
ment. Behavioral video recording parameters were adjusted such that only the red
LED on the CMOS of the miniscope was visible. The DAQ simultaneously
acquired behavioral and cellular imaging streams at 30 Hz as uncompressed avi
files and all recorded frames were timestamped for post hoc alignment.

All recording environments were constructed of a gray Lego base and black
Lego bricks (Lego, Inc). The full square environment was 38 cm × 38 cm. All walls
had a height of 22 cm. During recording, the environment was dimly lit by a nearby
computer screen, which could serve as a directional cue. During familiarization and
all unrecorded experiences, the environments were well-lit by overhead room
lighting. All sessions were 20 min, and only one session was recorded per day to
avoid photobleaching. Following the recorded session, mice were returned to their
home cage for 5 min, after which the unrecorded top-up experience in the familiar
environments began. Mice were directly transported from one familiar
environment to the other between unrecorded sessions. Each familiar environment
session took place in a different neighboring room (e.g., room A:square
environment, and room B:other familiar environments), with an assignment of
each familiar environment to a given room kept constant within each mouse and
randomized across mice. All recordings took place in one of these rooms (e.g.,
room A). The two familiar environments were always recorded in the same order
(e.g., square day n, other familiar environment day n+ 1) within each mouse, with
the order randomized across mice. The order of the four morph environments was
randomized for each sequence. The mouse was always placed in the same corner at
the start of the session and was allowed to explore the environment for 15 to 30 s
prior to the start of data acquisition. Following each session, the environment was
cleaned with disinfectant (Prevail).

Data preprocessing. Calcium imaging data were preprocessed prior to analyses
via a pipeline of open-source MATLAB (MathWorks; version R2021a) functions to
correct for motion artifacts20, segment cells and extract transients21,22. To extract
the rising phase of transients from each filtered calcium trace, we proceeded as
follows. First, we computed the derivative of the calcium signal, smoothed with a
gaussian kernel with a standard deviation of 5 frames. Next, because calcium
transients around the baseline can only be positive, we estimated the variance in
the derivative of the smoothed calcium signal on the basis of noise via a half-
normal distribution such that:

NOISE ¼ stdð4tðt< 0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffi

1� 2
π

q ð1Þ

where Δt is the smoothed time-derivative of the median-subtracted calcium trace t.
We then z-scored Δt on the basis of this noise distribution. The final binarized rising-
phase vector was then set to 1 whenever this z-scored Δt vector exceeded 2.5, and 0
otherwise. This binary vector was treated as the firing rate in all further analyses. The
motion-corrected calcium imaging data were manually inspected to ensure that
motion correction was effective and did not introduce additional artifacts. Following
this preprocessing pipeline, the spatial footprints of all cells were manually verified to
remove lens artifacts. Position data were inferred from the onboard miniscope red
LED offline following recording using a custom-written MATLAB (MathWorks)
script and were manually corrected if needed. Cells were tracked across sessions on
the basis of prominent landmarks, their spatial footprints, and/or centroids23.

Data analysis. All analyses were conducted using the binary vector of the rising
phases of transients, treating this vector as if it were the firing rate of the cell

(henceforth firing rate). Similar results were observed when the likelihood of
spiking was inferred via a second-order autoregressive deconvolution52, instead of
transient rising-phase extraction.

Rate maps were constructed by first binning the position data into pixels
corresponding to a 2.5 cm × 2.5 cm grid of locations. Then, to correct for biases in
sampled spatial locations, we subsampled our data during all rate map comparisons
to match the spatial sampling distributions across comparisons. To do so, we
computed the minimum number of samples recorded at each pixel location across
comparisons. Next for each comparison, we included a random subset of the data
recorded at each pixel location to match that minimum number of samples. On the
basis of these subsampled data, we next computed the mean firing rate for each
pixel and then smoothed this map with a 4 cm standard deviation isometric
Gaussian kernel. For comparisons between rate maps, the similarity was measured
as the Pearson’s correlation between corresponding pixels.

Within-sequence analyses summarized morph sequence dynamics with
transition plots (Fig. 1d and Fig. S4), which captured the similarity of all six morph
environment maps to the two familiar environment maps. To this end, rate map
correlations between each environment and familiar rate maps at the beginning
and end of the morph sequence were computed. Only comparisons between cells
whose within-session split-half rate map correlation (SHC) exceed the 95th
percentile of a shuffled control for at least one of the compared sessions were
included. The shuffled control was computed for each cell by randomly circularly
shifting its firing rate vector relative to the position data by at least 30 s and
recomputing the SHC 1000 times to create the null distribution. To characterize
these plots, the Fisher-transformed median values comparing the morph
environments to each of the two familiar environments were both fit to minimize
mean squared error with a four-parameter sigmoid of the form

f xð Þ ¼ p3 þ
1

1þ eðð�xþp1Þp2 Þ

� �

=p4 ð2Þ

where x is the position of the current environment in the shapespace (arbitrarily
chosen to range from 1 to 6), and parameters p determine the shape of the sigmoid.
The intersection of these two sigmoids was taken as the measure of the transition
point between familiar maps. The maximum absolute difference between these two
sigmoids within the sampled shapespace was taken as the measure of maximum
map decorrelation.

Embeddings of the population representation via nonmetric multidimensional
scaling were computed and quantified as follows. First, we computed the mean rate
map correlation across cells for each pairwise comparison of sections, subsampling
to match the spatial sampling distributions between comparisons and so that all
comparisons included only the minimum number of cells tracked across all
pairwise comparisons, as described in the main text. Next, we transformed this
correlation matrix into a distance matrix by computing one minus this correlation
matrix, with the diagonal set to a distance of 0. Finally, this distance matrix was
reduced to a two-dimensional embedding via nonmetric multidimensional
scaling25, implemented by the MATLAB function mdscale with the default
parameterizations and minimizing Kruskal’s normalized stress1 cost function:

stress1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where dij is the distance between i and j in the measured distance matrix and F(dij)
is a nonparametric monotonic function of the measured distances fit via isotonic
regression. To estimate the context dimension within two-dimensional
embeddings, the average difference separating neighboring-in-time familiar
environment recordings was computed. To estimate the time dimension within
two-dimensional embedding, the average difference between the first and last
recordings of each familiar environment was computed. In Supplementary Figures,
this analysis was expanded to include three-dimensional embeddings and to
take the population vector correlation as the measure of similarity between
sessions.

Individual cell contextual representational similarity matrices were computed
for a given cell and sequence as the Pearson’s correlation between rate maps for all
pairwise comparisons between the six environments (after subsampling to match
spatial sampling distributions), resulting in a 6 × 6 matrix. To characterize
individual cell contextual RSMs in various ways, each two-dimensional RSM was fit
with a five-parameter sigmoidal model as described by these two equations:

s xð Þ ¼ 1
1þ eðð�xþp1Þp2 Þ

� �

þ p3 ð4Þ

S x; y
� � ¼ s xð Þ � s xð ÞT� �

=p4 þ p5 ð5Þ
here s(x) described a one-dimensional sigmoidal function evaluated at x (in this
case x= [1, 2, 3, …, 6] to span the six environments), s(x)T denotes the transpose
of this vector, ⊕ denotes the pairwise element multiplication of these two vectors
[MATLAB’s bsxfun(@times,a,b)], and p is the vector of five free parameters to be
fit by reducing the mean squared error between S(x,y) and the target contextual
RSM for the upper triangle of each, as contextual RSMs are symmetric across
the diagonal. These parameters have intuitive interpretations: p1 determines the
transition point for map similarity in the morph sequence, p2 determines the
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abruptness of the transition, p3 determines the asymmetry in the similarity between
halves of the shapespace, p4 determines the degree of sigmoidal modulation, and p5
determines the average overall similarity of the RSM. The goodness-of-fit of this
model was taken as a measure of the extent to which a given contextual RSM
exhibits interpretable contextual coding, as this model is capable of flexibly
accounting for a wide range of interpretable dynamics.

Spatial information content (SIC) was computed from the whole-session rate
maps of each cell as described previously53 via the equation:

SIC ¼ ∑
i
sirilog

ri
�r

� �

ð6Þ

where i is the rate map pixel index, si is the probability of sampling pixel i, ri is the
mean firing rate at pixel i, and �r is the mean firing rate across all pixels.

Modeling CA1 drift dynamics. To simulate the representational structure of
various drift dynamics, we created a rate map-based model. For ease of modeling,
rate map binning was set in Lego coordinates, with the environment being 48 Lego
pips wide (approximately equivalent to 38 cm).

First, we created three populations of 48 × 48 pixel input rate maps which varied
in their dynamics: a shape population (150 cells), a contextual group population (25
cells), and a drift population (300 cells). For shape inputs, a single-pixel was selected
as the field center for each cell. Next, for all sessions besides the square, if this pixel
was in a row/column that was affected by the deformation then its location was
rescaled to match the deformation. Half of the geometry inputs were sensitive to the
x-axis during deformations, with the other half sensitive to the y-axis during
deformations. For contextual group inputs, the three most square-like environments
were assigned a single random pixel as the field center for those sessions. A different
random pixel was then assigned for the remaining half of the shapespace.

Drift input rate maps were created differently depending on the modeled drift
dynamics. In the case of global drift, a single-pixel was randomly selected as the
field center for each cell. Over consecutive days, this pixel was continuously shifted
by a random amount on the range [−4, 4], inclusive, independently on both axes.
For contextual group-specific drift dynamics, this drift accrued independently for
environments in each half of the shapespace, such that over time each contextual
group grew more dissimilar. For environment-specific drift dynamics, this drift
accrued independently for every environment, leading all environments to become
more dissimilar from one another over time. All input rate maps were then
smoothed with an isotropic gaussian pixel with a standard deviation of 5 pixels and
normalized to have a maximum value of 1.

CA1 activity was then modeled as a rectified sum of random combinations of
these inputs. For each CA1 cell, weights for a random 15 inputs were computed by
assigning a random weight value on the range [0, 1] for each input and then
normalizing all input weights to sum to 1. CA1 cell rate maps were then generated
as the weighted sum of these inputs, thresholded at 75% of their maximum value,
and smoothed with an isotropic gaussian pixel with a standard deviation of 5
pixels. The resulting modeled CA1 cell rate maps tended to have 1–2 fields in each
environment and appeared qualitatively similar to recorded rate maps.

Histological validation of expression and recording targets. After experiments,
animals were perfused to verify GRIN lens placement. Mice were deeply anes-
thetized and intracardially perfused with 4% paraformaldehyde in PBS. Brains were
dissected and post-fixed with the same fixative. Coronal sections (50 μm) of the
entire hippocampus were cut using a vibratome and sections were mounted
directly on glass slides. Sections were split and half of all sections were stained for
DAPI and mounted with Fluoromount-G (Southern Biotechnology) to localize
GRIN lens placement and to evaluate the viral expression. Due to the large
imageable surface but restricted miniscope field of view (~0.5 mm × ~0.8 mm), we
were unable to determine more specific localization of populations within the
hippocampus for mice recorded with 1.8 mm lenses.

Statistics. All statistical tests are noted where the corresponding results are
reported throughout the main text and supplement. All tests were uncorrected two-
tailed tests unless otherwise noted. Z-values for nonparametric Wilcoxon tests were
not estimated or reported for comparisons with fewer than 15 data points. Box
plots portray the minimum and maximum (whiskers), upper and lower quartiles
(boxes), and median (cinch).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the DRYAD database and are
accessible at https://doi.org/10.5061/dryad.2z34tmpp9 or via request to the
corresponding authors. Source data are provided with this paper.

Code availability
All custom code written for reported analyses are publicly available at https://github.
com/akeinath/MorphExperiments or via request to the corresponding authors.
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