Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Marine abundance and its prehistoric past in the Baltic

Matters Arising to this article was published on 20 May 2022

The Original Article was published on 24 April 2020

arising from Lewis et al. Nature Communications https://doi.org/10.1038/s41467-020-15621-1 (2020)

In a recent article, Lewis et al.1 advance the hypothesis that an increase in the marine fertility of Danish waters from ca. 7600 cal BP onwards fuelled an intensification in the marine economy and a fourfold population increase in the later Mesolithic period. This hypothesis is severely compromised by: (a) reliance on archaeological data from shell middens without reference to the multiple biases that operate differentially to distort quantitative inferences from such deposits, (b) selective use of stable isotope data obtained from human bone collagen and dates concerning marine technology, and (c) the assumption that human economic choices closely or necessarily track environmental change.

We conclude that these biases cast doubt on the case for Late Mesolithic intensification and population increase, and that investigation of the undoubtedly complex interactions between environmental change and human response requires wider multi-disciplinary collaboration, better integration and understanding of palaeoecological, archaeological, geoscientific and biomolecular datasets, better recognition of their limitations, greater attention to the differential taphonomic histories of archaeological sites and materials, and better articulation and evaluation of alternative hypotheses.

Critical points

Shell accumulations and radiocarbon dates as proxy measures of marine consumption

Lewis et al. (their Fig. 2e) present a measure of shell accumulation based on radiocarbon dates from oyster shells found in Danish shell middens ‘as a proxy for human coastal marine utilisation, and by implication, marine resource availability’ (p. 3).

Shell middens are highly variable in size and volume, ranging from small shell scatters to mounds with thousands of cubic metres of shell2. As such, radiocarbon dates represent shell layers of varying volume and quantity of shells3. Quantification of the relationship between numbers of 14C dates and sizes of shell deposits shows great variability. In Denmark, the Visborg shell midden covers ca. 18,000 m2, with only 16 shell-derived 14C dates published so far4,5,6, a ratio of 14C dates to square metres of shell deposit of roughly 1:1000. At the Ertebølle shell midden, which was dated using 34 14C dates and which has a size of ca. 2800 m2, the ratio is ca. 1:100, an order of magnitude smaller7,8. For other well-known shell middens in Denmark the ratio is ca. 1:11 at Norsminde (ca. 360 m2, 32 dates)9 and ca. 1:355 at Bjørnsholm (ca. 11,000 m2, 31 dates)10. Reliance on radiocarbon dates to quantify shellfish remains thus only works in the rare case that sites are similar with respect to the proportion of the deposits excavated and sampled for dates, as well as taphonomic histories of visibility and preservation, or where these variables are known and can be controlled for. Additional variables are site function, distance from the source of the shell food11, and post-depositional loss of shell12,13,14. Post-depositional loss of shell has demonstrably occurred at the Danish shell middens of Bjørnsholm10, Brovst15, Ertebølle8, Hjarnø16, Krabbesholm II17 and Visborg5,6 either because of marine erosion or anthropogenic destruction in the form of ploughing.

This necessary information about potentially large sample biases is not presented in the study by Lewis et al., making it impossible to evaluate the relationship between the radiocarbon dates and relative changes in marine consumption or resource availability.

Moreover, Lewis et al.1 state that there is an ‘absence of any other reliable method of quantifying shell midden abundance or volume’ (p. 5, Supplementary Information). This statement is incorrect given the work by Stein et al.3 and other archaeological studies referenced above.

Sea-level variation and site preservation

In relation to the shell accumulation curve as well as further points below, it is important to consider the role of sea-level change in site preservation, which is missing from the study.

Shell middens located on the immediate shoreline are vulnerable to destruction by coastal erosion especially during relative sea-level rise, resulting in geographical and temporal gaps in site distribution11. The sea-level curve used by Lewis et al.1 is from Blekinge in southern Sweden, a region of glacio-isostatic uplift. While this curve is ‘broadly representative’ (p. 13, Supplementary Material) for northern Denmark, where many of the known shell middens are concentrated, there is a progressive transition from uplift in the north to submergence in the south, resulting in different sea-level curves further south (Fig. 1). In the southern half of the country, all Mesolithic shorelines are submerged18. Rare underwater shell middens are known, notably at Hjarnø, one of the earliest dated shell middens in the Danish sequence at ca. 7400 cal BP, where the shell midden layer has been truncated, with removal of some midden shell, and redeposition and mixing with marine sediment, reducing the surviving midden to a fraction of its original size19. We do not know how many more existed on the now submerged palaeoshorelines and were subsequently damaged or destroyed by erosion or buried under marine sediment. However, given the large number of known submerged finds and non-shell-bearing sites20, it is certain that there is a substantial gap that overlaps with the study period and some of the study region.

Fig. 1: Sea-level curves from the Baltic Sea.
figure 1

The curve used by Lewis et al. (Blekinge, Sweden) and the more southern curve (Lillebælt, Denmark) over the last 9000 years. P1 and P2 indicate times of increased marine production as suggested by Lewis et al. (data from Rosentau et al.39 and references therein).

Moreover, the current submergence is of only secondary importance. All shell middens which pre-date the time of the high sea-level stand at ca. 6500 cal BP would have been especially vulnerable to marine erosion — including sites in the uplifted north, despite the fact that their locations are now above modern sea level. Some early sites in the north such as Brovst (ca. 7600 cal BP) have survived but with demonstrable evidence of exposure to marine erosion15. Therefore the rarity of early sites, whether in submerged or uplifted locations, is linked to marine erosion, which is sufficient to account for the marked increase of preserved oyster dates after ca. 6400 cal BP (P2 in Fig. 1, and Fig. 2c and 2e of Lewis et al.). There is, therefore, a systematic bias against the representation of shell middens in the earlier part of the Mesolithic sequence that needs to be recognised.

Oyster shells as a proxy for resource availability and the wider marine economy

Lewis et al. state that, ‘[Intense marine resource exploitation] is shown here by the widespread development of large, accessible shell beds in Danish inner waters (Fig. 2e) and, by implication, other marine resources such as mammals, fish and birds’ (p. 7). This sentence involves two unwarranted assumptions.

The first assumption is that shell midden data for quantities of consumed oysters are a reliable proxy for quantities of available oysters. Without independent evidence for the quantities available, this is a circular argument. Economic choices are driven by many different socio-economic and cultural pressures, resulting in avoidance or exploitation of a particular resource regardless of its availability21,22.

The second assumption is that oysters are a reliable proxy for other marine resources. The major difficulty here is that oysters made a relatively small contribution to coastal palaeodiets23,24. The consensus is that fish, not shellfish, are the dominant marine resource in the Mesolithic coastal economy and the principal determinant of population size25,26. As the authors state, there was a wide range of marine resources available to the Mesolithic communities. However, no comparison in the change of the local fish fauna and oyster quantities during the Mesolithic is carried out, without which we can see no evidence for assuming that the latter can be used as a proxy for the former. Moreover, according to Andersen2, shell middens are outnumbered by coastal sites without shells, with the presence or absence of shells at coastal sites being determined by whether or not large natural shell beds were immediately adjacent to a given location.

A more useful test of the intensification hypothesis would be the analysis of growth rates and size and mortality profiles of oyster shells and fish remains, or compound-specific isotope analysis of amino acids to examine a change in the ecosystem structure. Few such studies are available. Where they have been applied, they suggest changes in the Neolithic period rather than the Mesolithic27,28.

Biomolecular evidence of palaeodiet

Lewis et al. cite Fischer et al.’s29 study in which stable isotope analysis of human bone collagen was undertaken as evidence for ‘a shift to a marine-based diet occurring at the boundary between the Maglemose and Kongemose culture’ (p. 5), with the onset of higher marine productivity. This interpretation does not take into account that Early Mesolithic coastlines throughout most of Southern Scandinavia are presently submerged and have received almost no investigation. Indeed, the sites in question were almost exclusively inland sites at the time, ‘miles away from the contemporaneous sea shores.’ (p. 2127) as pointed out by Fischer et al.29 themselves.

In a more recent study, stable isotope analysis of human bone collagen from Maglemosian sites on the uplifted west coast of Sweden has demonstrated that marine and freshwater foodstuffs30 contributed significantly to human diet, suggesting that a shift to a marine-based diet was not as significant a step-change as implied by Lewis et al.1.

Fishing technology

Lewis et al. (their Fig. 2i) also cite evidence of the progressive increase in the range and variety of fishing equipment during the Late Mesolithic period as evidence for progressively intensified fishing practices. However, some technologies, such as fish hooks and water transport, already occurred in the Maglemosian period31,32,33,34, several millennia earlier than their figure indicates. Moreover, another crucial fishing technology, stationary fish weirs, which also date to as early as ca. 9000 cal BP, have been left out entirely, despite their importance in facilitating the mass capture of fish25,26,35. Even earlier than that, ca. 9200 cal BP, evidence for the conservation of large quantities of fish through fermentation has been identified at the site of Norje Sunnansund in Sweden36. We conclude that intensive fishing practices were already employed by the communities that colonised the earliest Littorina shorelines of the Danish Straits and that the available evidence of fishing techniques provides no support for progressive intensification of the fishing economy during the Mesolithic period on the scale proposed in Fig. 2i.

Summary

We conclude that the methods, data, and assumptions used by Lewis et al. to support a hypothesis of Late Mesolithic population increase based on an intensified marine economy are not sufficiently substantiated. The Holocene environment of Southern Scandinavia was undoubtedly a highly dynamic one involving a complex web of changing interactions between climate, ecology, palaeogeography, and human societies. It would be surprising if there were not some interactions between these many variables, and palaeoecological data of the type produced by Lewis et al. have a role to play in such investigations. However, if we are to unravel the relationships between environmental changes and human responses, it will be necessary to develop collaborative research that better integrates palaeoecological, archaeological, marine geoscientific, and biomolecular data, pays more attention to the taphonomic history of archaeological sites and materials, and above all intensifies the investigation of submerged coastlines, where so much of the evidence required to discriminate between alternative hypotheses must be sought37,38.

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Lewis, J. P. et al. Marine resource abundance drove pre-agricultural population increase in Stone Age Scandinavia. Nat. Commun. 11, 2006 (2020).

    ADS  CAS  Article  Google Scholar 

  2. Andersen, S. H. ‘Køkkenmøddinger’ (shell middens) in Denmark: a survey. Proc. Prehist. Soc. 66, 361–384 (2000).

    Article  Google Scholar 

  3. Stein, J. K., Deo, J. N. & Phillips, L. S. Big sites—short time: accumulation rates in archaeological sites. J. Archaeol. Sci. 30, 297–316 (2003).

    Article  Google Scholar 

  4. Enghoff, I. B. Regionality and Biotope Exploitation in Danish Ertebølle and Adjoining Periods (Det Kongelige Danske Videnskabernes Selskab, 2011).

  5. Andersen, S. H. 338. Visborg. Arkæologiske udgravninger i Danmark, p. 84 (1995).

  6. Andersen, S. H. 244. Visborg. Arkæologiske udgravninger i Danmark, p. 66 (1999).

  7. Tauber, H. Copenhagen radiocarbon dates X. Radiocarbon 15, 86–112 (1973).

    Article  Google Scholar 

  8. Andersen, S. H. & Johansen, E. Ertebølle revisited. J. Dan. Archaeol. 5, 31–61 (1986).

    Article  Google Scholar 

  9. Andersen, S. H. Norsminde. J. Dan. Archaeol. 8, 13–40 (1989).

    Article  Google Scholar 

  10. Andersen, S. H. & Rasmussen, K. L. Bjørnsholm. A stratified Køkkenmødding on the Central Limfjord, North Jutland. J. Dan. Archaeol. 10, 59–96 (1991).

    Article  Google Scholar 

  11. Hausmann, N., Meredith-Williams, M., Douka, K., Inglis, R. H. & Bailey, G. Quantifying spatial variability in shell midden formation in the Farasan Islands, Saudi Arabia. PLoS ONE 14, e0217596 (2019).

    CAS  Article  Google Scholar 

  12. Shi, B. et al. Coastal changes and cultural heritage (2): an experiment in the vilaine estuary (Brittany, France). J. Isl. Coast. Archaeol. 7, 183–199 (2012).

    Article  Google Scholar 

  13. Holdaway, S. J. et al. Temporal variability in shell mound formation at Albatross Bay, northern Australia. PLoS ONE 12, e0183863 (2017).

    Article  Google Scholar 

  14. Jazwa, C. S. & Johnson, K. N. Erosion of coastal archaeological sites on Santa Rosa Island, California. Western North American Naturalist 78, 302–327 (2018).

    Article  Google Scholar 

  15. Andersen, S. H. Brovst, en kystboplads fra ældre stenalder. Kuml 19, 67–90 (1969).

    Article  Google Scholar 

  16. Larsen, J. S. et al. From oysters to cockles at Hjarnø Sund: environmental and subsistence changes at a Danish Mesolithic site. Radiocarbon 60, 1507–1519 (2018).

    CAS  Article  Google Scholar 

  17. Andersen, S. H. 298. Krabbesholm. Arkæologiske udgravninger i Danmark, p. 82 (2002).

  18. Astrup, P. M. Sea-level Change in Mesolithic Southern Scandinavia: Long- and Short-term Effects on Society and the Environment (ISD LLC, 2018).

  19. Astrup, P. M. et al. Underwater shell middens: excavation and remote sensing of a submerged mesolithic site at Hjarnø, Denmark. J. Isl. Coast. Archaeol. 15, 457–476 (2020).

    Article  Google Scholar 

  20. Mennenga, M. Splashcos-Viewer. Splashcos-Viewer [http://splashcos.maris2.nl/] (2021).

  21. Fariñas-Franco, J. M. et al. Missing native oyster (Ostrea edulis L.) beds in a European Marine Protected Area: Should there be widespread restorative management? Biol. Conserv. 221, 293–311 (2018).

    Article  Google Scholar 

  22. Pogoda, B. Current status of European Oyster decline and restoration in Germany. Humanit. Rep. 8, 9 (2019).

    Google Scholar 

  23. Clark, G. The Earlier Stone Age Settlement of Scandinavia (CUP Archive, 1975).

  24. Bailey, G. N. Shell middens as indicators of postglacial economies: a territorial perspective. In The Early Postglacial Settlement of Northern Europe 37–63 (Duckworth, London, 1978).

  25. Rowley-Conwy, P. Economic prehistory in southern Scandinavia. Proc. Br. Acad. 99, 125–160 (1999).

    Google Scholar 

  26. Fischer, A. Coastal fishing in Stone Age Denmark-evidence from below and above the present sea level and from human bones. Shell Middens in Atlantic. Europe 30, 54–69 (Oxbow, Oxford, 2007).

    Google Scholar 

  27. Bailey, G., Barrett, J. H., Craig, O. & Milner, N. Historical ecology of the North Sea basin. In Human Impact on Ancient Marine Ecosystems: A Global Perspective 215–242 (University of California Press, Berkeley and Los Angeles, California, 2008).

  28. Milner, N. Human impacts on oyster resources at the Mesolithic-Neolithic transition in Denmark. In The Archaeology and Historical Ecology of Small-Scale Economies 17–40 (Florida University Press, Florida, 2013).

  29. Fischer, A. et al. Coast–inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. J. Archaeol. Sci. 34, 2125–2150 (2007).

    Article  Google Scholar 

  30. Boethius, A. & Ahlström, T. Fish and resilience among Early Holocene foragers of southern Scandinavia: A fusion of stable isotopes and zooarchaeology through Bayesian mixing modelling. J. Archaeol. Sci. 93, 196–210 (2018).

    Article  Google Scholar 

  31. Broholm, H. C. Nye Fund på den ældste Stenalder. Holmegaard og Sværdborgfundene. Aarb. f. nord. Oldk. og Hist (1924).

  32. Andersen, K., Jørgensen, S. & Richter, J. Maglemose hytterne ved Ulkestrup Lyng. 7 (Kongelige Nordiske Oldskriftselskab, 1982).

  33. Chaudesaigues-Clausen, S. Reconstructing Maglemose bone fishhooks-a craftsmanship from Zealand. Dan. J. Archaeol. 7, 291–308 (2018).

    Article  Google Scholar 

  34. Hansson, A. et al. A submerged Mesolithic lagoonal landscape in the Baltic Sea, south-eastern Sweden-Early Holocene environmental reconstruction and shore-level displacement based on a multiproxy approach. Quat. Int. 463, 110–123 (2018).

    Article  Google Scholar 

  35. Nilsson, B., Sjöström, A. & Persson, P. Seascapes of stability and change: the archaeological and ecological potential of the early mesolithic seascapes with examples from Haväng in SE Baltic, Sweden. In The early settlement of Northern Europe 1 335–352 (Equinox Publishing, Sheffield, 2018).

  36. Boethius, A. Something rotten in Scandinavia: the world’s earliest evidence of fermentation. J. Archaeol. Sci. 66, 169–180 (2016).

    Article  Google Scholar 

  37. Flemming, N. C., Harff, J., Moura, D., Burgess, A. & Bailey, G. N. Submerged Landscapes of the European Continental Shelf: Quaternary Paleoenvironments (John Wiley & Sons, Hoboken, 2017).

  38. Bailey, G., Jöns, H., Galanidou, N., Peeters, H. & Mennenga, M. The Archaeology of Europe’s Drowned Landscapes (Springer Nature, Cham, 2020).

  39. Rosentau, A. et al. Sea-Level Change and Flood Risks at Estonian Coastal Zone. In Coastline Changes of the Baltic Sea from South to East: Past and Future Projection (eds. Harff, J., Furmańczyk, K. & von Storch, H.) 363–388 (Springer, Cham, 2017).

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.H., H.R., G.B. wrote the manuscript. All authors approved the final paper.

Corresponding author

Correspondence to Niklas Hausmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Björn Nilsson, Peter Rowley-Conwy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hausmann, N., Robson, H.K. & Bailey, G. Marine abundance and its prehistoric past in the Baltic. Nat Commun 13, 2825 (2022). https://doi.org/10.1038/s41467-022-30150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-022-30150-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing