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Caveolin-1 temporal modulation enhances antibody
drug efficacy in heterogeneous gastric cancer

Patricia M. R. Pereira"?™ Komal Mandleywala!, Sébastien Monette® 3, Melissa Lumish?, Kathryn M. Tully"®,

Sandeep Surendra Panikar® 2, Mike Cornejo!, Audrey Mauguen®, Ashwin Ragupathi', Nai C. Keltee?,
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Resistance mechanisms and heterogeneity in HER2-positive gastric cancers (GC) limit
Trastuzumab benefit in 32% of patients, and other targeted therapies have failed in clinical
trials. Using patient samples, patient-derived xenografts (PDXs), partially humanized biolo-
gical models, and HER2-targeted imaging technologies we demonstrate the role of caveolin-1
(CAV1) as a complementary biomarker in GC selection for Trastuzumab therapy. In retro-
spective analyses of samples from patients enrolled on Trastuzumab trials, the CAV1-high
profile associates with low membrane HER2 density and low patient survival. We show a
negative correlation between CAV1 tumoral protein levels - a major protein of cholesterol-
rich membrane domains - and Trastuzumab-drug conjugate TDM1 tumor uptake. Finally,
CAV1 depletion using knockdown or pharmacologic approaches (statins) increases antibody
drug efficacy in tumors with incomplete HER2 membranous reactivity. In support of these
findings, background statin use in patients associates with enhanced antibody efficacy.
Together, this work provides preclinical justification and clinical evidence that require pro-
spective investigation of antibody drugs combined with statins to delay drug resistance in

tumors.
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ARTICLE

uman epidermal growth factor receptor 2 (HER2)

alterations, including overexpression, amplification, and

other mutations, occur in breast and gastric cancer
(GC)12. The anti-HER2 antibody Trastuzumab is the standard-
of-care treatment for metastatic and early-stage HER2-positive
breast cancer? and first-line therapy in combination with che-
motherapy for GC3. Although several targeting agents are effec-
tive in treating HER2-positive breast tumors’2, not all tumors
benefit from HER2-targeted therapies (reviewed in2) due to
considerable differences in HER2 biology in different tumor
types. Beyond Trastuzumab® and Trastuzumab deruxtecan?,
clinical trials have failed to demonstrate efficacy of other HER2-
targeted therapies (Pertuzumab, TDM1) in the first and later
treatment lines for GC>°. The lack of remarkable achievements in
GC suggests that the successes seen in breast cancer can not be
replicated in several other tumor types, e.g., biliary tract, color-
ectal, non-small-cell lung and bladder cancers.

One of the reasons that not all GC respond to targeted therapies
is its high heterogeneity. Indeed, HER?2 is highly heterogeneous in
GC?7-11 and others have shown that HER2 heterogeneity associ-
ates with resistance to HER2-targeted therapy!2-14. Receptor
endocytosis and recycling processes contribute to HER2 hetero-
geneity and membrane dynamics!'®, affecting antibody-tumor
binding and subsequent efficacy and antibody-dependent cyto-
toxicity (ADCC)-mediated mechanisms!®-2>. HER2 endocytosis
occurs through caveolae?®, clathrin-!> or endophilin-mediated
mechanisms?”. Caveolin-1 (CAV1), the major structural protein of
cholesterol-rich caveolae, negatively correlates with membrane
HER2 and affects Trastuzumab-tumor binding!8-24, Endocytic
trafficking systems also influence the efficacy of the antibody-drug
conjugate (ADC) TDM1!7. While CAV1-dependent endocytosis
enhances cancer cells’ chemosensitivity to TDM12°, others have
shown a role for caveolae-mediated endocytosis in TDM1
resistance?l:24, Cholesterol-depleting drugs, statins, are FDA-
approved drugs prescribed to millions of people worldwide for
the treatment of hypercholesterolemia?® and used in preclinical
studies to modulate CAV1 protein levels?8-32. In preclinical
models, statins enhance HER2 confinement at the cell surface!®33,
increase HER2-directed immunoPET uptake and enhance Tras-
tuzumab systemic efficacy in xenografts with non-predominant
HER2 membrane staining!$.

In this work, we retrospectively validate CAV1 as a com-
plementary biomarker for the selection of patients for HER2-
targeted therapies. Tumors with high CAV1 correspond with low
HER?2 density at the cell surface and, in Trastuzumab trials, to
patients with low survival rates. Using heterogeneous PDX
models with varying levels of CAV1, we show that TDMI1, an
ADC that targets HER2, combined with lovastatin, a small
molecule that depletes cholesterol in ways that modulate CAV1
protein expression, improves antibody-tumor binding and
response rates better than either does alone. Mechanistically,
statins enhance the disruption of downstream signaling and
natural killer (NK) cells-mediated ADCC. Importantly, we vali-
dated these preclinical findings in retrospective analyses of
patient-level data from clinical studies of HER2-targeted therapies
in GC patients. It is possible that the findings herein reported are
not limited to GC and should be considered while attempting to
extend the clinical benefits of HER2-targeted therapies beyond
breast and GC to other HER2-expressing solid tumors.

Results

CAV1-low profile predicts favorable GC response in patients
undergoing Trastuzumab therapy. Previous studies of HER2-
positive tumor models implied a role for CAV1 in antibody
binding and efficacy!®20-21.2425 Qur previous results of

Table 1 Patient characteristics.
Characteristics N (%)
Total patients 46
Sex, median
Male 37 (80)
Female 9 (20)
Age at diagnosis, median 61 (between 28 and 87)
Therapy Prior to Trastuzumab 9 (19.5)
EOX 2
Carboplatin/paclitaxel/RT 2
Carboplatin/taxol/RT 1
Modified DCF 1
FOLFOX 2
FOLFOX/regorafenib 2. 5-FU/ 1
regorafenib
Stage of disease at the time of diagnosis
Stage IV 34 (74)
Stage lI 8 (7
Stage Il 4 (9)
Stage of disease at the time of initiating
Trastuzumab
Stage IV 46 (100)
HER2 IHC at diagnosis
3+ 36 (78)
2+ 10 (22)
HER2-positivity retained after initiating 14 (30)
Trastuzumab
Sample type
Primary 20 (43)
Metastasis 26 (57)
Sample location
Liver 12 (26)
Stomach 10 (22)
Esophagus 6 (13)
Esophagogastric junction 6 (13)
Lung 501D
Brain 4 (8.7)
Scalp 120
Skin 12N
Peritoneum 11
CAV1 IHC
HER2+/CAVIHIGH tumors 12 (26)
HER2t/CAV1OW tumors 34 (74)
Statin use 19 (41)
Statin use prior Trastuzumab therapy 12 (26)
Prior Trastuzumab at PDX biopsy
Yes 36 (78)
No 10 (22)
Stage of disease at the time of PDX biopsy
Stage IV 40 (87)
Stage Il 6 (13)
EOX chemotherapy combination of epirubicin, oxaliplatin, and capecitabine (Xeloda), RT
radiation therapy, Modified DCF modified docetaxel, cisplatin, fluorouracil.

Trastuzumab in preclinical models of HER2-expressing
xenografts!8 provided the rationale for a retrospective study
stratifying CAV1-low and CAVI1-high HER2T GC. Eligible
samples were obtained from previous trials at Memorial Sloan-
Kettering Cancer Center (MSK) of HER2" GC patients treated
with Trastuzumab. Samples were from predominantly male
patients (80% male versus 20% female) with a median age of 61
years (range 28-87). HER2-positivity was defined as ITHC 3+,
IHC 2+ and HER2:CEP17 FISH ratio 22.0, or ERBB2 amplifi-
cation by next-generation sequencing. Table 1 summarizes
patient characteristics and Supplementary Fig. 1 shows patient
survival in stratified HER2 THC 2+ and 3+ tumors treated with
Trastuzumab. The cohort consists of 46 patients with stage IV (74
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Fig. 1 HER2 membrane levels and Trastuzumab efficacy depend on CAV1 protein levels. a Immunohistochemical (IHC) detection and scoring intensity of
CAV1, immunofluorescence (IF) staining of HER2 (green color) and CAV1 (red color) in HER2-expressing gastric tumor tissues. CAV1 reactivity at the cell
membrane of tumor cells was considered for IHC scoring; IHC 0/1+ : CAV1-low (patient #14 and patients #3-5). IHC 2 + /3 +: CAV1-high (patient #1
and patient #2). The graphs plot protein fluorescence intensity per unit area, calculated by quantifying IF images (mean + S.E.M, n = 3). Scale bar, 50 pm.
HER2 membrane levels are classified as high versus low based on quantification of IF staining shown in Supplementary Fig. 5. Patient 1to Patient 33 are IDs
for all HER2T gastric tumor tissues analyzed in the study (Supplementary Fig. 4). b 89Zr-labeled Trastuzumab (1 uCi, 0.25 pg) binding and internalization in
NCIN87 GC cells wild-type (WT) and AGS, KATOIII, SNU1 GC sublines stably expressing HER2 (LV-HER2). ¢ Kaplan-Meier analyses of CAV1 expression
and GC disease outcome in patients treated with Trastuzumab. Patients with HER2+/CAV1HIGH (blue color, n =12 patients) phenotype have a worse
survival than HER2/CAVILOW (red, n = 34 patients). Log rank; p<1x10~4. Source data are provided as a Source Data file.

%), stage III (17%), or stage II (9%) HER2T GC disease at the
time of diagnosis. All patients were stage IV at the point when
Trastuzumab therapy was initiated. Samples obtained from
patients enrolled on Trastuzumab trials (9/46 tumor samples
were from patients that received other therapies prior to Tras-
tuzumab) were analyzed for CAV1 IHC (Fig. 1a, b). This cohort
was comprised of samples from primary tumors (43%) or
metastases (57%). CAV1 IHC optimization used tissues with

varying levels of CAV1 (Supplementary Figs. 2 and 3). CAV1-
staining at the membrane of GC was classified as 0/1 + CAV1-
low (weak to low CAV1 membrane staining) and 2 + /3 + CAV1-
high (moderate to strong CAV1 membrane staining; Fig. la,
Supplementary Fig. 3). CAV1-high and CAVI1-low IHC were
detected respectively in 26% and 74% of HER2T GC. In addition
to CAV1 IHC, somatic alterations of patient samples used in our
studies where determine by MSK-IMPACT (Supplementary
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Fig. 4). This methodology uses a hybridization-based exon cap-
ture design to detect somatic single-nucleotide variants, small
insertions and deletions, copy-number alterations, and structural
rearrangements!0-34,

Immunofluorescence staining of patient samples revealed high
membrane density of HER2 receptors in CAV1-low GC (Fig. la,
Supplementary Fig. 5). Conversely, non-homogeneous HER2
membrane staining prevailed in CAV1-high tumors. Western blot
studies of a panel of 6 GC cell lines supported the inverse
correlation between HER2 and CAV1 protein expression (Supple-
mentary Fig. 6A). These observations are consistent with previous
results in preclinical models of HER2-expressing tumors!8-21,

To test Trastzumab binding in HER2 cancer cells expressing
varying levels of CAV1, we first used a panel of GC cell lines
(Fig. 1b, Supplementary Fig. 6A, B): the HER2T GC cell line (WT,
NCINS87) and three GC cell lines (AGS, KATOIII, and SNU1)
stably expressing HER2 (LV-HER?2). In addition to the generation
of KATOIIIL, AGS, and SNU1 sublines stably expressing HER2,
we also attempted to express HER2 in MKN45 and SNU5 GC
cells. Interestingly, the protocols herein used did not allow for the
successful generation of LV-HER2 in cell lines containing the
highest CAV1 expression (Supplementary Fig. 6B). Membrane-
bound Trastuzumab was higher in CAV1-low AGS LV-HER2
and SNU1 LV-HER2 GC cells when compared with CAV1-high
NCIN87 or KATOIII LV-HER?2 cells (Fig. 1b).

We then sought to determine if tumoral CAV1 was associated
with survival in patients undergoing HER2-targeted therapy. We
compared patient survival during Trastuzumab therapy in stratified
CAV1-high and CAV1-low GC. These retrospective analyses used
information about the 46 patients described above to determine the
association of CAV1 THC and HER2 membrane staining with
Trastuzumab responses and overall survival in trials of HER2T GC
(Table 1). In retrospective analyses performed in this study, the
CAVl1-low profile (34 of 46) corresponds to tumors with
homogeneous surface receptors and predicts favorable patient
response to Trastuzumab therapy (Fig. 1c, Supplementary Fig. 7).

CAV1 depletion increases TDM1 binding in GC. Membrane-
localized receptors and trafficking are important in the therapeutic
efficiency of ADCs!7. We next hypothesized that differences in cell-
surface HER2 in CAV1-high versus CAV1-low tumors (Fig. 1)
results in different susceptibility to ADCs. To this end, we first
established the significance of CAV1 levels on TDMI-tumor
binding using HER2™ gastric PDXs (78% of PDXs were obtained
from patients prior initiating Trastuzumab; Table 1). The PDX
tissues were confirmed to match the parent tissue shown in Fig. 1
by MSK-IMPACT data. Examination of H&E and IHC stained
sections excluded the possible presence of B cell lymphomas in
PDXs associated with Epstein-Barr Virus®>3¢ (Supplementary
Fig. 8; carcinomas: pancytokeratint/CD45~/CD20~, lymphomas:
pancytokeratin—/CD457/CD20%). PDXs containing lymphoma
were excluded from preclinical studies (n=13). At 48h post-
injection of 89Zr-labeled TDM1, CAV1-low PDXs had uptakes
ranging from 22.8 + 6.5 to 32.5 + 5.7 percentage of injected dose per
gram of PDX (%ID/g), while CAV1-high PDXs yielded uptakes
ranging from 9.7 +3.6 to 13.3+3.0%ID/g (Fig. 2a). The lower
TDM1 accumulation in CAV1-high xenografts, when compared
with CAV1-low tumors, prompted us to interrogate if in vivo
genetic depletion of CAV1 would boost ADC-tumor binding. To
this end, we used CAVI1-high NCIN87 GC cells containing
incomplete HER2 surface density!® to develop a Tet-On system of
CAV1 knockdown in the presence of doxycycline (Dox); Supple-
mentary Fig. 9A, B. Dox-induced CAV1 knockdown resulted in a
1.9-fold increase in HER2 at the cell membrane (Supplementary
Fig. 9B). We performed in vivo studies in mice bearing

subcutaneous (s.c.) NCIN87 shRNA 486 or shRNA 479 xenografts.
Control experiments included non-targeting control (NTC)
shRNA xenografts. Mice were orally administered saline (OFF
DOX) or Dox (ON DOX) for 11 days before 8°Zr-labeled TDM1
injection (Fig. 2b). Transversal PET images of the saline cohort
showed a gradual accretion of immunoPET signal between 24 and
72 h into the HER2-positive tumors (Fig. 2c). Antibody uptake was
similar in OFF DOX and ON DOX cohorts of control shRNA NTC
xenografts. On the other hand, xenografts of ShRNA 486 or shRNA
479 showed a remarkably higher tumor uptake in ON DOX groups
when compared with OFF DOX cohorts. Quantitation of the signal
in tumors’ regions of interest (ROI) further endorsed our findings
from PET imaging (Fig. 2d). To temporally knockdown CAV1,
ON/OFF Dox cohorts included mice treated with Dox for 7 days
and saline for 4 days, (Supplementary Fig. 9C, D). The TDM1-
tumor uptake using a ON/OFF Dox schedule was comparable in
mice having NCIN87 shRNA NTC, shRNA 486, or shRNA 479
xenografts (Supplementary Fig. 9E). These results indicate that
CAV1 knockdown enhances HER2 availability at the cell mem-
brane resulting in an increase in TDM1-tumor binding in HER2+/
CAV1HIGH NCIN87 xenografts.

Statin-mediated CAV1 modulation is temporal and enhances
TDM1 internalization. Premised on our findings using the Tet-
on system (Fig. 2¢, d), we explored in vivo CAV1 depletion
employing an FDA-approved pharmacologic approach with
potential for clinical translation. Given that the cholesterol-
depleting drug lovastatin modulates CAV118:3738, we sought to
determine whether lovastatin would enhance TDMI-tumor
binding. TDM1 exhibits predominant surface localization after
1.5h incubation time with lovastatin when compared with no-
statin (Fig. 3a). The effect of statin-mediated TDM1-membrane
binding is temporal and the ADC shows intracellular accumula-
tion at 24 h incubation time with lovastatin. We next determined
if differences in TDM1 binding would affect ADC internalization
in GC cells. ADC internalization was measured using TDM1
conjugated with the pH-sensitive dye (pHrodo-TDM1) that only
fluoresces in acidic environments, such as the lysosome!”. We
consistently observed that lovastatin increases TDMI1 inter-
nalization in NCIN87, KATOIII LV-HER2, and SNU1 LV-HER2
GC cells (Fig. 3b), an effect that is rescued by the addition of
mevalonate to the cell culture (Supplementary Fig. 10). Addi-
tional studies with 89Zr-labeled TDM1 demonstrate that lovas-
tatin decreases ADC recycling to the cell membrane (Fig. 3b).
TDMI1 internalization in control and lovastatin-incubated cells
co-localized with the lysosomal-associated membrane protein 1
(LAMP-1, Fig. 3c). Consistently, lovastatin does not alter the
ubiquitination of immunoprecipitated HER2 (Supplementary
Fig. 11). These data suggest that lovastatin enhances TDM1
binding to the surface of GC cells, which results in an increase in
TDML1 internalization and decrease in ADC recycling.

The above data provided the rationale for preclinical imaging
studies to explore the potential role of lovastatin as a CAV1
modulator in the context of TDM1 binding to HER2+ GC. Mice
bearing subcutaneous xenografts were orally administered the
previously reported dose schedule of the cholesterol-depleting
drug (two doses of 8.3mg/kg given 12h apart)!8. Lovastatin
induced a significant reduction in CAV1 tumor levels and
increased HER2 membrane levels (Fig. 3d). At 48 h after the first
dose of lovastatin, CAV1 expression and HER2 staining
resembled those found at 0h, lending further evidence for the
transience and temporality of our statin regimen. To non-
invasively monitor ADC uptake in statin cohorts, mice were
intravenously injected with 89Zr-labeled TDM1 at 12 h after the
first dose of lovastatin. The 12h window for antibody injection
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Fig. 2 CAV1 depletion enhances TDM1-tumor binding. a [89Zr]Zr-DFO-TDM1 uptake in HER2-expressing gastric PDXs containing varying levels of CAV1.
NSG mice bearing subcutaneous PDXs were intravenously administered with [89Zr]1Zr-DFO-TDM1 (6.66-7.4 Mbg, 45-50 pg protein) and biodistribution
performed at 48 h p.i. of 89Zr-labeled antibody. PDX IDs in this figure match patient IDs shown in Fig. 1. Points, n = 5 mice per group, mean + S.E.M. %ID/g,
percentage of injected dose per gram. b-d Athymic nude mice bearing s.c. NCIN87 shRNA NTC, shRNA 486, or shRNA 479 xenografts were orally

administered with 10 mg/mL of Dox (ON DOX) or PBS (OFF DOX) for 11 days. On day 11, mice were intravenously administered with [89Zr]Zr-DFO-TDM!1
(6.66-7.4 Mbg, 45-50 pg protein). PET images (c) were recorded at 24, 48, and 72 h p.i. [89Zr]Zr-DFO-TDM1. The percentage of injected dose per gram
(%ID/g) of TDMT1 in tumors (d) was calculated by quantifying regions of interest (ROIs) in the PET images. *P < 0.05 based on a Student's t test, n=3.

Source data are provided as a Source Data file.

was based on our observations of CAVI1 depletion and an
enhancement in membrane HER2 (Fig. 3d). Control cohorts
included mice orally administered saline instead of statin. The
saline cohort revealed a radiopharmacologic profile standard for
zirconium-89 labeled antibodies (Fig. 3e, Supplementary Fig. 12A)
with gradual antibody accumulation to xenografts (4.9+2.7,
10.2+2.9, 22.2+12.6, 31.1£9.3 %ID/g at 4, 8, 24, and 48h).
However, the two doses of lovastatin yielded an antibody uptake
higher at the different time-points when compared with the saline
cohort (15.5+9.7,19.5+9.3,52.1 £7.6, 63.4 £ 16.7 %ID/g at 4, 8,
24, and 48 h). Oral administration of lovastatin results in images
with high contrast and enhances tumor-to-background ratios
(Fig. 3¢, Supplementary Fig. 12B). To determine whether statin-
mediated enhancement in ADC-tumor binding is dependent on
CAV1 tumoral levels, we performed biodistribution studies with
89Zr-labeled TDM1 in the HER2-positive gastric PDXs shown in
Fig. la. Although TDMI accumulation in CAV1-low PDXs was
similar in control and lovastatin cohorts (Fig. 3f), TDM1 uptake
in PDX #1 (CAV1, IHC 3+) and PDX #2 (CAV1, IHC 2+) was
1.8-fold and 1.4-fold higher in lovastatin cohorts when compared
with saline. These results indicate that acute CAV1 depletion by
lovastatin increases cell surface receptors, enhancing TDMI
binding and internalization in HER2" PDXG.

Statins enhance TDM1 efficacy. To assess TDMI1 efficacy in
combination with lovastatin, we first conducted therapy studies in

CAV1-expressing HER2-positive (Fig. 3g-i) and HER2-negative
GC cells (Supplementary Fig. 13A). In HER2-positive NCIN87
cells, TDM1 decreased viability (Fig. 3g), and lovastatin alone did
not induce cell toxicity. However, statins greatly reduced cell
viability when combined with the ADC. Of note, this effect was
not observed in HER2-negative GC models (Supplementary
Fig. 13B, C). In addition, cytotoxicity was significantly higher in
TDM1/statin-treated cells than cells treated with Trastuzumab/
statin (Fig. 3g). The increase in PARP cleavage further validated
efficacy results with the combination therapy (Fig. 3h, i; Sup-
plementary Fig. 13D, E). We next evaluated whether differences
observed in cytotoxicity would interfere with HER2-mediated
oncogenic signaling pathways. The phosphorylated proteins p-
EGFR, p-ERK, and p-AKT were detected in both unstimulated
and EGF-stimulated NCIN87 cells, suggesting that both MAPK
and PI3K/AKT pathways are active (Fig. 3h, i; Supplementary
Fig. 13D). TDM1 treatment alone in EGF-stimulated cells did not
alter p-ERK, p-AKT, p-HER2, or p-HER3, in agreement with
previous observations3*40. Lovastatin did not induce significant
alterations in signaling, but when combined with TDMI1 it
reduces phosphorylation of both ERK and AKT in EGF-
stimulated cells. Under heregulin (HRG) stimulation, the ADC
decreases p-ERK and p-HER and, in combination with a statin, it
effectively reduces p-ERK, p-AKT, and p-HER (Fig. 3h, i; Sup-
plementary Fig. 13E). Collectively, these results show that statins
enhance in vitro TDM1 efficacy by decreasing p-ERK and p-AKT
oncogenic signaling pathways.
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Fig. 3 Statins enhance TDM1 binding and internalization. a Confocal images of immunofluorescence of TDM1 in the presence or absence of lovastatin.
Scale bars: 20 pm. b TDMT1 internalization and recycling in NCIN87 GC cells wild-type (WT) and AGS, KATOIII, SNUT GC sublines stably expressing HER2
(LV-HER2) in the presence and absence of lovastatin. The pHrodo-TDM1 fluorescent signal was normalized to the number of viable cells (*P < 0.05,
**P<0.01, ***P < 0.001 based on a Student's t test, n = 4). ¢ Confocal images of immunofluorescence staining of pHrodo-TDM1 and LAMP1in NCIN87 cells
in the presence and absence of lovastatin. Scale bars: 100 pm and 50 pm (inset). d Western blot of CAV1 and HER2 immunofluorescence in NCIN87 s.c.
tumors from athymic nude mice. Lovastatin (8.3 mg/kg of mice) was orally administrated twice with an interval of 12 h between each administration. Scale
bars: 50 pm. e Representative coronal PET images and TDM1-tumor uptake at 4, 8, 24, and 48 h p.i. of [89Zr]Zr-DFO-TDM1 in athymic nude mice bearing
s.c. NCIN87 tumors. Lovastatin (8.3 mg/kg of mice) was orally administrated 12 h prior and at the same time as the tail vein injection of [89Zr]Zr-DFO-
TDM1 (6.66-7.4 Mbq, 45-50 pg protein). Bars, n=5 mice per group, mean £ S.E.M. *P < 0.05, **P < 0.01, ***P < 0.0017 based on a Student's t test. %ID/g,
percentage of injected dose per gram. f [89Zr]Zr-DFO-TDMT1 uptake in HER2-expressing gastric PDXs containing varying levels of CAV1 and administered
saline (blue color) or statin (red color). PDX IDs in this figure match patient IDs shown in Fig. 1. Points, n =15 mice per group, mean £ S.E.M, **P < 0.01
based on a Student's t test. %ID/g, percentage of injected dose per gram. g Cell viability of NCIN87 cells at 48 h after cells incubation with Trastuzumab
(Trast) and TDMT1 alone or in combination with lovastatin. Bars, n =5-7 per group, mean = S.E.M. *P< 0.05, **P < 0.07, based on a Student's t test.

h, i Western blots of HER2 signaling and quantification of NCIN87 cells after 48 h incubation with TDM1 alone or in combination with lovastatin. Bars,
quantification of Western blots shown in Fig. 3i. Supplementary Fig. 13 shows quantifications of three independent assays. Source data are provided as a
Source Data file.

Encouraged by the in vitro cell death and signaling findings,
we next determined TDM1 efficacy when combined with
lovastatin using NCIN87 xenografts or PDXs shown in Fig. 1.
Similar to the imaging studies reported above, therapeutic
cohorts used PDXs obtained from patients prior initiating
Trastuzumab therapy. Mice received intravenous injections of
TDM1 (5mg/kg once a week3 for 5 weeks), oral doses of
lovastatin (4.15 mg/kg administered 12 h prior and at the same
time as the intravenous injection of antibody'®), or a combina-
tion of ADC and lovastatin over 5 weeks (Fig. 4a). The vehicle
and lovastatin cohorts had a similar trend of increased tumor
volume over time (Fig. 4b). TDM1 alone inhibited tumor
growth, but tumors developed resistance after 42 days of

6

therapy. The combination of the ADC with lovastatin greatly
decreased tumor volume when compared with the monotherapy.
In addition, TDM1/lovastatin decreases oncogenic signaling at
40 days after initiating therapies as we observed a reduction in
p-AKT, p-ERK, and p-Tyr (Fig. 4c, Supplementary Fig. 13F).
The phosphorylation of the cyclic (c)AMP responsive element
binding protein (CREB), a player in HER2-mediated cancer
development?!, was also lower in xenografts of mice treated with
TDM1/lovastatin when compared with TDM1 alone (Fig. 4c,
Supplementary Fig. 13F).

In addition to the conventional xenografts, PDX #1 was used to
validate therapeutic studies (Fig. 4d, Supplementary Fig. 14). PDX
#1 was obtained from HER2T GC of a patient prior initiating
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Trastuzumab therapy. Medical records indicated that this patient
underwent first-line therapy with Trastuzumab but passed away
less than a year after diagnosis. The patient developed brain
metastases characterized by persistent TP53 and KRAS somatic
mutations, HER2 THC 34 and CAV1 IHC 3+. Lovastatin
enhanced TDM1 efficacy in PDX #1 (Fig. 4d) which was
accompanied by a decrease in p-ERK/p-AKT compared with
monotherapy cohorts (Supplementary Fig. 15A). Notably, PDX
#1 tumor volume in TDM1/lovastatin cohorts was higher than
the previously reported Trastuzumab/lovastatin in the same GC
PDX!8. These preclinical results indicate that 2-weekly doses of
statin (4.15 mg/kg) given over 5 weeks to mice with CAV1-high
HER2t gastric xenografts enhance TDM1 efficacy.

Statin enhances anti-HER2 antibody ADCC. Receptor inter-
nalization affects ADC efficacy (Figs. 2-4) and diminishes anti-
tumor immunity by ADCC!®, a major mechanism of clinical
efficacy of IgGl therapeutic antibodies. Although antibody/
lovastatin delays tumor growth in immunodeficient mice via
signaling inhibition, xenograft regrowth arises in immunodefi-
cient hosts (Fig. 4b, d). Because Trastuzumab-mediated ADCC
happens mainly through NK cells#2-44, we isolated NK cells from
a healthy donor (Supplementary Fig. 16A-D) to measure ADCC
in HER2T GC cells expressing different levels of CAV1 (Sup-
plementary Fig. 6A, B). Lovastatin enhanced antibody ADCC in
CAV1-positive GC cells but not in CAV1-negative cells (Sup-
plementary Fig. 16E). Next, we conducted therapeutic studies in
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Fig. 4 Lovastatin enhances TDM1 efficacy and Trastuzumab-mediated ADCC. a-d Superior in vivo therapeutic efficacy of TDM1 combined with lovastatin
when compared with TDM1 alone. a Intravenous TDM1 administration 5 mg/kg weekly (for 5 weeks) was started at day O. Lovastatin (4.15 mg/kg of mice)
was orally administrated 12 h prior to and simultaneously with the intravenous injection of TDM1. Lovastatin enhanced TDM1 efficacy of nu/nu female mice
bearing NCIN87 gastric xenografts (b), and NSG mice bearing CAV1-high PDXs (d). *P < 0.05, **P < 0.07, ***P < 0.001 based on a Student's t test (n = 8-10
mice per group). € Western blot analyses of AKT, ERK, Tyr, CAV1, and CREB protein expression and phosphorylation in NCIN87 xenografts at 40 days after
treatment with lovastatin, TDM1, or TDM1/lovastatin. e NSG mice bearing NCIN87 xenografts were intravenously injected 1 x 106 human NK cells at day O.
One day after NK cells tail vein injection, the IL-15/IL-15Ra complex was intraperitoneally administered at a dose of 1.25 pg/mouse. Trastuzumab or
Trastuzumab/lovastatin efficacy was then evaluated during a cytokine-dependent NK expansion phase (week 1-week 3). Lovastatin enhanced
Trastuzumab efficacy in NSG mice humanized with NK cells and bearing NCIN87 xenografts (n = 8-10 mice per group, mean = S.E.M.). Statistical analyses
performed using ANOVA coupled to Scheffé's method. f Trastuzumab/lovastatin efficacy is higher than the combination of Fc-silent Trastuzumab
(Trastuzumab F(ab"), fragments or deglycosylated Trastuzumab) in NSG mice humanized with NK cells and bearing NCIN87 xenografts (n = 8-10 mice
per group, mean + S.E.M.). Statistical analyses performed using ANOVA coupled to Scheffé's method. g Kaplan-Meier analysis of statin use and HER2-
expressing GC disease outcome in patients treated with Trastuzumab. Patients without statin treatment (blue color, n=27) have a worse survival than

patients treated with statin (red color, n =19). Log rank; p = 0.005. Source data are provided as a Source Data file.

NK-humanized NSG mice bearing NCIN87 xenografts (Fig. 4e).
The NK cohorts showed initial response to Trastuzumab, but
tumor progression occurred on day 10 (Fig. 4e, Supplementary
Fig. 16F). On the other hand, Trastuzumab/lovastatin combina-
tion therapy yielded tumor regression and stabilization. Control
experiments used F(ab’), fragments and deglycosylated Trastu-
zumab (Supplementary Fig. 17) to remove the Fc-mediated sti-
mulation of NK cell effector function. The combination of
lovastatin with Fc-silent Trastuzumab shows lower efficacy than
Trastuzumab/lovastatin (Fig. 4e).

To further confirm ADCC findings, we monitored Trastuzumab/
lovastatin efficacy during cytokine-dependent (between week 1 and
week 3) and cytokine withdrawal phases (weeks 4 to 5, Supplemen-
tary Fig. 18A). NK cells were present on day 7 after adoptive transfer,
and NK expansion occurred during the cytokine-dependent phase
(Supplementary Fig. 18B). The number of NK cells then decreased
between days 21 and 30. All mice in the Trastuzumab/lovastatin
cohort showed tumor regression and stabilization in tumor volume
during the first 3 weeks (Fig. 4f, Supplementary Fig. 18C). In contrast,
7 out of 10 mice demonstrated tumor regrowth in the cytokine
withdrawal phase. These results indicate that lovastatin enhances
Trastuzumab efficacy, which depends on cytokine-mediated NK
expansion and antibody’s Fc domain.

Patient survival is increased among statin users in Trastuzu-
mab GC clinical trials. Retrospective analyses of patients with
GC undergoing Trastuzumab therapy further validated our pre-
clinical findings (Fig. 4g). This study compared investigator-
assessed responses between patients with and without back-
ground statin use for overall survival. Forty-one percent of
patients (19 of 46) received statin as a background prescription
while receiving Trastuzumab (Table 1). Twenty-six percent of
patients were taking statins before initiating HER2-targeted
treatments. Statin users were more frequently male (86% versus
14%) and more often older than 60 years of age (80% versus
20%). In the retrospective analyses, statin users treated with
Trastuzumab had longer survival than non-statin users (log-rank,
p =0.005; Fig. 4g). Statin users in the CAVI1-high expression
group demonstrated longer survival when compared with non-
statin users (log-rank, p = 0.02; Supplementary Figs. 19 and 20).

Discussion

The retrospective clinical analyses and preclinical activity of
antibody drugs, shown here, demonstrate that efficacy depends
on density of the surface-localized receptors. These findings are
significant in tumors with incomplete pattern of a membrane
receptor for which antibody therapies are available. As an
example, gastric tumors contain heterogeneous and dynamic

levels of cell-surface HER2%7-%. The variability in tumor response
to antibody therapies among patients®®, all with seemingly
HER2-expressing disease, suggests that patient selection should
be optimized by incorporating other aspects of the biology.
Tumors with high levels of tumor heterogeneity in HER2
expression have a poor response to TDM112-14, CAV1 may be a
complementary biomarker to detect receptor expression in the
clinic and predictive biomarker of targeted therapeutic response
as determined in our retrospective screening. This led to the
hypothesis that acute CAV1 depletion is a potential pharmaco-
logic strategy to anchor membrane receptors at the cell mem-
brane, contributing to a more homogeneous receptor staining and
further improving response to antibody therapy. From a
mechanistic perspective, acute CAV1 depletion delays the recy-
cling of ADC while enhancing disruption of downstream sig-
naling and Fc-mediated stimulation of NK cell function.

CAV1 role as a tumor suppressor or promoter depends on the
tumor type and disease stage*’. In HER2-positive tumors,
recombinant overexpression of CAV1 blocks oncogenic
signaling®®. In our studies, low tumoral levels of CAV1 corre-
spond to tumors with high HER2 density at the membrane of GC
and might be preferable when selecting patients for anti-HER2
antibody therapies. CAV1 modulates membrane levels of HER2
within the context of receptor endocytosis!82223, interfering with
the uptake and efficacy of antibodies or ADCs!8:20212425 Thig
study shows that the expression of CAV1 is an independent
predictor of poor overall survival during Trastuzumab therapy in
HER2* GC.

Although TDM1 mechanisms of action are complex, the
canonical model of ADC provides an helpful framework?”: (i)
ADC binds to the cell-surface receptor, (ii) ADC retains the
antibody component and can decrease downstream signaling or
induce ADCC, (iii) ADC-HER2 internalizes from the membrane
into the intracellular compartment, and (iv) linker breakdown
and DMI1 drug release. Notably, the current status of patient
selection for antibody-targeted therapies does not account for
HER2 cellular distribution. It therefore may overestimate the
amount of antigen available at the cell membrane for engaging
the ADC. In this context, a lack of correlation between HER2
density and Trastuzumab accumulation in tumors is reported in
clinical immunoPET imaging studies'>#8. Others have shown
that HER2 density at the cell membrane is a strong predictor of
clinical outcome in patients with advanced breast cancer treated
with Trastuzumab and chemotherapy#®. Our immunoPET studies
using PDX models that resemble the genetic complexity and
heterogeneity of GC*° indicate low TDMI uptake in tumors
containing high CAV1 protein levels. The impact of caveolae-
mediated endocytosis has been reported for TDM1 and other
ADCs: ADCs co-localize with CAV1 in resistant cancer cells?!>1,
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However, it is important to keep in mind that a decreased
receptor expression preventing the antibody drug from binding to
GC is just one of many biological factors influencing antibody
uptake. Other examples include truncated HER2 isoforms®? or
dysregulated mechanisms of ADC recycling, endocytosis, cata-
bolism, and efflux of payload!>17:21,

Kinase inhibitors!”>34 and CAV1 modulators?® can tempo-
rally enhance HER2 membrane levels or promote ADC endocy-
tosis in ways that improve TDMI1 efficacy. While some reports
suggest a positive role for CAV1 in promoting cells” sensitivity to
TDM12425, others have shown an association between resistance
and caveolae-mediated ADC internalization?!. CAV1 knockdown
augments cell-surface HER2 half-life!8; here, we confirm that
CAV1 downregulation improves TDM1 binding to xenografts. In
contrast, increased TDM1 efficacy occurs in vitro after enhancing
CAV1 expression by metformin®’. Although metformin is not a
specific caveolae modulator and may exert other pleiotropic
biologic effects, the proposed mechanism of action in that study is
that caveolae mediate TDM1 endocytosis. Considering this pre-
vious report, it would seem disadvantageous to reduce CAV1 in
tumors treated with TDMI1 as it could decrease the ADC inter-
nalization. However, our data show that CAV1 modulation is
unlikely to change HER2 degradation processes and ADC cellular
trafficking. Instead, transient and controlled CAV1 depletion
using statins boosts TDM1-tumor binding and internalization
while reducing ADC recycling. This is consistent with previous
preclinical studies temporally increasing cell-surface receptors to
potentiate TDM1 therapy>*.

Controlled use of lovastatin, at doses lower than the max-
imum human dose, produce a temporal decrease in CAV1
protein levels32, Compared with lipophilic lovastatin, hydro-
philic statins are less able to cross cancer cell membranes as
they require active transport to enter cells>. Importantly, the
lipophilic prodrug lovastatin depletes tumoral CAV1 in ways
that improve antibody binding to tumors!®31:32. Similarly,
lovastatin enhances TDMI1 uptake in CAV1-high PDXs, con-
firming an association between the loss of CAV1 and ADC
uptake. Additionally, statins do not alter TDM1 accumulation
in tumors with low levels of CAVI. Still, a large number of
other proteins involved in non-caveolae internalization path-
ways are temporally affected by statins32. Nonetheless, specific
genetic depletion of CAV1 in vivo enhances ADC accumulation
in tumors. Thus, these data show that acute depletion of
CAV1, whether induced by synthetic oligonucleotides or small
molecules, is an important event for anti-HER2 antibody
binding to GC.

After reaching tumor cells and engaging with membrane
HER2, TDMI retains the functionality of its naked antibody,
Trastuzumab. Therefore, the initial therapeutic mechanisms of
TDM1 start before ADC internalization and payload release
inside the cancer cells. From a mechanistic perspective, lovas-
tatin enhances the Fab-mediated activity of Trastuzumab
responsible for disrupting oncogenic signaling. When compared
with Trastuzumab, statins induce higher ADC therapy, sug-
gesting they ultimately increase DM1-mediated cytotoxicity.
However, temporally enhancing cell-surface HER2 overall may
not augment therapeutic outcomes if other resistance
mechanisms (e.g., alterations in oncogenic signaling and
tumors’ vulnerability to microtubule-directed chemotherapy)
are at play?’. In addition to the Fab region, the Fc portion of the
antibody increases cell death by orchestrating ADCC. We show
that CAV1 depletion boosts NK-mediated ADCC, an important
mechanism of the clinical effectiveness of Trastuzumab#2-44,
Others have also shown that endocytosis modulation enhances
Fc-mediated ADCC of antibodies against HER or PD-L116, The
increased ADCC in combination strategies using statin depends

on HER2 surface levels, the Fc-domain of the antibody, and the
presence of cytokine-expanded NK cells. In addition to the
direct role of statins in modulating intratumoral cholesterol,
future studies are necessary to determine the specific direct and
indirect mechanisms of statins in enhancing antibody efficacy.
Other studies have demonstrated that statins also act as
immunomodulatory drugs®®. Therefore, future studies are
necessary to determine whether the statin doses necessary for
modulation of cell-surface HER2 induce alterations in immune
cells including NK cells.

In vitro lovastatin concentrations reported here are higher than
nanomolar range concentrations detected in patient prescriptions.
Therefore, in vitro results herein described might not translate to
clinical dosages. In preclinical models, lovastatin was adminis-
tered on a two-dose schedule. Therefore, low and variable
amounts of the cholesterol-depleting drug will accumulate and
reduce tumoral CAV1. However, our retrospective findings of
statin use during patient treatment with Trastuzumab uphold the
translational relevance of results obtained in PDXs. Note that
these analyzes collected data from patients receiving standard
statin doses for cardiovascular indications, while our therapeutic
studies relate to mice with normal cholesterol levels. Additionally,
the patient survival analyses do not account for variables that
possibly cause residual confounding observations (e.g., economic
status including screening and access to medical care, physical
activity, obesity, and diet). Further, the ability of statins to
increase Trastuzumab efficacy may be a result of the cholesterol
lowering itself (hepatic actions of statins) or may depend on the
tumor’s genotype, and future analyses in increased sample size
are necessary to determine factors of statin-induced efficacy in
combination with Trastuzumab. Although a prospective trial is
needed to confirm this combination approach fully, our pre-
clinical and retrospective studies show statins’ potential to
enhance antibody-directed therapies in GC.

An extensive pharmacodynamic/pharmacokinetic study is
required for a clinical investigation of statin use in combination
with HER2-targeted therapies. Additional studies are also
necessary to determine whether patients with GC on statins
have a prolonged survival time, regardless of HER2 status or
Trastuzumab treatment. Although previous studies have shown
that statins have antitumor effects in vitro and in preclinical
models, few studies have explored the relationship between
statin use and the survival of patients after cancer treatments.
The outcome of these studies will grant insights into possible
coincidental consequences on non-tumor cells, unsought toxi-
cities, and statin doses for clinical use. Based on the medical
records, statin users included here initiated statins before or
while on Trastuzumab therapy and presumably tolerated these
cholesterol-depleting agents well. Other studies also suggest
that statins prevent heart failure in patients receiving
Trastuzumab®’. Therefore, these results indicate that the
combination approach may hold a clinically acceptable safety
profile and may achieve reasonable tumors selectivity when
used in a controlled manner.

In summary, CAV1 may serve as a predictive biomarker when
selecting tumors for HER2-targeted therapies. Importantly,
immunoPET allows measurements of differences in Trastuzumab
or ADC binding to CAV1-high versus CAV1-low tumors. Statin-
mediated temporal increase in HER2 receptors at the cell surface
has the capability to enhance Trastuzumab and TDMI efficacy.
Our findings can potentially be extended to other antibody
therapies and tumor types characterized by heterogeneous pat-
terns of receptors at the cell membrane of tumor cells. These
studies may help guide future clinical trials into integrating statins
—forthwith available, well-tolerated, and affordable agents—for
combination approaches in cancer treatment.
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Methods

Ethical compliance. This study was approved by the Memorial Sloan Kettering
Cancer Center (MSKCC) Institutional Review Board (IRB). All patient-derived
xenografts (PDXs) were generated by the Antitumor Assessment Core at MSKCC
(IRB biospecimen protocol #14-091, PI: de Stanchina). Patients informed consent
was required and obtained for all cases (IRB# 06-107, IRB#12-245, NCT 02954536,
IRB# 06-103, NCT01913639, NCT01522768). Animal studies were performed in
the MSKCC animal facility in compliance with institutional guidelines under
Institutional Animal Care and Use Committee (IACUC) approved protocols
(MSKCC No. 08-07-013, PI: Lewis). Human NK cells were obtained from
STEMCELL Technologies - Institutional Biosafety Committee # LAB201900146
(PI: Lewis).

HER2 positivity, MSK-IMPACT assay, and retrospective data. HER2" (HER2
IHC 3+, HER2 THC 2+ and HER2:CEP17 FISH ratio > 2.0 or ERBB2-amplified by
next-generation sequencing) gastric tumor tissues were obtained from Trastuzu-
mab trials at MSK led by Y.J. (NCT02954536, IRB# 06-103, NCT01913639,
NCT01522768)!0. Patient clinical information was collected manually from the
electronic medical record (M.M. and M.L.). The presence of somatic alterations in
HER2-expressing tumors was analyzed by MSK-IMPACT!0:58,

CAV1 immunohistochemistry (IHC) optimization and scoring. CAV1 IHC
optimization was performed by the Laboratory of Comparative Pathology at MSK.
Anti-CAV1 antibodies obtained from two different commercial sources (Abcam,
ab2910 and BD Biosciences, 610407) were used for IHC. After comparing CAV1
THC in various human tissues, the BD Biosciences antibody demonstrated lower
unspecific reactivity than the Abcam antibody. THC staining for CAV1 was per-
formed on formalin-fixed paraffin-embedded HER2-expressing gastric tumor
sections (5 pm thickness) on a Leica Bond RX automated stainer (Leica Biosystems,
Buffalo Grove, IL). Following deparaffinization and heat-induced epitope retrieval
in a citrate buffer at pH 6.0, the primary antibody against CAV1 (BD Bioscience,
610407) was applied at a concentration of 1:250 (v/v). A polymer detection system
that includes an anti-mouse secondary antibody (DS9800, Novocastra Bond
Polymer Refine Detection, Leica Biosystems) was then applied in the tumor
samples. The 3,3’-diaminobenzidine tetrachloride was used as the chromogen, and
the sections were counterstained with hematoxylin.

Initial titration studies of CAV1 IHC optimization used human tonsil tissues
(Supplementary Fig. 2). After CAV1 immunohistochemical validation, both anti-
CAV1 Abcam ab2910 and BD Biosciences 610407 were used to stain a HER2%/
CAV1LOW and HER2H/CAVIHIGH tumor expresser (Supplementary Fig. 2). The
high and low CAV1 tumor expressers were based on previous IF analyses
(Supplementary Fig. 5). The anti-CAV1 antibody from BD Biosciences
demonstrated low unspecific binding (Supplementary Fig. 2). The CAV1 IHC
scoring was performed by a board-certified veterinary pathologist (S.M.). The
pathologist performed a blind histopathological examination without prior
knowledge of CAV1 IF or HER2 membrane levels. The slides were scored
according to the standard THC scoring for HER2 in human tumors. Only CAV1
reactivity associated with the membrane of neoplastic cells was considered for
scoring. Cytoplasmic CAV1 reactivity in neoplastic cells, endothelial CAV1
reactivity in stromal blood vessels (Supplementary Fig. 2B), or CAV1 non-specific
reactivity in necrotic regions (Supplementary Fig. 2C) was ignored for IHC scoring.
Samples with CAV1 IHC 0/14 and CAV1 IHC 2 + /3+ were classified as CAV1-
low and CAV1-high, respectively.

Immunofluorescence (IF) staining of HER2 and CAV1 in tumor tissues. The
MSK Molecular Cytology Core Facility performed CAV1 and HER2 immuno-
fluorescence staining of formalin-fixed, paraffin-embedded sections (10 uM) sec-
tions. The whole slide digital images of HER2 and CAV1 staining were obtained on
Pannoramic MIDI scanner (3DHistech, Hungary) at a resolution of 0.3250 um per
pixel. Regions of interest around the cells were then drawn and exported as.tif files
from these scans using Caseviewer (3DHistech, Hungary.) These images were then
analyzed using ImageJ/FIJI (NIH, USA) to measure fluorescence intensity after
applying a median filter and background subtraction.

Cell lines, cell culture, and treatments with lovastatin. Human GC cell lines
NCIN87, AGS, SNU5, SNU1, and KATOIIIL, were purchased from American Type
Culture Collection (ATCC). MKN45 GC cells, embryonic kidney 293 cells (HEK
293), and 293FT cells were gifts from the Rudin Lab and Weisser Lab at MSK. All
cell lines were mycoplasma-free and cultured at 37 °C in a humidified atmosphere
at 5% CO2 until a maximum passage of 15. The MSK integrated genomics
operation core performed cell line authentication using short tandem repeat
analysis.

All cell culture media were supplemented with 100 units/mL penicillin and
streptomycin. NCIN87 GC cells were maintained in Roswell Park Memorial
Institute (RPMI)-1640 growth medium supplemented with 10% fetal calf serum
(FCS), 2 mM L-glutamine, 10 mM hydroxyethyl piperazineethanesulfonic acid
(HEPES), 1 mM sodium pyruvate, 4.5 g/L glucose and 1.5 g/L sodium bicarbonate.
KATOIII cells were grown in Iscove’s Modified Dulbecco Medium (IMDM)
growth medium supplemented with 20% FCS and 1.5 g/L sodium bicarbonate.

MKN45 cells were kept in RPMI-1640 supplemented with 2mM L-glutamine.
SNU1 cells were maintained in RPMI-1640 containing 10% FCS. AGS cells were
grown in Kaighn’s Modification of Ham’s F-12 Medium (F-12K Medium)
supplemented with 10% FCS. SNUS5 cells were grown in IMDM containing
20% FCS.

For in vitro experiments with lovastatin, cells were incubated with 25 uM of the
active form of lovastatin (Millipore) for 4 h prior addition of Trastuzumab or
TDM118.

Generation of GC lines stably expressing HER2 (LV-HER2). The pHAGE-
ERBB2 (Addgene plasmid 116734) was a gift from Gordon Mills and Kenneth
Scott; lentiviral envelope and packaging plasmids pMD2.G (Addgene plasmid
12259) and psPAX2 (Addgene plasmid 12260) were gifts from Didier Trono. The
plasmids were purified using QIAquick Spin Miniprep or Plasmid Plus Midi kits
(Qiagen) and verified by Sanger sequencing (Genewiz) before lentiviral production.
Lentivirus was produced by transfection of HEK293T cells using the JetPrime
system (Polyplus). The ratio of pMD2.G:psPAX2:pHAGE-ERBB2 was 1:2:3, the
ratio of JetPrime transfection reagent to DNA was 2:1, and the ratio of JetPrime
buffer:transfection reagent was 50:1. The HEK293T cells were incubated with the
DNA and transfection reagents for 24 h before the media was changed. Two days
after replacing the media, the media (herein referred to as viral supernatant) was
collected and filtered through 0.45 uM PVDF filters (Millipore). The viral super-
natant was then concentrated 20-fold with Lenti-X Concentrator (Clontech)
according to the manufacturer’s instructions. The GC cell lines KATOIII, MKN45,
SNU5, AGS, and SNU1 were transduced using 8 pg/mL hexadimethrine bromide
(Sigma), and the media was changed 24 h after transduction. Three days after
transduction, puromycin selection of HER2-expressing cells was initiated on all cell
lines at concentrations from 1 to 2.5 pg/mL, and selection was continued for at least
4 days. The overall increase in HER2 cellular expression was validated by Western
blot (Supplementary Fig. 6).

Preparation of human NK cells. An 81 mL leukapheresis pack containing

5.50 x 10? white cells with a viability of 98% was shipped at ambient temperature
from STEMCELL Technologies (Supplementary Fig. 16A) and processed imme-
diately upon receipt. On the day of arrival, the COVID-19 PCR result was pending
for the donor. Therefore, samples were handled following Biosafety guidelines at
MSK for human samples of unknown COVID-19 status of source case. Because the
procedures were non-aerosol generating, the samples were handled as BSL2. Upon
removing the supernatant, the leukapheresis sample was washed by adding 81 mL
of EasySep buffer (20144, STEMCELL). The sample was then centrifuged at 500 x g
for 10 min at room temperature. Upon removal of the supernatant, the cell pellet
was resuspended in EasySep buffer at 5.50 x 107 cells/mL. An ELISA test for
COVID-19 was performed before isolation of NK cells using the KT-1032 EDI™
Novel Coronavirus COVID-19 Elisa kit. After confirming that the sample was
COVID-19 negative, the NK cells were isolated by negative selection using the
human NK cell enrichment kit (19055, STEM Cell). Briefly, the enrichment
cocktail (50 pL/mL) was added to the sample containing 5.50 x 107 cells/mL and
incubated for 10 min at room temperature. The magnetic particles (100 pL/mL)
were then added and incubated for 10 min at room temperature. The sample was
placed in the EasySep magnet for 10 min. The isolated NK cells were then trans-
ferred into a new tube and the NK cell population was confirmed by FACs as
CD3~CD567™ cells (Supplementary Information 16C, D).

Flow cytometry. After NK cell isolation, cells were washed twice with ice-cold PBS.
NK cells were then split into groups and stained with APC-hCD56 (clone HCD56,
318309, Biolegend) and PE-hCD3 (clone HIT3a, 300307, Biolegend). After 20 min
of incubation, NK cells were washed with PBS containing 2% (v/v) FBS and fixed in
4% paraformaldehyde (PFA). NK cells were then resuspended in FACS buffer (PBS
containing 2% FBS and 2 mM EDTA) and placed on ice until analysis. Single color
controls were made, NK cells were identified as CD3~CD561, and results were
analyzed with Flowjo software (Flowjo LLC v10.7.1). Flow cytometry was per-
formed in the MACSQuant Analyzer 10.

Western blots. Whole-protein extracts from cells or tumors were prepared after
cell scrapping or tissue homogenization, respectively, in RIPA buffer and separated
on SDS-PAGE gels (NuPAGE 4-12% Bis-Tris Protein Gels, Invitrogen). Mem-
branes were probed using the following primary antibodies: rabbit anti-CAV1
1:500 (Abcam, ab2910), rabbit anti-HER2 1:800 (Abcam, ab131490), mouse anti -
actin 1:20,000 (Sigma, A1978), rabbit anti-ubiquitin 1:1,000 (Cell Signaling Tech-
nology, 3933 S), mouse anti-ERK 1:100 (Invitrogen, 14-9108-80), rabbit anti-pERK
1:500 (Invitrogen, 700012), rabbit anti-AKT 1:1,000 (Cell Signaling Technology,
9272 S), rabbit anti-pAKT, 1:2,000 (Cell Signaling Technology, 4060 S), rabbit anti-
cleaved PARP, 1:1,000 (Cell Signaling Technology, 9541 S), rabbit anti-pHER2,
1:500 (Abcam, ab53290), rabbit anti-HER3, 1:500 (Abcam, ab32121), rabbit anti-
pHER3, 1:2,500 (Abcam, ab76469), rabbit anti-EGFR 1:1,000 (Abcam, ab52894),
rabbit anti-pEGFR 1:500 (Abcam, ab40815), mouse anti-pTyr 0.5 ug/mL (EMD
Millipore, 05-321X), rabbit anti-CREB 1:1,000 (Cell Signaling Technology, 9197 S),
rabbit anti-pCREB 1:1,000 (Cell Signaling Technology, 9198 S).
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The membranes were then incubated with secondary antibodies IRDye 800CW
anti-rabbit or anti-mouse IgG 1:15,000 (LI-COR Biosciences) and imaged on the
Odyssey Infrared Imaging System (LI-COR Biosciences) followed by densitometric
analysis.

PathScan antibody array kit. The MAPK Phosphorylation Antibody Array
(Abcam, ab211061) was used to determine MAPK signaling changes. Total tissue
lysates (500 pg) were loaded in the membranes according to the manufacturer’s
instructions. The membrane arrays were then incubated with the detection anti-
body cocktail, and the HRP-Anti-Rabbit IgG was used to detect bound proteins.
The proteins were visualized using the detection buffer mixture on a chemilumi-
nescent blot documentation system consisting of x-ray film with a film processor
followed by densitometric analysis.

HER2 immunoprecipitation. NCIN87 cancer cells were incubated in media with
5% (v/v) of FBS in the presence of 10 uM of the proteasome inhibitor MG-132
(Sigma-Aldrich). Cells were incubated with 10 ug/mL of TDM1 in the presence and
absence of lovastatin at 37 °C for 4 h. Cells were then washed with cold PBS and
lysed with NP-40 buffer (150 mmol/L NaCl, 10 mmol/L Tris pH 8, 1% NP-40, 10%
glycerol). Forty micrograms of proteins were used as total lysates. For immuno-
precipitation, protein lysates (500 uL of NP-40 buffer containing 200 pg of protein)
were incubated with 10 pg of primary antibody Neu (F-11) agarose conjugate (sc-
7301; Santa Cruz Biotechnology) overnight at 4 °C with gentle rotation. The pellet
containing the immunoprecipitated fraction was collected by centrifugation at
1000 x g for 30s at 4 °C, washed three times with NP-40 buffer and once using
nuclease-free sterile water before resuspension in Laemmli buffer.

Cell viability and HER2 signaling analyses. Cell viability was determined in cells
treated with Trastuzumab, TDM1, Trastuzumab/lovastatin, or TDM1/lovastatin.
Cells were plated in a 96-well plate (1 x 10* cells/well) and pre-cultured for 24 h.
Cells stimulated with 100 ng/mL of EGF or HRG were incubated with 20 nM of
Tastuzumab or TDM1 in the absence or presence of lovastatin. Cell viability was
measured at 48 h after treatments using thiazolyl blue tetrazolium bromide (MTT,
Sigma). The optical density value was read at 570 nm using the Spectra Max ID5
(Molecular Devices). The percentage of cell viability was indicated by comparison
with cells in the absence of stimulation or treatments.

In Western blot assays of HER2 signaling, cells were plated in a six-well plate (1
million cells/well). The day after, cells stimulated with EGF or HRG were incubated
with Trastuzumab, TDMI1, Trastuzumab/lovastatin, or TDM1/lovastatin. Total cell
extracts were collected 48 h after cells’ treatment and analyzed by Western blot.

In vitro therapeutic ADCC. Cells were plated at a 50:1 effector (NK):target (GC)
ratio in serum-free cell culture medium supplemented with 0.1% BSA. Cells were
treated with 100 pg/mL of Trastuzumab or TDM1 in the absence or presence of
lovastatin. After 6 h of incubation time, cell death was measured by determining
LDH release using the Cytotoxicity Detection Kit (LDH; Roche).

Tetracycline-inducible shRNA CAV1 expression (Tet-On system). A panel of 5
different sShRNA against CAV1 and 1 NTC shRNA were generated by the Gene
Editing & Screening Core at MSK and cloned into the LT3GENIR4(pRRL) vector.
This backbone contains a neomycin selection and an inducible Dox system (Tet-
On, Supplementary Fig. 9). The viral particles were produced using ExtremeGene
HP (Roche) and 293FT packaging cells using a 3rd generation lentivector packa-
ging system (3 vector system). The NCIN87 cells were then infected for 24 h. After
24 h, fresh media was added to the cells. After 48 h from the infection, antibody
selection was initiated at 1200 pg/ml of neomycin and kept for 2 weeks. The cells
were then placed on Dox for 48 h at a concentration of 1 pug/mL to induce GFP
expression and CAV1 knockdown before sorting for GFP. Dox was removed from
the media, and cells were expanded for 10 days in the absence of Dox (to return
CAV1 expression to baseline levels and diminish GFP expression). The overall
decrease in CAV1 expression after cells incubation with Dox was validated by
Western blot (Supplementary Fig. 9).

Conjugation and radiolabeling of TDM1 or Trastuzumab. Trastuzumab or
TDMI1 were obtained from the MSK Hospital Pharmacy. The pHrodo-TDM1 was
obtained by conjugating the free lysine residues of TDM1 with the amine-reactive
pH-sensitive pHrodo iFL Red STP ester dye (ThermoFisher Scientific, P36014)
according to the manufacturer’s instructions.

To prepare [3°Zr]Zr-DFO-antibody, TDM1 or Trastuzumab were first
conjugated with the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine
(DFO-Bz-NCS; Macrocyclics, Inc) and then labeled with zirconium-89 (39Zr)%.
Radiochemical purity (RCP) was determined by instant thin-layer
chromatography. The radiolabeled conjugates used for in vitro and in vivo studies
had a RCP of 99%, radiochemical yields ranging from 92 to 97%, specific activities
in the range of 21.98-24.73 Mbq/nmol, and immunoreactivities above 90%.

Binding, internalization, and recycling assays. For the binding assays, solutions
of 89Zr-labeled Trastuzumab or TDM1 (4 uCi/pg) were prepared in PBS (pH 7.5)

containing 1% w/v human serum albumin (HSA, Sigma) and 0.1% w/v sodium
azide (NaN3, Acros Organics). Cells (1 million) were incubated with 1 pCi (0.25 pg)
of the radiolabeled antibody for 1h at 4 °C. Unbound radioactivity was removed,
and cells were washed twice with PBS by centrifugation. The pellet-bound radio-
activity was measured on a gamma counter calibrated for zirconium-89.

For internalization assays, cells were plated in a 96-well plate (50,000 cells/well).
The day after, cells were incubated with 5 nM of pHrodoTDMI1 for 30 min at 4 °C.
Cells were then incubated at 37 °C, and fluorescent measurements were performed
between 30 min and 24 h hours after incubation with pHrodo-TDMI. Fluorescence
was recorded using Spectra Max ID5 (Molecular Devices) at excitation wavelength
560 nm/emission wavelength 585 nm. Cell viability was determined using the MTT
assay, and the pHrodo-TDM1 fluorescent signal was normalized to the number of
viable cells at each time point. To determine whether mevalonic acid treatment
rescued the lovastatin effect, the cell lines were treated with lovastatin and 200 uM
of R-Mevalonic Acid (Santa Cruz Biotechnology) for 4 h.

For recycling assays, cells were plated in a 6-well plate (1 million cells/well). The
day after, cells were incubated with 1 pCi (0.25 pg) of the radiolabeled antibody in
media at 37 °C. After 4 h incubation time, cells were kept in ice, washed with ice-
cold PBS, and the supernatant was collected. Cell surface-bound radiotracer was
collected by cells incubation at 4 °C for 5 min in 0.2 M glycine buffer containing
0.15M NaCl, 4 M urea at pH 2.5. The cells were then incubated in media at 37 °C
to allow recycling processes. Antibody recycling to the cell membrane was
measured at 5, 25, and 30 min after washing cells and collecting the cell surface-
bound radiotracer. The radioactive fractions were measured for radioactivity on a
gamma counter calibrated for zirconium-89.

Immunofluorescence assays of TDM1. For immunofluorescence assays, cells
were plated at 0.1 million cells/slide in chamber slides (154526, ThermoFisher
Scientific) for 24 h. Cells were then incubated with 1 uM TDM1 for 90 min or 24 h
at 37 °C. Cells were fixed with 4% PFA, permeabilized with 1% Triton X-100 in PBS
(pH 7.4) and blocked with 5% bovine serum albumin in PBS buffer, before incu-
bation with the DAPI and secondary goat anti-human IgG fluorescently labeled
with Alexa Fluor 488 (A-11013, ThermoFisher Scientific).

For immunofluorescence assays of GC cells with pHrodo-TDM1 and LAMP-
1, cells grown in chamber slides were incubated with 1 ug/mL of pHrodo-TDM1
for 48 h. After cells fixation with PFA and permeabilization using 1% Triton X-
100, cells were incubated with a rabbit anti-LAMP-1 primary antibody (ab24170,
Abcam). Cells were then incubated with DAPI and secondary goat anti-rabbit
IgG fluorescently labeled with Alexa Fluor 488 (A-11008, ThermoFisher
Scientific).

Antibody deglycosylation and F(ab’)2 fragments generation. Trastuzumab
deglycosylation was achieved by adding 1.1 units of recombinant PNGaseF enzyme
(New England BioLabs) per 1 pg of antibody. Trastuzumab (3 mg, 144 pL) was
mixed with 3000 units of PNGaseF enzyme (13. 3 uL from a stock solution con-
taining 225 U/uL), 25 puL 500 mM sodium phosphate (pH 7.5), and 31.7 uL of
water. The reaction was incubated at 37 °C for 2 h. To remove the PNGaseF
enzyme from the reaction mixture and purify deglycosylated Trastuzumab, chitin
magnetic beads (100 uL, E8036S, New England Biolabs) were added to the reaction
mixture.

The F(ab’), fragments were generated using Trastuzumab and the F(ab’),
fragmentation kit following the manufacturer’s instructions (G-Biosciences).

Tumor xenografts and patient-derived xenografts (PDXs). The experimenta-
tion involving animals followed the guidelines approved by the Research Animal
Resource Center and IACUC at MSK (New York, NY), the ARRIVE guidelines,
and the guidelines for the welfare and use of animals in cancer research. The
maximum allowed total tumor burden of 2 cm? was not exceed in our experiments.

NCIN87, NCIN87 shRNA NTC, NCIN87 shRNA 486, or NCIN87 shRNA 479
cancer cells were subcutaneously implanted in female athymic nude mice nu/nu
(8-10 weeks old, Charles River Laboratories). A total of 5 million cells were
suspended in 150 uL of a 1:1 v/v mixture of medium with reconstituted basement
membrane (BD Matrigel, BD Biosciences) and injected subcutaneously in
each mouse.

PDX models were established by the Anti-tumor Assessment Core, from tumor
specimens collected under an approved institutional review board protocol by the
Research Animal Resource Center and IACUC at MSK, NY?Y. Briefly, tumors were
minced, mixed with Matrigel, and implanted subcutaneously in 6-8-week-old NSG
mice (Jackson Laboratories). PDXs used in imaging and therapeutic experiments
were obtained from patients prior initiating Trastuzumab therapy.

The tumor volume (V/mm?3) was estimated by external vernier caliper
measurements!8.

PDX genetic and immunohistochemical validation. To confirm that PDXs
herein used recapitulate parent tissue, MSK-IMPACT data were obtained in both
PDX and human tumor tissues. Given that patient-derived EBV-positive lym-
phomas are often observed in PDX models using NSG mice3>36. H&E and IHC
stained sides were reviewed by a board-certified veterinary pathologist (S.M.) to
exclude lymphomas in PDX models. IHC was performed by the Laboratory of
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Comparative Pathology at MSK for pancytokeratin, (primary antibody Dako Z0622
applied at 1:500 concentration), human CD45 (Dako M0701, 1:100), and human
CD20 (Dako M0755, 1:1000) on the Leica Bond RX automated staining as
described above for the CAV1 IHC method. Carcinomas were confirmed by IHC as
pancytokeratint/CD45-/CD20~. B cell lymphomas excluded from preclinical
studies (n = 13) were IHC pancytokeratin=/CD45%/CD20".

CAV1 modulation using genetic and pharmacologic approaches. For preclinical
imaging studies using the Tet-On system, mice were randomly assigned into the
following groups (n =5 mice per group): OFF DOX, daily oral administration of
PBS for 11 days prior to tail vein injection of 8°Zr-labeled TDM1; ON DOX, daily
oral administration of 10 mg/mL of Dox for 11 days prior to tail vein injection of
89Zr-labeled TDM1; ON/OFF DOX, daily oral administration of 10 mg/mL of Dox
for 7 days followed by oral administration of PBS for 4 days before tail vein
injection of 89Zr-labeled antibody.

For preclinical imaging studies using lovastatin, mice were assigned into the
following groups (n =5 mice per group)!'®32 Control, oral administration of PBS
12 h prior to and at the same time as the tail vein injection of 8°Zr-labeled TDM1;
Lovastatin, oral administration of lovastatin (8.3 mg/kg of mice) 12 h prior to and
at the same time as the tail vein injection of 89Zr-labeled TDM1.

Small-animal PET and acute biodistribution studies. Mice bearing subcutaneous
xenografts or PDXs (100-150 mm? in tumor volume) were randomized before
administering [3°Zr]Zr-DFO-TDM1 (6.66-7.4 Mbq, 45-50 ug protein) by tail vein
injection. PET imaging (n = 3 mice per group) and ex vivo biodistribution (n =5
mice per group) were performed according to previously reported methods!831:32,
PET images were analyzed using ASIPro VM software (Concorde Microsystems).
Radioactivity present in each organ was expressed as the percentage of injected
dose per gram of organ (% ID/g).

In vivo therapeutic efficacy. Mice with subcutaneous xenografts or PDXs of
volume between 100 and 300 mm? were randomly grouped into treatment cohorts
(n =10 per group): control, TDM1, Trastuzumab, lovastatin, TDM1/lovastatin, or
Trastuzumab/lovastatin. Mice received weekly intravenous injections of TDM1

(5 mg/kg) or intraperitoneal injections of Trastuzumab (5 mg/kg) for 5 weeks.
Lovastatin (4.15 mg/kg of mice) was orally administered 12 h prior and at the same
time as the intravenous injection of TDM1. Tumor volumes were determined twice
a week.

In vivo therapeutic ADCC. NCIN87 GC cells (5 million cells suspended in
150 pL of a 1:1 v/v mixture of medium with reconstituted basement membrane)
were subcutaneously implanted in female severely immunodeficient NSG

(6-8 weeks old, Jackson Laboratories). Once NCIN87 GC tumor volumes
reached 100-150 mm3, freshly isolated NK cells (1 million cells in 200 pL PBS)
were administered by tail vein injection. The interleukin-15/ interleukin-15
receptor alpha complex (IL-15/IL-15Ra complex) was used to achieve NK cell
expansion and activation in vivo®%¢l. One day after NK cells tail vein injection
and once per week, the IL-15/IL-15Ra complex was intraperitoneally adminis-
tered at a dose of 1.25 pg/mouse. Mice were randomly grouped into treatment
cohorts (n =10 per group): saline, lovastatin, Trastuzumab, Trastuzumab/
lovastatin. Mice received weekly intraperitoneal injections of Trastuzumab

(5 mg/kg). Lovastatin (4.15 mg/kg of mice) was orally administered 12 h prior
and at the same time as the intraperitoneal injection of Trastuzumab. Control
cohorts included treatments in NSG mice that were not intravenously admi-
nistered NK cells. Additional control experiments were performed using Fc
silent deglycosylated Trastuzumab and Trastuzumab F(ab’), fragments. Tumor
volumes were determined twice a week.

Quantification, statistical analyses, and reproducibility. Data were analyzed
using R v3.6.0. (http://www.rstudio.com/) or GraphPad Prism 7.00 (www.
graphpad.com). Statistical differences between mean values were determined using
analysis of variances (ANOVA) coupled to Scheffé’s method or a Student’s ¢ test.
To compare treatments between cell lines, the Wilcoxon-Mann-Whitney test was
performed using a 1-sided alpha of 0.05. The overall patient survival is defined as
the time from diagnosis to death. Patients alive are censored at their date of last
follow-up. Survival rates are estimated using Kaplan-Meier estimator, and curves
are compared using the log-rank test. Data shown for western blot analyses
represents three independent experiments.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article
(and its Supplementary Information Files). Source data are provided with this paper.
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