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Multivariate genome-wide association study on
tissue-sensitive diffusion metrics highlights
pathways that shape the human brain
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Donald J. Hagler Jr.2,3, Wesley K. Thompson1,3, Nadine Parker5, Dennis van der Meer5,6, Oleksandr Frei5,7,

Ole A. Andreassen 5 & Anders M. Dale 2,3,4,8

The molecular determinants of tissue composition of the human brain remain largely

unknown. Recent genome-wide association studies (GWAS) on this topic have had limited

success due to methodological constraints. Here, we apply advanced whole-brain analyses on

multi-shell diffusion imaging data and multivariate GWAS to two large scale imaging genetic

datasets (UK Biobank and the Adolescent Brain Cognitive Development study) to identify and

validate genetic association signals. We discover 503 unique genetic loci that have impact on

multiple regions of human brain. Among them, more than 79% are validated in either of two

large-scale independent imaging datasets. Key molecular pathways involved in axonal

growth, astrocyte-mediated neuroinflammation, and synaptogenesis during development are

found to significantly impact the measured variations in tissue-specific imaging features. Our

results shed new light on the biological determinants of brain tissue composition and their

potential overlap with the genetic basis of neuropsychiatric disorders.
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The human brain develops through complex yet carefully
orchestrated neurobiological processes, whereby cortical
and subcortical circuitries are integrated for proper

functioning1. Neural migration, axonal guidance, and synapse
formation are coordinated through spatially distributed molecular
gradients spanning across several brain regions2. Differences in
tissue composition are the result of these developmental processes.
We can gain substantial insight into how neural circuitries were
formed and supported by investigating the genetic determinants of
whole-brain patterning with respect to tissue composition.

Recent advances in multi-shell diffusion magnetic resonance
imaging and diffusion signal modeling have created an oppor-
tunity to evaluate tissue composition in vivo3–7. Differences in
signals between water molecules of intracellular, extracellular, and
unhindered compartments are captured by higher-order diffu-
sivity (multiple shells), allowing for the estimation of the relative
proportions of cell bodies, axonal fibers, and interstitial fluids
within a voxel3–5,8–12. This type of tissue modeling has been used
to detect compositional changes driven by neurodegeneration8,11,
development3, obesity4, and carcinogenesis9,10. However, there is
currently no genome-wide association study (GWAS) on com-
positional features. This omission is critical, as traditional ima-
ging measurements are insensitive to neurite density, short-range
fibers, and cellular properties of cortical gray matter and sub-
cortical nuclei7.

Moreover, GWAS of brain imaging measurements usually adopt
a univariate approach, performing associations with one brain
region at a time13–18. Patterns encompassing the whole brain have
been mostly ignored or controlled away as global effects, poten-
tially biasing the interpretations toward purely regional effects.
This risks misattributing the nature of genetic effects on the brain,
e.g., the cortical surface area is driven by local cortical expansion
when it may instead be due to underlying axonal growth. The
univariate region-of-interest approach may also be underpowered
to detect the full extent of genetic variants associated with cano-
nical neurodevelopmental pathways, especially when effects are
spatially distributed19,20. A multivariate GWAS, focused on
detecting loci that have effects across multiple brain regions, has
been shown to be highly efficient in discovering many loci21–23. By
expanding how we can analyze the discovered spatial patterning
from the multivariate GWAS, we can reveal further biological
insight into the molecular gradients that shape the human brain.

Here, we performed a multivariate GWAS on the metrics
derived from multi-shell diffusion imaging to examine the genetic
determinants of whole-brain patterning of cellular compartments.
Using two largest extant imaging genetic studies that have com-
patible multishell scans, the UK Biobank24 (UKB) and the Ado-
lescent Brain Cognitive Development℠ Study (ABCD
Study®)25,26, we identified and validated 503 unique loci for tissue
sensitive diffusion metrics. The discovered loci were enriched for
neurogenesis, neuron differentiation, and axonal development.
Among the validated loci, 152 have not been reported previously
by GWAS of brain imaging phenotypes. By investigating the
spatial distribution of the associated effects, we highlighted cri-
tical molecular pathways involved in neuroinflammation and
axonal growth, and the corresponding regions that may be sus-
ceptible to these processes. Signal overlap, at both the locus level
and genome-wide, with neuropsychiatric outcomes indicate the
functional relevance of our GWAS results, providing a foundation
for further understanding of the biological underpinnings of
neuropsychiatric disorders.

Results
Multivariate GWAS on features of tissue composition across
the whole brain. We processed multi-shell diffusion MRI data

from UKB and ABCD with restriction spectrum imaging (RSI) to
extract the tissue composition features of the human
brain3–5,8–12,27. To ensure the validating test was robust against
study variability due to time shift28, we selected the UKB samples
received MRI scans before 2019 as the discovery set while all
others were regarded as replication sets. The sample character-
istics can be found in the Supplementary Table 1. The images
were harmonized and registered to a common atlas to ensure the
alignment of voxels across subjects (See Method for detailed
imaging processing pipelines25,26 and Supplementary Figure 1 for
quality control metircs). RSI decomposes the diffusion-weighted
signals as emanating from three separable tissue compartments:
intracellular, extracellular, and free water (Fig. 1a). Each com-
partment is characterized by its intrinsic diffusion properties. In
this study, we consider the intracellular compartment, which is
defined by restricted diffusion bounded by cellular membranes,
and the free water compartment characterized by the unimpeded
diffusion of water molecules. RSI estimates the normalized iso-
tropic restricted signal volume fraction, N0, which captures the
relative amount of cell bodies within a voxel, such as the densities
of neurons, astrocytes, and oligodendrocytes. The normalized
directional restricted signal volume fraction, ND, captures the
relative amount of tube-like structures within a voxel, such as
axons and dendrites. The free water component, NF, captures the
relative amount of free water outside of cell structures. N0, ND,
and NF provide greater tissue specificity than the widely-used
diffusion tensor metrics, have been useful in the understanding
variation of cellular organization within the human brain and are
highly informative for the human brain development3,10,11,27.
The spatial distributions of those three tissue-sensitive measures
can be seen in Supplementary Figure 2–5.

Three separate voxel-wise multivariate GWAS on N0, ND, and
NF were performed. For the discovery stage (UKB discovery set,
imaging acquisition before 2019, n= 23,543), we used combined
principal components (CPC) statistics22,29 (Fig. 1b) to identify
associated loci from multivariate measurements. As a practical
extension to other multivarite GWAS methods, such as
MOSTest21, CPC combines statistics from associations with the
finite number of principal components and has close form
expression on the null distribution without the need for
permutations22. Using the UKB discovery set, we calculated the
principal components (PCs) from the tissue feature across all
voxels. From the whole-brain images in 2 mm resolution per
voxel, spanning across 100 by 100 by 130 voxels, the first 5000
PCs were extracted and used in the subsequent analyses,
explaining more than 70% of the total variance of the imaging
data (Supplementary Figure 6). Since all PCs are orthogonal to
each other, the statistical inference can be based on combining the
associations between genetic variants and each of the derived PCs
(Fig. 1b). Each of the PCs can be regarded as an orthogonal basis
function with limited interpretability, yet the weighted combina-
tion of them can represent any spatial distribution (Supplemen-
tary Figure 7–9). CPC combined the association signals across PC
for a given genetic variant and detect the genetic loci that are
shared across multiple PCs, thus reducing the burden of multiple
testing and the false detection on nuisance effects. We tuned the
hyper-parameters for the combination function to optimize the
power for discovery19,22 by searching through four possible
combination sets (see Methods). To account for hyper-parameter
tuning and the three tissue features, we set the p-value threshold
for genome-wide significance as 5e-8 divided by 12= 4.2e-9.

After Linkage-disequilibrium pruning (LD R2 > 0.1) and
positional clumping (distance < 250 K bp), we found 432, 350,
and 273 independent genetic loci associated with N0, ND, and
NF, respectively (Fig. 2a; Supplementary Data 1–4). After
merging loci with overlapping genomic ranges, there are 503
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unique loci across all three tissue features (Supplementary
Data 1).

Loci validated in adults and adolescents. To validate the dis-
covered loci in independent studies, we first calculated polyvoxel
scores30–33 based on eigenvectors and association weights from
the discovery set, and then performed the association tests
between genetic variants and the derived scores (see Methods).
This procedure is similar to confirmatory canonical correlation
analysis23, except with only one variant involved in each regres-
sion. We repeated the same confirmatory analysis in the UKB
validation set (n= 6396, scanned after 2019) and ABCD samples
(n= 8189), except for including study-specific covariates and
random effects controlling for family relatedness and diverse
genetic background in ABCD (see Methods). Among the dis-
covered loci, 335 (79%), 298 (85%), and 222 (81%) were found to
be validated in the independent UKB validation set for N0, ND,
and NF, after Bonferroni correction for the number of loci dis-
covered. In ABCD, 106 (25%), 153 (43%), and 88 (32%) of the
discovered loci were validated for N0, ND, and NF, despite the
large differences in age and other sample characteristics between
UKB and ABCD.

Characteristics of validated loci. To examine the overlap between
our validated loci and previously reported loci in neuroimaging
GWAS, we curated the reported loci lists from the NHGRI-EBI
Catalog based on keywords in “brain”, “imaging”, “cortical”,
“subcortical”, and “white matter”. The final list of reported loci
included GWAS on brain connectivity15, cortical surface

measures13,21,34, derived imaging instruments across all
modalities35, subcortical volumes14,21,36, brain volumes16,34,37,
white matter hyperintensities38, and white matter microstructure18.
We queried if any of our validated loci were in linkage-
disequilibrium (LD) with or located in 250 kb regions of pre-
viously reported neuroimaging loci. The results are summarized in
Fig. 2b. Among the validated loci, 134 unique loci overlapped with
previously published GWAS on cortical surface measurements and
108 unique loci were found to be associated across cortical and
subcortical structures, indicating wide pleiotropic effects across
brain regions (Fig. 2b, Supplementary Data 2–7). We also found
136 unique novel loci through our approach, demonstrating
improved power in both discovery and replications.

On the other hand, the gene set analyses39,40 on the identified
loci shows each tissue feature has distinct pattern of Gene
Ontology enrichment. While all tissue features were highly
enriched for the Gene Ontology term of neurogenesis, N0 showed
stronger enrichment in anatomical morphogenesis, while ND
demonstrated more enriched in axon development, neuron
projection guidance, and tangential neuronal migration (Fig. 2c).
This suggests that at the level of the genomic loci, modeling tissue
compositions captured differential molecular effects associated
with the human brain.

Loci showing differential effects on tissue compositions. Closer
inspection of the effect size distributions of the loci provides a
unique angle into the molecular processes shaping the human brain.
For instance, the 5q14.3 locus at the gene body of VCAN, tagged by
a common SNP rs12653308, was found to be strongly associated

N0 ND NF

... ...  

Discovery Validation

a.

b.

Fig. 1 Overview of the study design. a Illustration of tissue composition imaging features. The first row highlights which cellular compartments the metrics
intend to capture. The second row is the formula used for calculating each metric, i.e. N0, ND, and NF (see Methods section). The third row shows the
actual signal intensities for N0, ND, and NF, respectively. b Illustration of the analytic sequence of multivariate GWAS. The discovery stage involves
summarizing the whole-brain voxel-wise data into k principal components (PCs) and then performing the GWAS inference based on combined association
signals across PCs (UKB discovery, n= 23,543). The validation stage involves confirmatory associations with polyvoxel scores (UKB replication, n= 6396;
ABCD, n= 8189).
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with N0 (Fig. 3a). It was reported to be associated with various
diffusion metrics from white matter fiber tracts18 and cortical sur-
face measurements21 (Fig. 3a). Instead of fiber tracts or cortical
surface regions, we found that the association strength is particu-
larly strong in the hippocampus bilaterally (Figs. 3b, c, Supple-
mentary Data 5–8), based on the regional enrichment analysis with
50,000 bootstraps (see Method). VCAN, which encodes versican
and is a lectican-binding chondroitin sulfate proteoglycan (CSPG),
serves a critical role in astrocyte-mediated neuroinflammation41,
and has potential interacting pharmacological targets42,43 (Fig. 3d;
Supplementary Information; Supplementary Data 9–11). CSPGs
were found to be associated with astrocyte-dependent synapto-
genesis within the hippocampus44. When we examined the asso-
ciations between genetic variants of genes encoding CSPGs (BCAN,
NCAN, and VCAN) and tissue features, we found N0 showed
stronger association signals than ND and NF (Fig. 3e). Since the
effects were validated in ABCD, our results support the early effects
of astrocytic mediated processes on the human hippocampus via
CSPGs. Changes in the distribution of CSPGs in the hippocampal
formation were observed among patients with schizophrenia and
patients with bipolar disorders45,46, linking our findings to neu-
ropsychiatric outcomes.

The locus located at 2p23.3, tagged by rs11126784, has strong
signals associated with ND (Fig. 3f). This locus resides within the

gene body of DPYSL5 and has been reported to be associated with
cortical surface measures21. Instead of the cortical surface, our
whole-brain multivariate GWAS indicates the effect sizes were
more diffusely distributed among white matter tracts, especially
within cortico-striatal circuitry (Fig. 3g, h, Supplementary Data 5-8).
DPYSL5 belongs to the collapsin response mediator protein (CRMP)
family, including DPYSL2, DPYSL3, and DPYSL4, which are
essential for axonal growth and neurite morphogenesis47–49 (Fig. 3i).
Indeed, all tagged SNPs of the CRMP family proteins show stronger
association signals with ND than with N0 and NF (Fig. 3j). Our
results are concordant with CRMP involvement in neurodevelop-
ment and showing that their effects can be observable among major
white matter fiber bundles early on. Our findings are also relevant to
neuropsychiatric outcomes, as CRMP has been implicated in
schizophrenia and mood disorders50.

The 136 novel loci we discovered and validated in this study
are relevant for neuropsychiatric phenotypes and warrant further
investigation (Supplementary Data 2-4). An N0-specific novel
locus at 5q14.3 is within the gene body of MEF2C, which can
influence neural progenitor cell differentiation and regulation of
synaptic densities51,52. This locus overlaps with GWAS findings
of educational attainment and intelligence53. Another locus at
20p12.1, on the gene body of MACROD2, showed consistent
signals among adults and adolescents (ND: UKB discovery
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Fig. 2 Results of multivariate GWAS on whole-brain imaging features. a Ideogram of the discovered loci, colored according to the imaging features.
b Offset plot shows the unique and overlaping validated loci with previous neuroimaging GWAS, including brain connectivity15, cortical surface
measures13,21,33, derived imaging instruments across all modalities34, subcortical volumes14,16,21,33,35,36, white matter hyperintensities37, and white matter
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from the UKB discovery (n= 23,543).
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p= 1e-29, UKB validation p= 1.7e-18, and ABCD validation
p= 4.6e-8), and has previously been linked to autism54 and
general cognitive ability55. The gene MACROD2 was also
implicated in educational attainment53 and risk-taking
behaviors56.

Cell-type enrichment analysis. Although N0, ND, and NF were
designed to capture different properties of tissue compartments,
the strong overlapping signals across the three features indicates
that similar cell processes and populations may shape all three
microstructural features. To investigate this, we analyzed the
heritability enrichment given cell type annotations using strati-
fied LD score regression (S-LDSC)57. A dimensionally-corrected
multivariate statistic, such as the scaled χ2, can be used in the
context of LDSC for deriving the relative enrichment in the
average heritability of the high-dimensional phenotypes23.
Hence, we ran S-LDSC with tissue-specific chromatin
annotations57 and cell type-specific annotations58 to obtain cell
type-specific enrichment patterns for our RSI phenotypes
(Fig. 4).

While the overall patterns of the enrichment are similar across
three tissue features, ND has the strongest enrichment signals
across all activating histone markers (H3K27ac, H3K36me3,
H3K4me1, H3K4me3, and H3K9ac) and DNase hypersensitivity
sites (Pbon < 0.05). All three features were enriched in the
chromatin state of fetal brain and hippocampal tissues whereas
ND also shows enrichment in the cingulate cortex and substantia
nigra (Fig. 4a). With respect to cell populations, using public
available cell-type-specific chromatin state data from mouse
samples that have been shown to be useful for prioritizing human
GWAS results58, our analysis indicates all three features have
significant enrichment in embryonic dopaminergic interneurons
and astrocytes (Pbon < 0.05; Fig. 4b). Moreover, ND shows
stronger enrichment signals in oligodendrocytes, as expected for
an imaging feature capturing the integrity of tubular structures
such as the myelin sheath.

Genetic overlap with neuropsychiatric and immune-related
phenotypes. We investigated the proportion of genome-wide
signals of the three tissue features which overlap with neu-
ropsychiatric phenotypes53,56,59–65 and immune disorders66.
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Based on a method tailored for unsigned multivariate statistics23,
we evaluated the signal shared between each pair of traits using
their summary statistics. The amount of shared signal was the
Spearman correlation of the average SNP −log10 p values within
each approximately independent LD block. All three tissue fea-
tures consistently show significant overlap with immune dis-
orders (ρ:0.15–0.21, all P < 1.2e-9)66, schizophrenia (ρ: 0.15–0.17,
all P < 5e-10)63, attention deficit hyperactivity disorder (ρ:
0.11–0.12, all P < 2e-6)67, bipolar disorder (ρ: 0.10–0.12, all
P < 6e-6)61, and cross-psychiatric-disorders (ρ: 0.14–0.16, all
P < 7e-9)59. The overlaps with Alzheimer’s disease is less evident
(ρ: 0.07–0.10)65. Educational attainment53 and risk-related
behaviors56 are also significantly correlated (ρ: 0.10–0.20, all
P < 5e-5; Supplementary Figure 11). The patterns of genome-wide
signals shared with neuropsychiatric phenotypes were not evi-
dently different across the three tissue features, despite the dis-
tinct patterns we observed at the locus level and cell-type-specific
enrichments. While the limited resolution of LD blocks may

contribute to this null finding, the evident similarities in the
genome-wide level results may mean that pleiotropic effects,
either horizontal or vertical, on neurodevelopmental traits are
highly polygenic, sharing multiple loci but with different func-
tional outputs.

Discussion
Using imaging features of whole brain tissue compositions, a
multivariate GWAS discovered and validated 503 loci, of which
136 had not been reported in previous GWAS of neuroimaging
phenotypes. Through in-depth examination of effect size dis-
tributions, we demonstrated the specific impact of molecular
pathways, including CSPGs and CRMP, on the tissue composi-
tion underlying the human brain in vivo. Our findings are rele-
vant for neuropsychiatric outcomes, including cognitive functions
and psychiatric disorders. By identifying the key protein families
and highlighting the susceptible brain regions through

*

*

*
**

*

*

*

*

*
*

**
**

*

*
**

*

**

*

*

*

*

−7

−5.21

−3.43

−1.64

0.14

1.93

3.71

5.5

N
0

N
D

N
F

DNase_Fetal_Brain_Female

DNase_Fetal_Brain_Male

H3K27ac_Brain_Angular_Gyrus

H3K27ac_Brain_Anterior_Caudate

H3K27ac_Brain_Cingulate_Gyrus

H3K27ac_Brain_Dorsolateral_Prefrontal_Cortex

H3K27ac_Brain_Hippocampus_Middle

H3K27ac_Brain_Inferior_Temporal_Lobe

H3K27ac_Brain_Substantia_Nigra

H3K36me3_Brain_Angular_Gyrus

H3K36me3_Brain_Anterior_Caudate

H3K36me3_Brain_Cingulate_Gyrus

H3K36me3_Brain_Dorsolateral_Prefrontal_Cortex

H3K36me3_Brain_Germinal_Matrix

H3K36me3_Brain_Hippocampus_Middle

H3K36me3_Brain_Inferior_Temporal_Lobe

H3K36me3_Brain_Substantia_Nigra

H3K36me3_Fetal_Brain_Female

H3K36me3_Fetal_Brain_Male

H3K4me1_Brain_Angular_Gyrus

H3K4me1_Brain_Anterior_Caudate

H3K4me1_Brain_Cingulate_Gyrus

H3K4me1_Brain_Dorsolateral_Prefrontal_Cortex

H3K4me1_Brain_Germinal_Matrix

H3K4me1_Brain_Hippocampus_Middle

H3K4me1_Brain_Inferior_Temporal_Lobe

H3K4me1_Brain_Substantia_Nigra

H3K4me1_Fetal_Brain_Female

H3K4me1_Fetal_Brain_Male

H3K4me3_Brain_Angular_Gyrus

H3K4me3_Brain_Anterior_Caudate

H3K4me3_Brain_Cingulate_Gyrus

H3K4me3_Brain_Dorsolateral_Prefrontal_Cortex

H3K4me3_Brain_Germinal_Matrix

H3K4me3_Brain_Hippocampus_Middle

H3K4me3_Brain_Inferior_Temporal_Lobe

H3K4me3_Brain_Substantia_Nigra

H3K4me3_Fetal_Brain_Female

H3K4me3_Fetal_Brain_Male

H3K9ac_Brain_Angular_Gyrus

H3K9ac_Brain_Anterior_Caudate

H3K9ac_Brain_Cingulate_Gyrus

H3K9ac_Brain_Dorsolateral_Prefrontal_Cortex

H3K9ac_Brain_Inferior_Temporal_Lobe

H3K9ac_Brain_Substantia_Nigra

a.

*
*

*
*

*
*

*
*

*

*

N
0

N
D

N
F

CD4_T−cells

CD4_T−cells_human

CD8_T−cells

CD8_T−cells_human

Cones_(blue)

Cones_(green)

Rods

Embryonic_DA_forebrain

Embryonic_DA_midbrain

Excitatory_Camk2a

Excitatory_DG*

Excitatory_Layer_IV

Excitatory_Layer_V

Excitatory_Layer_VI

Excitatory_Layer_VI*

Excitatory_Layers_II−III

Excitatory_Layers_II−V*

Inhibitory*

Inhibitory_Gad2

Inhibitory_MSN*

Inhibitory_PV

Inhibitory_VIP

Microglia

Microglia*

NeuN_negative

Oligodendrocytes*

Astrocytes*

b.

Z 
st

at
is

tic

Fig. 4 Cell-type specific enrichment results. Results from stratified LDSC analysis with dimensionally corrected effect sizes. a Tissue-specific histone
markers. b Cell types.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30110-3

6 NATURE COMMUNICATIONS |         (2022) 13:2423 | https://doi.org/10.1038/s41467-022-30110-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


enrichment analyses, these results indicate a path to further
investigate molecular mechanisms of brain regional development
and specialization.

Our results indicate widespread pleiotropies between the
development of cortical surfaces and cerebral white matter. As the
patterning of the mature brain is the end results of multiple
molecular processes working from differentiation of neuropro-
genitor cells, migration of neurons, to synaptic prunings68, the
relevant genes are unlikely to confine their effects on one single
anatomically defined region. This is in line with findings from
malformations of cortical development that the germline muta-
tions of genes involves in cell migration would lead to global
malformations instead of localized lesions69. Many of the loci we
discovered and replicated were also found to be associated with
other imaging modalities across cortical and subcortical regions.
We are not claiming that focal effects do not exist, indeed the
variants we highlighted do have locally enriched signals. Instead
we suggest that it is more likely that regional specification of the
human brain is the ultimate result of a complex coordination of
multiple distributed molecular processes70 rather than that single
genetic variants effect single anatomical regions. For instance, the
group of genes belonging to CSPG had consistent associations
with N0 metrics. The association signals were enriched in mul-
tiple brain regions beyond previously reported ROIs18,21, espe-
cially bilateral hippocampus. This astrocyte-dependent molecular
process may have more direct effects on the synaptic pruning in
the hippocampal regions and then cascading downstream to the
associated fiber tracts.

Our findings showcase the need for novel analytic approaches
in brain imaging genetics. Multivariate GWAS on whole-brain
phenotypes circumvents the potential “spotlight bias” that region-
of-interest approaches are susceptible to71. Diffuse effects across
brain regions and neurobiological pathways are more easily
detected with this approach, as the inference is based on the total
sum of the effects. Moving beyond the metrics of structural
volumes or fiber orientation enabled us to detect molecular effects
on brain tissue properties, identifying relevant biological path-
ways important for human brain development and neu-
ropsychiatric outcomes.

Because our multivariate GWAS was optimized for detecting
signals shared across PCs, the statistical power may be less than
ideal for detecting extremely sparse genetic effects, i.e. limited to
only one or two PCs19,21,22. Although it is possible to have
regionally specific genetic effects, our approach will be less
senstive to detect such effects since our PCs captured information
across the whole brain and were anatomically agnostic. Instead of
having one PC to represent one particular anatomical structure, it
was the weighted combinations of several PCs that highlighted
certain anatomical structures. This is the benefit of using a
multivariate GWAS, as it implicitly picks up the patterning sig-
nals without pre-defining the region of interest. However, these
statistical properties can also make it difficult to interpret which
anatomical regions are most relevant for a given discovered loci.
To facilitate the interpretation, we implemented regional
enrichment analyses, examining which anatomical structures
have higher average signals compared to other regions.

Our results highlight the pleiotropic nature of genes involved
in synaptic pruning, neuroinflammation, and axonal growth.
The microglia-related molecular processes were implicated in
multiple brain regions across cortical and subcortical structures.
The significant loci overlaps between tissue-sensitive imaging
metrics and psychiatric disorders implicates the etiological
mechanisms beyond the neuronal growth, such as microglia-
mediated synaptic pruning. Our identified genes may aid in
experimental studies investigating interventions for neu-
ropsychiatric outcomes.

Methods
UK Biobank samples. The inclusion criteria for the UKB sample were as follows:
individuals who had valid consent at the time the analyses were performed (Dec
2020), were genetically inferred as having European ancestry, and completed the
neuroimaging protocols. Among individuals who were included in the analyses, we
further divided samples into two groups based on when the neuroimaging was
performed (before or after 2019). We decided to use this naturally occurring
temporal cut-point instead of randomized allotment of the groups because of best
practice considerations20,28,72,73, avoiding potential systematic biases driven by
temporally related imaging confounds. In particular, the potential time shift of the
study design can lead to over-optimistic evaluation on the generalizability if ran-
dom data split instead of time split was used28. Given our purpose is to discover
and validate the biologically relevant effects, we used a conservative approach by
selecting a naturally occurring time point as the selection criteria for discovery and
replication sets in UKB. Individuals who had valid imaging data before 2019 were
assigned as the discovery set (n= 23,543) and those who had valid imaging data,
not before, but after 2019 were assigned to the validation set (n= 6396). The
demographic information of the final selected UKB samples can be found in the
Supplementary Table 1. Data from UKB is obtained under accession
number 27412.

Adolescent Brain Cognitive Development study (ABCD) samples. For vali-
dating of results, we selected the full baseline data of the ABCD Study from public
data release 3.0 (NDA DOI: 10.15154/1524729). Since ABCD was designed to
recruit individuals with the diverse ancestral background which reflect the racial/
ethnic composition of the United States, we did not exclude individuals based on
their genetic ancestries, using linear mixed-effects models to control for the family
relatedness and heterogeneous ancestral background. We only excluded those who
did not have valid imaging and genetic data from release 3.0, resulting in 8189
individuals in the analyses. The demographic characteristics of the ABCD samples
can be found in the Supplementary Table 1.

Imaging data processing. Both UKB and ABCD have diffusion imaging protocols
that were compatible for applying RSI models. The MRI scans of UKB were per-
formed at three scanning sites in the United Kingdom, all on identically configured
Siemens Skyra 3 T scanners, with 32-channel receive head coils. The MRI scans of
ABCD were collected by 21 study sites throughout the United States, with scanners
from Siemens Prisma, GE 750 and Phillips 3 T scanners. To harmonize the imaging
data across the two studies, we processed the dMRI data from UKB and ABCD
using the ABCD-consistent imaging processing pipeline implemented by the
ABCD Data Analysis, Informatics, and Resource Center (ABCD DAIRC). The
detailed processing procedures have been published elsewhere25. In short, multi-
shell diffusion MRI data of ABCD acquired with seven b= 0 s/mm2 frames and 96
noncollinear gradient directions, with 6 directions at b= 500 s/mm2, 15 directions
at b= 1000 s/mm2, 15 directions at b= 2000 s/mm2, and 60 directions at
b= 3000 s/mm2. Multishell diffusion MRI data of UKB acquired with five b= 0 s/
mm2 frames and 100 non-collinear gradient directions, with 50 directions at
b= 1000 s/mm2 and 50 directions at b= 2000 s/mm2. Preprocessing imaging
quality control involves automatic motion detection and expert rating of the
imaging quality25. Multishell diffusion data that passed preprocessing imaging
quality control were processed through forward-reverse gradient warping, gradient
nonlinearity distortion correction, eddy current correction, and motion correction
to reduce the spatial distortion and signal heterogeneities driven by scanner dif-
ferences. The corrected images were then aligned to a common atlas using rigid-
body registration, adjusting the diffusion gradient directions to account for head
rotation relative to the atlas25. Fiber orientation density (FOD) functions were
calculated for each voxel, and the derived tensor information together with
T1 structural information was fed into multi-channel nonlinear smoothing spline
registration, resulting in positional and orientational aligned voxel-wise diffusion
data in 2 mm resolution. Post-processing quality measures were calculated based
on the voxelwise correlations between registered images and synthesized imaging
metrics given the common atlas. Images with average correlations to the atlas
below 0.8 were excluded.

Restriction spectrum imaging (RSI) models the diffusion signals as mixtures of
spherical harmonic basis functions5,12. Based on the intrinsic diffusion
characteristics of separable pools of water in the human brain (i.e. intracellular,
extracellular, and unhindered free water), RSI estimates the signal volume fractions
of each compartment and their corresponding spherical harmonic coefficients. The
measure of restricted isotropic diffusion (N0) is the coefficient of the zeroth-order
spherical harmonic coefficient, normalized by the Euclidian norm of all model
coefficients. This feature is most sensitive to isotropically diffusing water in the
restricted compartment, within cell bodies. The measure of restricted directional
diffusion (ND) is the sum of second and fourth-order spherical harmonic
coefficients, normalized by the norm of all model coefficients. This feature is
sensitive to anisotropically diffusing water in the restricted compartment, within
oriented structures such as axons and dendrites. The normalized free water
diffusion (NF) measure is calculated as the zeroth-order spherical harmonic
coefficients for the unhindered water compartment. NF is also normalized by the
Euclidean norm of all-spherical harmonics coefficients. This normalization makes
the RSI features unitless and in the range of 0 to 1.
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Genotype data processing. For UKB, we used the released v3 imputed genotype
data. For ABCD, we used the public release 3.0 imputed genotype data. Both
datasets were imputed with the HRC reference panel74. We performed post-
imputation quality control to only allow for GWAS on common bi-allelic SNPs.
We filtered SNPs which have minor allele frequencies less than 0.5 percent, Hardy-
Weinberg disequilibrium (p < 1e-10), and missingness greater than 5 percent.
Genetic principal components and ancestral factors were derived using well-called
independent SNPs for both datasets and were used for controlling population
stratification in our analyses.

Combined principal component GWAS (CPC). In the present multivariate
GWAS of RSI measures we implemented the CPC method22 in the MOSTest
package21. When the covariance among input measures is identity, CPC testing
statistic is mathematically equivalent to the MOSTest test. Therefore, the codebase
needed for performing CPC on ultra-high dimensional imaging data is compatible
to our MOSTest except the following two components: First, the imaging measures
were undergoing eigen-decompostions to derive PCs. Second, the testing statistics
were based on close-form solution instead of the permutation scheme. As we were
working on identity covariance matrix with finite number of PCs instead of million
of voxels, CPC is a practical alternative to the original MOSTest.

CPC has been shown to be a robust multivariate GWAS method that is well
powered to detect loci across different scenarios19,22,29. In our case, we optimized
our power to detect genetic variants that shape the brain development, leaving
traces in multiple brain regions. CPC enables the identification of loci that have
association signals across multiple PCs, without the caveats of focusing on single
brain regions. The procedures were as follows. First, the PCs and their
corresponding eigenvectors were derived given the voxel-wise imaging data
(Supplementary Figure 2-9). Each SNP was regressed on each of the derived PC
scores, controlling for age, sex, 20 genetic PCs, genotyping batches, and intracranial
volume. For a given SNP, the Wald statistics for each PC were combined as a
simple linear sum (Fig. 1b). Given that PCs are orthonormal, the sum of the
squared Wald statistics follows the χ2 distribution with k degrees of freedom for k
PCs combined19,22. Although several different combination functions can be
used19, we found that the global-local combination with Fisher’s method proposed
in the original CPC paper has greatest power in detecting genetic loci22. Therefore,
we experimented with four different global-local cut points (50, 100, 500, and 1000
PCs) to see which combinations yield the most discoveries. To reflect this
experiment, we lowered the significance threshold to p < 4.2e-9 (corrected for 12
multiple comparisons, as 4 thresholds and 3 features were used in the current
study).

Validation with confirmatory polyvoxel scoring. To perform the validation test
for the discovered loci, we used the confirmatory polyvoxel scoring instead of
repeating the GWAS on the independent cohorts. The eigenvectors (vk) and the
regression coefficients (βk) obtained from the discovery set were used to calculate
the imaging scoring for all subjects in the validation sets.

score ¼ ∑βkvkx
0 ð1Þ

x stands for the raw imaging data. Given that each PC is independent of the other,
it can be shown that the SNP regression on the polyvoxel score is equivalent to the
comparison of the consistencies of regression coefficients between the discovery set
and validation set.

Regional enrichment for spatial distribution across voxels. To provide more
interpretability for the multivariate GWAS results, we developed a regional
enrichment analysis to show which brain regions have relatively stronger signals.
Most previous imaging studies relied on re-doing the voxelwise association tests to
show the effect distributions of the discovered loci14,16–18,36. Given the distributed
nature of the effect sizes among imaging measurements, the voxel-wise associations
were not an ideal way of localizing effects20. Instead, we examined the overlap
between association patterns and regions of interest in the co-registered anatomical
atlas. The enrichment score is the probability-weighted regression coefficients from
CPC:

score ¼
∑
i
Piβ̂i

∑
i
Pi

ð2Þ

The variance of the enrichment score was estimated by bootstrapping the
association patterns from SNPs that did not surpass the significance threshold. We
then calculate the corresponding enrichment z-score and the corresponding p-
values. In the current study, we obtained 130 probability maps of brain regions
defined in the common atlas (Supplementary Data 9). We applied the regional
enrichment analyses on the loci that showed robust signals across adult and
adolescent data.

Loci annotations, overlaps, and gene-set enrichment analyses. To annotate the
identified genetic loci, we used FUMA39 and the GRanges function in R. SNPs with
LD of r2 < 0.1 and within 250 kb distance were considered as one single locus.
MAGMA40 was used for calculating the gene-set enrichment. To map the

candidate genes onto the identified loci, we used FUMA with Hi-C mapping and
eQTL information from PsychENCODE75.

Calculation of high dimensional heritability. Previous studies on the heritability
of high-dimensional phenotypes indicated the average heritability is a valid way of
estimating the genetic architecture of human traits23,76. It is equivalent to the
weighted average of heritabilities across each of the PCs. We applied LD score
regression for each PC and then weighted these according to their eigenvalues,
deriving the average heritabilities across RSI features.

Stratified LD score regression for heritability enrichment analyses. As the
prior literature on multivariate GWAS has demonstrated23, the multivariate χ2 can
be rescaled and then used with stratified LDSC (S-LDSC) to examine the relative
enrichment of heritability for given annotations. Here, we examined the tissue-
specific enrichment through histone marker annotations of human tissues, given
that the regulatory landscape has more tissue specificity than gene expressions57.
For cell-type specific analyses, we used the mouse single cell ATAC-seq data
because it is a comprehensive resource with established utility in prioritizing
human risk variants58. The scaled genome-wide multivariate χ2 for each imaging
metric, i.e. N0, ND, and NF, was regressed against the tissue-specific/cell-type-
specific annotations, while controlling for the baseline annotations as recom-
mended by S-LDSC57. We reported the signed enrichment Z statistics, as well as
the corresponding multiple comparisons adjusted p values.

Calculation of shared genome-wide signals between two phenotypes. As
proposed in other multivariate GWAS efforts23, for a given summary statistics of a
phenotype, we first calculated the average magnitudes of associations in each of the
approximately independent LD blocks77, deriving the unsigned polygenic signal
profiles of a given trait. Spearman correlations were performed for each pair of the
GWAS results, evaluating the level of overlapping in the genome-wide signals.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data from UKB is available through UKB application (https://www.ukbiobank.ac.uk).
The research has been conducted using the UK Biobank Resource under Application
Number 27412. Adolescent data used in the preparation of this article were obtained
from the Adolescent Brain Cognitive Development℠ Study (ABCD Study®) (https://
abcdstudy.org), held in the NIMH Data Archive (NDA). ABCD data used in here is
under the NDA study registered at https://doi.org/10.15154/1524729. Genomic locus and
gene-set results can be found in the Supplementary Data. Full summary statistics can be
found in LocusZoom.js78 (N0: https://my.locuszoom.org/gwas/575925/; ND: https://my.
locuszoom.org/gwas/611203/; NF: https://my.locuszoom.org/gwas/644492/).

Code availability
ABCD processing codes can be found in github repository series (https://github.com/
ABCD-STUDY). Codes used specifically for this study, including obtaining restricted
spectrum imaging metrics, combined principal components GWAS, polyvoxel scores,
and spatial regional enrichment analyses, can be found in the public accessible GITHUB
page at (https://github.com/cmig-research-group/RSIGWAS). The code version used in
this study is registered79. The main code base is on MATLAB version 2017b.
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