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Meta-analysis of sub-Saharan African studies
provides insights into genetic architecture of lipid
traits
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Genetic associations for lipid traits have identified hundreds of variants with clear differences

across European, Asian and African studies. Based on a sub-Saharan-African GWAS for lipid

traits in the population cross-sectional AWI-Gen cohort (N= 10,603) we report a novel LDL-

C association in the GATB region (P-value=1.56 × 10−8). Meta-analysis with four other

African cohorts (N= 23,718) provides supporting evidence for the LDL-C association with the

GATB/FHIP1A region and identifies a novel triglyceride association signal close to the FHIT

gene (P-value =2.66 × 10−8). Our data enable fine-mapping of several well-known lipid-trait

loci including LDLR, PMFBP1 and LPA. The transferability of signals detected in two large global

studies (GLGC and PAGE) consistently improves with an increase in the size of the African

replication cohort. Polygenic risk score analysis shows increased predictive accuracy for LDL-

C levels with the narrowing of genetic distance between the discovery dataset and our cohort.

Novel discovery is enhanced with the inclusion of African data.
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C irculating lipid levels and their genetic associations are
important indicators of the risk for developing cardio-
metabolic diseases including stroke, coronary artery dis-

ease, hypertension, and are also associated with kidney disease1–4.
Although modulated by environmental and behavioural factors,
the heritability of total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-
C) and triglycerides (TG) has been estimated at between 0.35 and
0.765,6. However, trait heritability demonstrates considerable
inter-ethnic differences, some of which could be explained by
environmental differences such as diet and availability of
medications7. Although large representative datasets are sparse, at
a population level lipid profiles from African Americans generally
reflect lower TG, and higher HDL-C levels compared to
populations from Asia and Europe8.

Genetic associations with lipid levels have been extensively stu-
died using candidate loci9, SNP arrays enriched for known asso-
ciated genomic regions (Metabochip)10,11, exome SNP arrays12–14,
genome-wide SNP arrays15,16, whole exome sequencing (WES) and
whole genome sequencing (WGS)17 approaches to reveal over 400
robustly associated independent loci. Many of the studies included
multiple ethnicities mainly representing Americans of European-
and African-ancestry, Hispanics17, American Indians18 and Asian
populations19,20. These studies have generally shown that the
majority of lipid-trait associations are universal; however, several
studies also revealed population- or ancestry-specific lipid-
associated loci and allelic heterogeneity21. A recent systematic
assessment of the transferability of an European genome-wide
association study (GWAS) derived signals across ancestral groups
highlighted these differences, especially in Africans, despite the
shared genetic architecture for lipid traits22.

There are demonstrable benefits in using ancestrally diverse
populations in genetic-association studies. These include refine-
ment of previously associated loci by highlighting different effect
sizes across ancestral populations, enhancing the potential to
identify functional variants using linkage disequilibrium (LD)-
based fine mapping, and the identification of associated variants
that are ancestry-specific for either novel or known loci. Argu-
ably, studies in African populations have the potential to con-
tribute much benefit, as these populations have increased
diversity, lower LD and higher population structure, but require
the use of African-centric arrays and appropriate imputation
panels to maximize novel discovery23. However, understanding
the genomic architecture of lipid traits in Africans is currently
dominated by studies on admixed African-ancestry individuals
resident in the USA, who represent only a portion of the genetic
diversity that exists on the continent. Moreover, these studies
have mostly used SNP arrays based on common genetic variation
in European and admixed populations24,25. Only a few studies on
lipid traits7,9,26,27 have been solely or predominantly based on
sub-Saharan African populations. The modest sample sizes and
lack of geographic spread of participants have limited our
understanding of the genetics of lipid traits in these populations.

Genetic associations from a GWAS are often used as a col-
lective set for the generation of polygenic risk score (PRS) models.
The application of these models to lipid traits shows an overall
high predictability. For example, in a study of 94,674 ancestrally
diverse treatment-naive participants from the Kaiser Permanente
members, a GWAS using electronic health records revealed novel
and sex-specific genetic associations and demonstrated that a
477 SNP PRS could predict age at first use of lipid-lowering drugs
with relative accuracy28. However, the predictive ability of these
scores not only varies widely between traits but also between
GWAS for the same trait due to factors such as sample size and
LD architecture29,30. Moreover, PRS models for several traits have
shown that their application to ancestries other than the ones

in the original GWAS often leads to a loss in predictive
accuracy29–33. Accordingly, an African population was shown to
have the lowest predictive accuracy using a European-derived
PRS model for lipid traits22.

In this study, we report on the use of the H3Africa SNP gen-
otyping array (https://www.h3abionet.org/h3africa-chip), enri-
ched for common variants in sub-Saharan Africans, to perform
GWAS for fasting serum TC, LDL-C, HDL-C, and TG in the
AWI-Gen cohort based on 10,603 adults, resident in six study
sites across four countries in sub-Saharan Africa34,35. This was
followed by a meta-analysis with previously published summary
statistics from four sub-Saharan African cohorts reaching a
combined sample size of about 24,000. We then performed an in
depth assessment of the replication of previously associated loci
(using the summary statistics from the Population Architecture
using Genomics and Epidemiology (PAGE)36 and Global Lipid
Genetics Consortium (GLGC)15) in AWI-Gen and other sub-
Saharan African cohorts. Finally, we examined the predictability
of PRS models based on GWAS from European (GLGC)15, multi-
ancestry (PAGE)36 and sub-Saharan African populations7, in our
cohort.

Results
The distribution of the four lipid traits (TC, LDL-C, HDL-C
and TG) and associated covariates (age and sex) in the six AWI-
Gen study sites are summarized in Supplementary Data 1 and
Supplementary Fig. 1. The discovery GWAS for these four traits
was conducted in two stages (Fig. 1). Stage 1 was association
testing using the full AWI-Gen dataset (N= 10,603). This
dataset was imputed using the African Reference Panel at the
Sanger Imputation facility and only SNPs with MAF > 0.01 and
Info Score>0.6 were included in the analysis. Stage 2 (building
on the outcome of Stage 1) was the meta-analysis of these
results with published summary statistics from four cohorts (the
Uganda Genome Resource (UGR) study, the Africa-America
Diabetes Mellitus (AADM) study, the Durban Diabetes Study
(DDS), the Durban Case Control (DCC) study) all of which
were included in the Gurdasani et al.7 study (Fig. 1). To account
for the difference in total number of variants in the two datasets
(~14M SNPs in AWI-Gen in comparison to ~22 M in Gurda-
sani et al.7), the Stage 2 analysis was restricted to the ~14M
SNPs that were present in the AWI-Gen study. This difference,
despite the use of the same imputation panel, was due to a more
stringent MAF cut-off (MAF > 0.01) compared to that used in
Gurdasani et al.7 (MAF > 0.005).

Adjusting for the impact of population structure. In alignment
with the geographic spread of our study sites in Eastern, Western
and Southern Africa (Fig. 1), we observed a clear population
structure (Supplementary Fig. 2a). Using an approach similar to the
PAGE study36, we defined the number of relevant principal com-
ponents (PCs) based on a joint plot of the first twenty PCs for
representative ethnolinguistic groups (Supplementary Fig. 2b).
Stage 1 GWAS was performed using a linear mixed model-based
approach (BOLT-LMM)37 after adjusting for age, sex, and relevant
PCs. Genomic inflation scores and quantile-quantile plots (Sup-
plementary Fig. 3) did not indicate major inflation in any of the
analyses. All the results for Stage 1 GWAS are based on this
approach. As an alternative approach, for each trait we also per-
formed three independent GWASs based on participants from
Eastern, Western and Southern Africa followed by meta-analysis of
the results from these geographic-region-specific GWASs. Com-
parison of the genome-wide significant associations detected by the
two approaches not only show an almost complete overlap at the
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Fig. 1 Summary of the datasets and analyses. For each lipid trait, Stage 1 of the GWAS involved a joint analysis of the full AWI-Gen dataset (10,603
participants from Eastern, Western and Southern Africa) and Stage 2 (N= 23,718) involved a meta-analysis of the Stage 1 results with the summary
statistics from four African cohorts included in the Gurdasani et al. 20197 study (Uganda Genome Resource (UGR) study, the Africa-America Diabetes
Mellitus (AADM) study, the Durban Diabetes Study (DDS), the Durban Case Control (DCC) study). Approximate geographic location and sample size of
the cohorts are represented by position and size of the circles in the map. Each cohort is shown in a unique colour. Assessment of transferability of
associations detected in the Global Lipid Genetics Consortium (GLGC)15 study and the Population Architecture using Genomics and Epidemiology
(PAGE)36 study was performed in various replication sets. Predictability of polygenic risk score models based on Gurdasani et al. 20197, GLGC15 and
PAGE36 was assessed in the AWI-Gen dataset. The map was created using R (https://www.r-project.org/).

Table 1 Summary of associations detected in the Stage 1 GWAS for the four lipid traits.

SNP Unique ID Beta P-value (1) P-value (2) Gene/Nearby gene Previous reports

LDL-C
rs28362286 1:55529215:C:A 0.942 3.70E-73 7.74E−71 PCSK9 Yes
rs12740374 1:109817590:G:T 0.125 3.40E-15 1.32E−15 CELSR2 Yes
rs2435386 2:21414760:C:T −0.079 1.80E-08 1.22E−08 RP11-79J24.1, TDRD15 No_A
rs35804417 4:152601951:G:A −0.174 4.10E-08 1.56E−08 GATB No
rs75143493 6:160946747:T:G −0.327 5.90E-10 1.29E−09 LPA, LPAL2 No_B
rs73015020 19:11192550:G:A 0.136 1.40E-17 5.10E−17 LDLR, SMARCA4 Yes
rs7412 19:45412079:C:T 0.453 2.70E-117 2.24E−118 APOE Yes
HDL-C
rs2070895 15:58723939:G:A −0.103 2.00E-13 7.63E−14a ALDH1A2/ LIPC Yes
rs34065661 16:56995935:C:G −0.324 1.60E-36 2.05E−37 CETP Yes
TG
rs326 8:19819439:A:G 0.096 2.40E-11 5.05E−12 LPL Yes
rs2070895 15:58723939:G:A −0.083 2.70E-09 2.87E−09 ALDH1A2/ LIPC Yes
rs12721054 19:45422587:A:G 0.214 4.00E-24 1.74E−22 APOC1 Yes
rs114139997 21:46875775:G:A 0.235 2.10E-08 3.70E−09 COL18A1 Yes
TC
rs28362286 1:55529215:C:A 0.794 1.70E-52 9.38E−51 PCSK9 Yes
rs12740374 1:109817590:G:T 0.100 2.20E-10 2.21E−11 CELSR2 Yes
rs73015020 19:11192550:G:A 0.112 2.00E-12 4.47E−12 LDLR SMARCA4 Yes
rs7412 19:45412079:C:T 0.323 1.10E-60 3.22E−60 APOE Yes

LDL-C: low-density lipoprotein cholesterol.
HDL-C: high-density lipoprotein cholesterol.
TG: triglycerides.
TC: total cholesterol.
Unique ID: Summarizes chromosome, position and the alleles.
P-value (1): P-value (two-tailed, not adjusted for multiple comparisons, calculated using BOLT-LMM)) for the joint analysis of the full AWI-Gen dataset.
P-value (2): P-value (two-tailed not adjusted for multiple comparisons, estimated using METASOFT) for the meta-analysis of East, West and South African subsets.
Previous reports: Association of the SNP with the same or related traits according to GWAS catalog and literature.
No_A: SNP has no known association with the trait but has been shown previously to be associated with one or more related traits.
No_B: Although no report for SNP, the corresponding gene contains one or more SNPs associated with the trait.
aPeak for the region was observed in a neighbouring SNP-rs1800588 (P-value= 7.63E−14).
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genomic locus level but also show very similar P-value estimates for
most of the lead SNPs (Table 1, Supplementary Data 2).

Genome-wide associations in the AWI-Gen cohort. The Stage 1
GWAS identified 12 independent (characterized using FUMA38)
genomic regions that were associated with at least one of the four
lipid traits at a genome-wide significance threshold of P-value
<5 × 10−8 (Fig. 2, Supplementary Figs. 4–6; Table 1; Supple-
mentary Data 3), with 11 of the 12 signals mapping to well-
known lipid-associated regions in/near genes such as PCSK9,
APOE, CELSR2 and LDLR. A novel genome-wide significant
signal for LDL-C, rs35804417, mapped to an intron of the GATB
gene on chromosome 4 (Fig. 2, Table 1). The signal also emerged
as a suggestive signal in the GWAS for TC (Supplementary
Data 4). While the absence of any previous signal for this SNP in
the GWAS literature could be due to its near absence in non-
African populations (minor allele frequency (MAF) for African
populations= 0.06; MAF for European population= 0 in the
1000 Genomes dataset39; MAF= 0.04 in African Americans and
MAF < 0.0002 for non-African populations in the gnomAD
database40), the lack of any previous lipid signal in the extended
genomic region (+/−500 kb) around this SNP (investigated
using GWAS catalog41 and PhenoScanner42,43 suggests that this
association is ancestry/continent-specific.

The previously detected association of the LPA locus with
LDL-C was represented by a novel lead SNP (rs75143493) that
also lacked any report of previous association either in GWAS
catalog or PhenoScanner41–43 (Table 1). This SNP also has a very
low minor allele frequency in non-Africans (Absent in 1000
Genomes European and Asian populations;39 MAF= 0.015 in
African Americans and MAF < 0.001 in non-African populations
in the gnomAD database40) which could explain its absence in
previous GWASs. Similarly, the lead SNP rs2435386 near the

well-knownTDRD15 gene also has no reported associations in the
GWAS catalog41. However, a PhenoScanner search shows this
SNP to be associated with high cholesterol as well as cholesterol
lowering medication. The geographic-region-specific analyses
(Supplementary Data 5) identified a signal (rs12721096) in the
well-known lipid-associated locus APOC3 to be significantly
associated with TG in the GWAS of the Southern African
participants. Similarly, several SNPs in the SENP7 gene on
chromosome 3, with the lead SNP rs4683845, showed association
with TG only in the West African GWAS.

Fine mapping of lipid-trait loci. We used three different tools,
FINEMAP44, PAINTOR45 and CAVIAR46 to identify 95%
credible sets for the genome-wide significant loci and also to
narrow down causal variants, where possible. The fine mapping
for PCSK9 in the AWI-Gen dataset, performed using FINEMAP
with stepwise conditioning, identified rs28362286 (PCSK9
p.Cys679Ter) as a potential causal variant for both LDL-C and
TC. The prediction was supported by the other two methods.
This stop-gained variant is nearly absent in non-Africans in the
1000 Genomes39 and GnomAD datasets40 and consequently has
been detected as associations in only three of the previous lipid-
trait GWAS that were either African based7 or included a sub-
stantial portion of African ancestry36,47. rs28362286 was observed
as the lead variant for associations with TC and LDL-C in both
Stage 1 and Stage 2 GWAS (Supplementary Fig. 7). In addition,
we observed a marked reduction of credible set size of the signal
near the well-knownLDLR locus in the African dataset (Fig. 3a) in
comparison to an European GWAS48 of comparable size
(Fig. 3a). Although the top SNPs from a locus often differed
between the two datasets, several other well-known lipid loci such
as LPAL2, LIPC, CELSR2 and APOC1 showed a narrower peak in
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Fig. 2 Genome-wide associations for LDL-C.Miami plot showing summary data for Stage 1 GWAS (AWI-Gen, downward facing, N= 10,603) and Stage 2
GWAS (meta-analysis of AWI-Gen and four African cohorts, upward facing, N= 23,718). P-values (two-tailed, not adjusted for multiple comparisons,
calculated using BOLT-LMM for Stage 1 GWAS and METASOFT for Stage 2 GWAS) are truncated at 10−20 for clarity. The red horizontal lines show the
genome-wide significance threshold (5 × 10−8) and SNPs with P-values below this threshold are shown in orange. The loci corresponding to the region
showing novel association in Stage 1 and Stage 2 GWAS are indicated in red. Other possible novel loci that reached genome-wide significance only in the
Stage 2 analysis are shown in purple. Known LDL-C associated regions that were represented by novel lead SNPs are shown in green. Loci represented by
lead SNPs that are well-known for LDL-C associations across multiple studies, including ours, are shown in black.
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the AWI-Gen GWAS in comparison to the European GWAS
study (Supplementary Figs. 8–11).

Meta-analysis with other African cohorts. Stage 2 of our GWAS,
based on a meta-analysis of the results from the Stage 1 GWAS
and summary statistics for four other African cohorts, identified
about 15 additional independent genomic regions associated with
one or more of the four lipid traits (Table 2; Fig. 2; Supplemen-
tary Figs. 4–6 and 12; Supplementary Data 6). Most of the signals
were within or near known lipid-associated genes such as ABCA1,
LPL and APOB (Table 2). Among these, rs33918808 (in ABCA1)
and rs2126263 (near LPL) were observed as suggestive hits in the
Stage 1 GWAS (Supplementary Data 3). The novel lead SNP for
the LDL-C association with LPA identified in the Stage 1 GWAS
also emerged as the lead SNP in the Stage 2 GWAS (Supple-
mentary Fig. 13). Moreover, several other associations such as
BUD13 with TG (rs116588420) and PMFBP1 with LDL-C
(rs4788609), detected in the Stage 2 GWAS, were also found to
be represented by novel lead SNPs.

The novel signal in the GATB gene showing LDL-C association
in the Stage 1 GWAS was found to be nominally replicated (P-
value < 0.05) in the AADM cohort and was close to the genome-
wide significance threshold (P-value= 9.83 × 10−8) in the Stage 2
GWAS (Fig. 3b). Moreover, the Stage 2 GWAS identified multiple
signals (lead SNP rs6845395) with moderate LD (0.5) in a nearby
region harbouring the FHIP1A (also known as FAM160A1) gene
at the genome-wide significance threshold (Fig. 3b). Two of the
other associations for LDL-C, rs141822553 near the ST6GAL-
NAC2P1 gene on chromosome 2 and rs114810281 near the
ZGLP1 gene (close to but independent of the main LDLR signal)
on chromosome 19, are also strong candidates for being novel
signals. A potential novel signal for TG was observed in an
intergenic region near the FHIT gene (rs75064672). The
comparison of results from various meta-analysis models
demonstrated that most of these associations were significant at
the standard genome-wide significance threshold irrespective of
whether a fixed, random or binary effect model was considered
(Supplementary Data 6).

To assess functional relevance of the associations we used the
gene-based analysis option in MAGMA (within the FUMA
toolkit)38. In this analysis, only the associations that localize
within genes are considered and the significance is assessed on a
gene-based Bonferroni P-value threshold of 5 × 10−6. This
analysis identified 43 signals in Stage 1 and 53 signals in Stage
2 GWAS. Although comparison with the GWAS catalog41

showed that most of the genes originate in regions with previous
signals, it identified novel signals in both Stage 1 and 2 GWAS.
The analysis of gene set enrichment further showed that most
significantly enriched gene sets were relevant to the biology of
lipid metabolism (Supplementary Data 7).

Transferability of signals from large consortium studies. To
evaluate the transferability of signals from the predominantly
European-based GLGC Consortium study15 to the African
dataset, we assessed the P-value of the signals from the GLGC
study in the Stage 1 GWAS, Stage 2 GWAS and the four African
cohorts included in the meta-analysis. To delineate independent
loci for evaluation, genome-wide significant signals in the GLGC
summary statistics that were within 50 kb of each other were
considered as belonging to the same locus. For each locus, if any
of the SNPs that were genome-wide significant in the GLGC
GWAS showed P-value <5 × 10−4 in an African cohort, the locus
was considered to be replicated/transferable. The cut-off was
decided on the premise that each of four lipid traits were repre-
sented by about 100 independent loci in the GLGC dataset and
therefore a minimum correction for 100 tests was necessary
(Corrected replication P-value threshold 0.05/100). In addition,
we also assessed replication at a more stringent level (genome-
wide P-value < 5 × 10−8) and a less stringent threshold (nominal
threshold P-value < 0.05. To limit the impact of SNP-set size
variations among replication datasets (some included ~14M and
some ~22M variants), the entire analysis was restricted only to
the ~14M SNPs that were present in the AWI-Gen dataset.

A previous study on lipid-trait signals22 has shown the
transferability of signals from GLGC to vary considerably with
the strength of the signals; signals with P-value < 10−100 show

Fig. 3 Fine mapping and novel association for LDL-C. a Locuszoom (http://locuszoom.org/) plots showing LDL-C association around the LDLR region.
The plot on top is based on the Prins et al. 201748 study (N= 9961). The 95% credible set in this study included over 40 SNPs (inferred using FINEMAP
based results from CausalDB (http://mulinlab.org/causaldb/)). The bottom plot shows the same region in the AWI-Gen Stage 1 GWAS (N= 10,603).
Here, the region is represented by a much narrower peak and the 95% credible set, inferred using FINEMAP, includes only two SNPs. b Locuszoom plot
showing associations around the GATB region in the Stage 1 (top) (N= 10,603) and Stage 2 (bottom) (N= 23,718) analysis. Although, the lead SNP from
Stage 1 GWAS, rs35804417 (pointed to by blue arrow), missed genome-wide significance, a set of SNPs, with the lead SNP rs6845395 (purple diamond),
from the neighbouring FH1P1A gene was found to be significant in the Stage 2 GWAS.
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much higher transferability compared to signals with higher
P-values. To assess this further we classified signals into three
categories—very strong (P-value < 10−100), strong (10−100

< P-value < 10−20) and moderate (10−20 < P-value < 10−8) and
studied the levels of transferability in each of these categories
separately. The results presented in Fig. 4 and Supplementary
Fig. 14 show that an increase in sample size of the African cohort
generally resulted in increased transferability. We observed very
strong signals to show highest transferability across traits.
Similarly, strong signals showed better transferability in compar-
ison to moderate signals. Moreover, in addition to the number of
loci replicated, the P-values at which these replications were
observed also decreased consistently with the increase in the size
of the replication cohort.

A similar analysis of signals from the multi-ethnic but much
smaller PAGE consortium study36 showed the same trend along

with an overall higher transferability (Fig. 4, Supplementary
Fig. 14) compared to signals from the GLGC study across all lipid
traits. As there were very few signals with P-value < 10−100, we
only categorized the signals into strong (P-value < 10−20) and
moderate (10−20 < P-value < 10−8), and once again observed better
replication in the former compared to the latter. Although the
variation in the level of transferability of signals for the four traits
was not consistent across the PAGE and the GLGC study, in
both cases we observed the signals for LDL-C and HDL-C to
show better transferability compared to the other two traits
(also noted in22).

Predictability of available polygenic risk score models in
the AWI-Gen cohort. Next, we assessed the extent to which
PRS derived from GLGC15, PAGE36 and a sub-Saharan African

Table 2 Summary of associations detected in Stage 2 GWAS (meta-analysis of AWI-Gen and four other African cohorts).
Additional details in Supplementary Data 6.

SNP Unique ID Beta P-value Gene/Nearby gene Previous reports

LDL-C
rs28362286 1:55529215:A:C 0.882 4.43E-113 PCSK9 Yes
rs12740374 1:109817590:G:T 0.138 1.46E-39 CELSR2 Yes
rs143375141 2:21179426:C:T −0.105 7.82E-13 RP11-116D2.1, AC012361.1 No_A
rs141822553 2:84387050:C:T −0.194 3.09E-08 ST6GALNAC2P1, FUNDC2P2 No
rs6845395 4:152403605:C:T −0.168 3.29E-09 FHIP1A No
rs9784624 5:156440014:C:T −0.067 2.17E-08 HAVCR1, TIMD4 No_B
rs75143493 6:160946747:G:T −0.172 5.83E-09 LPA, LPAL2 No_B
rs4788609 16:72165986:C:T 0.071 1.03E-09 PMFBP1 No_B
rs114810281 19:10415812:C:T 0.175 1.34E-09 ZGLP1 No
rs73015020 19:11192550:A:G 0.150 8.09E-45 LDLR, SMARCA4 No_A
rs7412 19:45412079:C:T 0.535 9.14E-304 APOE Yes
HDL-C
rs2126263 8:9181611:A:G −0.065 1.43E-08 RP11-115J16.1 Yes
rs3289 8:19823192:C:T 0.104 3.16E-11 LPL Yes
rs2070895 15:58723939:A:G −0.076 1.31E-23 LIPC Yes
rs34065661 16:56995935:C:G −0.341 8.46E-102 CETP Yea
rs2292318 16:67985706:C:T −0.075 1.59E-08 SLC12A4 Yes
rs3744841 18:47117374:A:G −0.060 1.04E-08 LIPG Yes
rs7412 19:45412079:C:T −0.147 9.93E-20 APOE Yes
TG
rs575787792 1:63356272:C:T 0.252 3.29E-11 RP4-771M4.3, ATG4C No
rs75064672 3:59707791:C:T −0.187 2.67E-08 RP11-719N22.1, FHIT No
rs3289 8:19823192:C:T −0.130 3.12E-17 LPL Yes
rs116588420 11:116629766:G:T −0.211 3.63E-10 BUD13 No_B
rs2070895 15:58723939:A:G −0.078 1.81E-17 LIPC Yes
rs4783961 16:56994894:A:G 0.051 3.89E-08 AC012181.1, CETP No_A
rs12721054 19:45422587:A:G 0.194 6.80E-47 APOC1 Yes
rs114139997 21:46875775:A:G 0.230 4.32E-13 COL18A1 Yes
TC
rs28362286 1:55529215:A:C 0.793 3.39E-88 PCSK9 Yes
rs12740374 1:109817590:G:T 0.108 2.95E-25 CELSR2 Yes
rs661665 2:21265141:A:C −0.072 3.03E-11 APOB Yes
rs115069429 6:160872648:C:T −0.133 4.02E-09 SLC22A3 No_B
rs33918808 9:107579632:C:G −0.071 9.04E-10 ABCA1 No_B
rs34065661 16:56995935:C:G −0.099 2.62E-09 CETP No_A
rs61483465 16:72217018:A:C −0.081 7.01E-11 PMFBP1, RP11-328J14.1 Yes
rs12151108 19:11197261:A:G 0.144 1.03E-30 LDLR, SMARCA4 Yes
rs7412 19:45412079:C:T 0.361 4.98E-142 APOE Yes

LDL-C: low-density lipoprotein cholesterol.
HDL-C: high density lipoprotein cholesterol.
TG: triglycerides.
TC: total cholesterol.
Unique ID: Summarizes chromosome, position and the alleles.
Beta, P-value: Effect size and P-value (two-tailed, not. adjusted for multiple comparisons) calculated using RE2 model implemented in METASOFT.
Previous reports: Association of the SNP with the same or related traits according to GWAS catalog, UKBB and literature.
No_A: SNP has no known association with the trait but has been shown previously to be associated to one or more related traits.
No_B: Although no report for SNP, the corresponding gene contains one or more SNPs associated with the trait.
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meta-analysis GWAS7 could predict the levels of the four lipid traits
in the AWI-Gen cohort participants (Fig. 5; Supplementary Data 8).
The PRS derived from sub-Saharan Africans (shown as AFG) were
the best predictors for LDL-C (R2= 0.07; P-value= 6.58 × 10−131)
and triglycerides (R2= 0.01; P-value= 2.02 × 10−17) while the
multi-ancestry (PAGE) based PRS better predicted HDL-C
(R2= 0.023; P-value= 1.06 × 10−37) and total cholesterol
(R2= 0.03; P-value= 2.01 × 10−53) as illustrated in Fig. 5. The sub-
Saharan African models predicted better than the European model
regardless of having fewer SNPs. Overall, the European-derived PRS
(GLGC) had the lowest predictability for all the lipid traits in
Africans. We then proceeded to evaluate the PRS stratifications for
the lipid traits. Notably, the participants in the upper decile for the
sub-Saharan African derived PRS had around 1.1mmol/L higher
LDL-C compared to those in the lowest decile after adjustment for
age, sex and residual population structure (Fig. 5).

Intra-continental heterogeneity in effect size and allele fre-
quency. Finally, to assess the level of heterogeneity between various
African cohorts we compared the distribution of MAFs and effect
size estimates for SNPs that were detected as lead SNPs in the Stage-2
GWAS in the AADM, UGR, DDC, DDS, AWI-Gen South African,
AWI-Gen West African, AWI-Gen East African datasets (Fig. 6,
Supplementary Data 9, Supplementary Figs. 15–18). Among these
the UGR, AADM, AWI-Gen South African and AWI-Gen West
African datasets had sample sizes ranging between 3600 and 6400
whereas AWI-Gen East African, DDC and DDS were much smaller.
The comparisons revealed several trends in the variation of these two

estimates (Fig. 6; Supplementary Figs. 15–18). For example, the well-
known lipid-associated SNP rs7412 (APOE p.Arg176Cys) shows
almost two-fold higher MAF in South African cohorts compared to
both the East African cohorts and one of the West African cohorts.
However, with the exception of the DDS and UGR cohorts the effect
sizes for association of this SNP with LDL-C were comparable
among other cohorts. The SNP rs4788609 in PMFBP1 has similar
MAFs in Eastern, Western and Southern Africa (with some intra-
regional variations) but very different effect sizes (for LDL-C) in one
of the Eastern and Southern African cohorts. Finally, the novel lead
SNP rs6845395 for LDL-C shows major variations in both allele
frequencies and effect sizes across the cohorts. Overall, the results
from the three smaller cohorts DDS, DCC and AWI-Gen
East showed the maximum deviation from other studies and
also exhibited greater magnitude of standard error estimates
(Supplementary Figs. 15–18). Although the allele frequency dis-
tributions showed geographically correlated trends in some cases,
major differences within a geographic region were not uncommon
(Supplementary Data 9).

Discussion
The lpaucity of GWAS in African populations has been con-
sistently highlighted in recent literature23,25,49,50. AWI-Gen is a
pan-African GWAS study (based on 6 study sites across four
countries in Eastern, Western and Southern Africa) for lipid-trait
genetics in sub-Saharan African populations. Before highlighting
the key findings we discuss some of the strengths of the AWI-Gen
study. These include the use of a single laboratory for measuring
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Fig. 4 Transferability of previous lipid-trait associations to various African GWASs. a LDL-C association signals detected in the Global Lipid Genetics
Consortium (GLGC)15 study. b LDL-C association signals detected in Population Architecture using Genomics and Epidemiology Consortium (PAGE)36

study. The Y-axis shows the proportion of associated loci that are replicated in each of the individual African studies. The proportion of signals replicated at
the genome-wide significance threshold P-value < 5 × 10−8 are shown in deep blue (F-GW), at P-value < 5 × 10−4 are shown in dark green (F_RepThr) and
at the nominal threshold of P-value < 0.05 are shown in orange (F_NT). The signals from the GLGC study were partitioned on the basis of signal strength
into Very Strong (P-value < 10−100) indicated by the suffix “_VS” and a green background, Strong (10−20 > P-value > 10−100) indicated by the suffix “_S”
and a blue background, and moderate (5 × 10−8 > P-value > 10−20) indicated by the suffix “_M” and a grey background. For the PAGE study only two
categories, Strong (S) (P-value < 10−20) and Moderate (M) (5 × 10−8 > P-value > 10−20) were considered. The African replication datasets used in the
analysis are – Stage 2 GWAS (Meta-analysis) (N= 23,718), Stage 1 GWAS (AWI-Gen) (N= 10,603), Uganda Genome Resource (UGR) study (N= 6407),
Africa-America Diabetes Mellitus (AADM) study (N= 4116), Durban Diabetes study (DDS) (N= 1117) and Durban case control (DCC) study (N= 1475).
Comparison of transferability of signals from c GLGC Consortium study, d PAGE Consortium study in the Stage 2 GWAS results for each of the four lipid
traits are shown.
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lipid biomarker levels for all the samples, as well as the same
genotyping array and joint imputation for capturing genotype
data which ensured much higher comparability of the data from
different parts of the continent. The population cross-sectional
nature of the cohort, in contrast to cohorts from disease-based
studies such as AADM, DDC and DDS, was also expected to
reduce the influence of other conditions on lipid levels. Finally,
almost all the AWI-Gen participants were naive to medication for
dyslipidemia and other cardiometabolic diseases removing
another potential confounder from the study.

A key requirement for the success of a pan-African GWAS is
the identification of an optimal approach to control for popula-
tion structure. This is driven by the fact that in addition to
pronounced genetic differences between Eastern, Western and
Southern African populations, genetic differences are common
even among participants from the same geographic region. For
example, a recent study reported that fine-scale population
structure was strong enough to influence association signals
among the South African participants from our cohort51. This,
added to environmental and lifestyle differences within and
between geographic regions, as observed in several phenotype
studies based on the AWI-Gen cohort34,35,52,53, could limit the
ability of modest sample size GWAS based on pan-African
datasets to identify associations accurately. We have employed a
LMM based approach to conduct association testing on the
full dataset with principal components as covariates for the Stage

1 GWAS. Given the modest sample size of our study, we con-
sidered this composite or “mega-analysis” to be appropriate as
it was expected to have higher statistical power compared to
meta-analysis of separate GWAS for the three African regions36.
However, the high concordance in the outcomes of the mega- and
meta-analyses of AWI-Gen East, West and South African data
demonstrates that these two approaches perform comparably in
our study. However, further in-depth analysis from other similar
cohorts will be required to develop comprehensive guidelines for
addressing population structure and heterogeneity in pan-African
GWAS based on modest sample sizes.

To bolster the power of our GWAS, we performed a meta-
analysis of the Stage 1 results with the summary statistics from four
African cohorts included in the Gurdasani et al. 2019 study7. The
combined sample size of around 24,000 participants makes this
study considerably larger than previous GWASs for lipid traits
conducted in sub-Saharan African populations. We restricted the
analysis to only those SNPs that were included in the final AWI-
Gen dataset and in at least three of the four other cohorts. While
this could have limited our potential for discovering novel asso-
ciations, this approach ensured that the associations were based on
a significant proportion of the combined sample set and are thereby
relatively robust. Another ongoing discussion given the overall
lower LD in African genomes, concerns the optimal P-value cut-off
for African GWAS/meta-analysis, especially those using imputed
data. Approaches such as using an overall lower threshold of

Fig. 5 Transferability of Polygenic Risk Score (PRS) Models derived from a sub-Saharan African, an European and a Multi-ancestry GWAS to the
AWI-Gen dataset. Plots showing additional variance explained (%R2) by each PRS for (a) LDL-C, (b) TC, (c) TG and (d) HDL-C in the AWI-Gen validation
dataset (N= 7103). PRS based on sub-Saharan African discovery dataset (AFG, N= 13,115 individuals)7 is shown in blue, European (GLGC, N= 188,577
individuals)15 in yellow and Multi-ancestry (PAGE, N= 49,839 individuals)36 in red. Number of SNPs in each PRS is shown below and P-values (two-tailed
estimates using PRSice2) are shown over the bars. All the PRS were significant for all lipid traits indicating transferability. However, the sub-Saharan
African and Multi-ancestry PRS models had higher predictive accuracy compared to the European model. PRS stratification of (e) LDL-C, (f) TC, (g) TG and
(h) HDL-C. Point range-plots comparing the difference in lipid-trait mean (mmol/L) of the upper PRS decile from the lowest, stratified by the discovery
datasets are shown. The error bars show mean ± 95% confidence intervals. Additional details in Supplementary Data 8.
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significance (< 5 × 10−9)7 or allele frequency dependent cut-offs
have been recommended36,54. As there is a lack of consensus,
we have used the currently accepted genome-wide significance
threshold P-value< 5 × 10−8. However, our novel signal
(rs6845395) for LDL-C in the Stage 2 GWAS reached a P-value
of 3.28 × 10−9.

In addition to replicating many known lipid associations, we
identified one novel locus for LDL-C on chromosome 4. This
signal in the Stage 1 GWAS was led by an intronic SNP
(rs35804417) in the GATB gene (Fig. 3b). The nominal replica-
tion of this SNP in the AADM cohort as well as the observation of
genome-wide significant signals in linked SNPs from the nearby
FHIP1A gene in the Stage 2 GWAS provides strong support for
association at this locus. Previous associations for trans-fatty acid
levels in this genomic region further suggests a possible indirect
link of this genomic region to lipid levels.

We also detected a novel association for TG in the Stage 2
GWAS. The lead TG-associated SNP near FHIT from the Stage 2
meta-analysis (rs75064672), reached a P-value < 0.05 in three
independent African cohorts suggesting that this is a reliable
association signal. Several variants from this gene have been
detected to be associated with body composition related traits
including body mass index, obesity and lean mass41.

The extreme rarity of the variant alleles for these novel asso-
ciations in European populations did not allow for the replication
of these signals in some of the global cohorts. Moreover, the look-
up of these two novel signals in the African ancestry GLGC
cohort (~86 K samples) as well as the trans-ethnic meta-analysis
of the GLGC cohort (~1.5 M samples) from the recent GLGC
study55 showed that these SNPs occur at much lower frequencies
in both these cohorts in comparison to AWI-Gen (Supplementary
Data 10). The absence of replication in this GLGC study suggests
these signals are continent specific or involve gene-environment

interactions that are not applicable to African-Americans and
other populations. The non-replication of the TG signal could
also have been impacted by the fact that the summary statistics
from this GLGC study are based on log(TG).

In addition to signals at the continental level we report a novel
West African specific signal for association with TG in the SENP7
gene. Despite being a globally common SNP, this lead SNP has no
previous report for association with any lipid traits; however, a
PhenoScanner42,43 search showed another SNP from the region,
rs149851118, to be associated (P-value= 1.93 × 10−8) with
“Treatment with lipantil micro 67 mg capsule” in a UK Biobank
study. Fenofibrate, the active ingredient of the drug, is widely
used to treat abnormal lipid levels, which suggests a possible
involvement of the variant/region in modulating lipid metabo-
lism. However, further investigations would be required to
establish a functional connection between this genomic region
and lipid traits.

The absence of large-effect novel associations in the meta-
analysis probably hints at saturation in the discovery of major
lipid traits associated with globally common variants. However,
the detection of novel African-specific lead SNPs, potential causal
variants and relatively smaller credible sets for some well-known
lipid-associated loci highlights the importance of including large
African GWAS in fine-mapping of lipid traits.

To assess the extent to which current genetic knowledge gained
from GWAS conducted in European populations could benefit
risk prediction in populations from other continents, it is critical
to ascertain that the same loci are associated with the trait across
such populations. An in-depth study of the transferability of
known lipid-trait associations detected in a predominantly Eur-
opean cohort, to GWAS conducted in East Asian and African
ancestry populations has shown that of the hundreds of loci
associated with lipid traits, only a portion of signals replicate in
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Fig. 6 Heterogeneity of effect size and minor allele frequencies of two LDL-C association signals in African datasets. (a), (c) show effect size and MAF
for rs7412 and (b), (d) show effect size and MAF for rs4788609. The GWASs compared include AWI-Gen West African (A_WEST) GWAS (N= 3763),
AWI-Gen East African (A_EAST) GWAS (N= 1755), AWI-Gen South African (A_SOUTH) GWAS (N= 5085), Uganda Genome Resource (UGR) study
(N= 6407), Africa-America Diabetes Mellitus (AADM) study (N= 4116), Durban Diabetes (DDS) (N= 1117) Study and Durban Case Control (DDC)
Study (N= 1475). The West African populations are shown in orange, East African populations in green and Southern African populations in blue. AADM
due to inclusion of both East and West African participants is shown in two colours. Error bars show effect sizes ± standard errors.
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African populations even at a moderate replication threshold of
P-value < 5 × 10−322. The relatively modest size of the African
cohort (~6400 samples) included in that study could have been a
major reason for the low transferability of signals to African
GWAS. To test whether the use of larger African replication
cohorts could address this lack of transferability, we studied the
transferability of signals from two large discovery cohorts
(GLGC15 study and PAGE36 study) to various African replication
sets (four cohorts from the Gurdasani et al., 2019 study, Stage 1
GWAS and the Stage 2 GWAS). Signals from smaller discovery
GWAS, due to higher effect sizes can be expected to be more
transferable compared to lower effect signals in larger studies.
Consistent with the differences in GWAS sizes, we observed that
the signals from the PAGE study showed considerably better
transferability compared to the much larger GLGC study.
Moreover, the multi-ethnic nature of the PAGE study cohort
compared to predominantly European samples in the GLGC
study could have contributed to these differences. Nevertheless,
for both the discovery cohorts, the transferability was found to
increase more or less consistently with the size of the replication
cohort and in general the SNPs with stronger signals (lower
P-values) from a study showed better transferability in compar-
ison to modest signals from the same study. In line with the
previous observation22 that transferability of signals is not uni-
form across traits and associations for some traits (such as HDL-
C) have much higher transferability in comparison to others
(such as TG), for both the discovery sets and across all the
replication cohorts, we observed that LDL-C and HDL-C showed
higher transferability in comparison to TG.

The promise of global application of precision medicine
approaches will require efficient transferability of polygenic risk
score (PRS) models across diverse populations. However, since
research is currently largely based on European populations, there
is a strong bias for potential beneficiaries. Studies on the trans-
ferability/predictability of existing PRS models for various traits
from the European-based discovery cohorts to East Asian and
African populations are of critical importance29–33. Several of these
studies have demonstrated an overall poor transferability of
existing European-based PRS models to African ancestry popula-
tions for most of the traits investigated. Allele frequency and LD
differences as well as environmental differences have been sug-
gested as the major sources of the low transferability of PRS
models to Africans. The study by Kuchenbaekar and colleagues22

highlighted the lack of transferability of European-based PRS
models for lipid traits to African populations. The analysis of
predictability of PRS based on summary statistics from three dif-
ferent studies (Gurdasani et al., 2019 study which is African
ancestry, GLGC study which is European ancestry and PAGE
study which is multi-ancestry) in the AWI-Gen cohort, showed
progressively better predictability for signals from genetically closer
cohorts for the lipids traits such as LDL-C. It is therefore critical to
increase the number of non-European participants in GWAS to
enhance polygenic prediction across diverse populations56.

As factors such as allele frequency and effect size could strongly
influence the detection of a signal in a GWAS, we performed an
in-depth comparison of effect sizes and MAFs of association
signals detected in our study in the Eastern, Western and
Southern African subsets of our cohort and four other African
cohorts. The inclusion of at least two cohorts from each of three
African regions (AWI-Gen South Africa, DDS and DDC repre-
senting Southern Africa, UGR and AWI-Gen East representing
Eastern Africa and AADM and AWI-Gen West Africa repre-
senting Western Africa) enabled us to investigate if there are
systematic geographic trends in these estimates. Although our
results show considerable heterogeneity between African cohorts,
we did not see clear geographic differences suggesting that there is

probably more intra-region variation compared to inter-region
variation in the effect size and frequencies of these SNPs in the
cohorts studied. The high level of heterogeneity also indicates that
effect sizes for a SNP detected in one particular African cohort
might not correspond to or have predictive relevance for other
African cohorts, including those from the same geographic
region. However, it needs to be highlighted that due to factors
such as differences in sample size, age, proportion of participants
with type 2 diabetes (as some of these were diabetes-based
cohorts and type 2 diabetes might have influenced lipid levels)
that exists between them, these cohorts are not completely
comparable. The use of more homogenous cohorts across the
continent will be required to perform a robust investigation into
possible geographic trends.

The modest sample size of the AWI-Gen study is a limitation to
the power of the GWAS. In addition, pronounced differences in
genetic variation, and environmental and lifestyle factors between
the AWI-Gen study sites may have impacted the overall statistical
power. Despite these challenges, the detection of novel signals and
novel lead SNPs for lipid traits in the AWI-Gen cohort and the
meta-analysis with other African studies emphasise the promise
and potential of African GWAS in enhancing our understanding
of the genetic aetiology of lipid traits and dyslipidemia. In addition
to demonstrating that the extent of transferability might vary
widely between lipid traits and discovery cohorts, our results
suggest that the transferability for PRS might be further enhanced
with the use of more multi-ethnic based GWAS datasets.

Methods
Ethics. This study was approved by the Human Research Ethics Committee
(Medical) of the University of the Witwatersrand (Wits) (protocol numbers
M121029 and M170880). In addition, each research site obtained approval from their
local ethics review board prior to commencing any participant-related activities.

Study cohort. The participants in this study are part of the Africa Wits-INDEPTH
partnership for Genomics studies (AWI-Gen) which aims to examine genetic and
environmental factors related to cardiometabolic diseases in Africans. It is part of
the Human Heredity and Health in Africa Consortium (H3Africa). From 2012 to
2016, ~12,000 participants, primarily between the ages of 40 to 60 years were
enrolled across the six AWI-Gen centres, and a further 552 over the age of 60
enrolled at the Agincourt centre. Following community engagement and individual
informed consent, data and samples were collected from six study centres in four
SSA countries: in South Africa, the MRC/Wits Agincourt Health and Demographic
Surveillance System Site (HDSS) (referred to as Agincourt), the Dikgale HDSS of
the University of Limpopo, and the Soweto centre which is coordinated by the
South African Medical Research Council/Wits Developmental Pathways for Health
Research Unit (DPHRU); in Kenya, the African Population and Health Research
Center HDSS in Nairobi; in Ghana, the Navrongo HDSS in the Navrongo Health
Research Centre; and in Burkina Faso the Nanoro HDSS hosted by the Institut de
Recherche en Sciences de la Santé Clinical Research Unit. Participants were given a
small compensation to cover their travel and incidentals. Further details are
available in Ramsay et al.34 and Ali et al.35.

Lipid measurements. Fasting serum lipids were analyzed using a Randox Plus
clinical chemistry analyzer (Crumlin, Northern Ireland, UK) using colorimetric
assays and all assays were performed at the DPHRU laboratories in Soweto,
Johannesburg. The concentrations for triglycerides (TG), total cholesterol (TC), high
density lipoprotein cholesterol (HDL-C) were determined directly from the assay.
The concentration of low-density lipoprotein cholesterol (LDL-C) calculated using
the Friedewald equation57. The coefficient of variation of the laboratory measure-
ments for lipids was less than 1.5 %. Each lipid phenotype was checked for extreme
outliers and inverse normal transformed prior to genetic-association analysis.

Genotyping and pre-imputation QC. Approximately 11,000 samples were geno-
typed on the 2.3 M SNP H3Africa array at Illumina® FastTrackTM Microarray
services (Illumina, San Diego, USA). The genotype calling was performed using the
Illumina pipeline. Pre-imputation quality control (QC), performed using H3ABi-
oNet/H3Agwas pipeline (https://github.com/h3abionet/h3agwas) and involved the
removal of SNPs showing missingness greater than 0.05, MAF less than 0.01, and
Hardy-Weinberg equilibrium (HWE) P-value less than 0.0001. In addition,
duplicates, X chromosome, Y chromosome and mitochondrial SNPs, and SNPs
that did not match the GRCh37 references alleles were also removed. Samples
which were potential duplicates (PIHAT > 0.9), had a missing SNP genotyping rate
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greater than 0.05, and showed sex inconsistencies (between recorded and genetic
sex) were excluded. Population stratification in this dataset, was assessed using a
principal component (PC) analysis, based on a LD pruned subset of SNPs, using
the smartPCA program implemented in EIGENSTRAT58. As the genotyping was
performed in 4 independent batches, with some overlapping samples, both PC and
genotype concordance of these overlapping samples was used to identify possible
batch effects. Both the approaches ruled out any serious batch effect in the dataset.

Imputation and pre-analysis QC. Imputation was performed using the African
Genome Resources reference panel (EAGLE2+ PBWT pipeline) at the Sanger
Imputation Server (https://imputation.sanger.ac.uk/). Post imputation quality
control (QC) involved removal of indels, rare SNPs (with minor allele frequency
(MAF) <= 0.01) and poorly imputed SNPs (Info score <= 0.6) resulting in the
final dataset containing 10,603 participants and 13.98 M SNPs.

Stage 1: Association analysis. Using residuals adjusted for age, sex and first N
PCs (N= 8 for full datasets, N <= 4 for East, West and South African specific
analyses) and imputed data using dosage format, we performed an association
analysis using BOLT-LMM implemented in the h3agwas pipeline (github.com/
h3abionet/h3agwas/assoc/assoc.nf)59. For each dataset we employed BOLT-LMM37

with leave-one-chromosome-out (LOCO) analysis and 1,000,000 SNPs to build
models. Independent SNPs were pruned using PLINK60 (“--indep-pairwise” option
with window size of 100 kb by step size of 20 kb and threshold of ld of 0.6 (r2)). For
reference LD score, tables were calculated using the LDSC software61 using the
1000 Genomes African Dataset39 and genetic map (build hg19) as described in the
LD Score Estimation Tutorial (https://github.com/bulik/ldsc/wiki/LD-Score-
Estimation-Tutorial). We reported non-infinitesimal mixed model association test
P-values for Stage 1 GWAS. All association tests were based on impute2 dosage.
The FUMA online platform38 was used for partitioning associations into locus, lead
SNPs and independent SNPs based on the 1000 Genomes African dataset.

Stage 2: Meta analysis. To evaluate the robustness of associations detected in
joint analysis of the AWI-Gen dataset, we performed a meta-analysis of summary
statistics from the South, East and West African cohort specific analyses using
METASOFT (v2.0.1)62 implemented in https://github.com/h3abionet/h3agwas/
tree/master/meta/meta-assoc.nf. We also performed a meta-analysis of the sum-
mary statistics from AWI-Gen data and 4 cohorts AADM, UGR, DDS, DDC
included in Gurdasani et al. 2019. We primarily used the Han and Eskin’s Random
Effects model (RE2), as it has been suggested to best address the heterogeneity in a
cohort like ours, but also recorded P-values derived from the Fixed Effect (FE)
Binary Effects model (BE) for comparison. We restricted the analysis to only those
SNPs that were included in the final AWI-Gen dataset and in at least three of the
four other cohorts. The FUMA online platform38, as mentioned above, was used
for classifying the associations.

Assessment of transferability of signals. Genomic regions associated with each
of the four lipid traits in the GLGC and PAGE consortium studies were identified
from the respective summary statistics. For each trait, genome-wide significant
SNPs in the discovery set, if also present in the AWI-Gen study, were selected.
Individual hits, if separated by less than 50 Kb, were merged into a single locus.
Using this approach, for the GLGC study we defined 138, 181, 174, 135 inde-
pendent regions or loci for LDL-C, HDL-C, TC and TG, respectively. Similarly, for
the PAGE study 21, 26, 32 and 17 loci were detected for LDL-C, HDL-C, TC and
TG, respectively. The loci from the GLGC study were then partitioned based on
lowest P-value into Very Strong (P-value < 10−100), Strong (10−20 > P-value >
10−100) and Moderate (5 × 10−8 > P-value > 10−20) signals. For each locus we
recorded the lowest P-value that was observed for any of the significant SNPs in the
discovery set in each of the 6 replication sets (Stage-2 GWAS, Stage-1 GWAS,
UGR, AADM, DDS and DDC). If a locus was represented by a SNP with a
P-value < 5 × 10−4 it was considered as a replication. We also assessed replication
at the nominal P-value cut-off of 0.05 as well as a genome-wide significant
threshold. For PAGE study based signals only two categories – Strong (P-value <
10−20) and Moderate were considered (5 × 10−8 > P-value > 10−20).

Assessment of heterogeneity among African cohorts. Minor allele frequencies
and effect sizes (along with standard errors) for the four lipid traits in the AADM,
UGR, DDS and DDC studies were obtained from the Gurdasani et al.7 summary
statistics file (downloaded from the GWAS catalog). Minor allele frequencies for
the AWI-Gen East African, AWI-Gen West African and AWI-Gen Southern
African populations were estimated using PLINK60 and effect sizes were obtained
from geographic-region-specific GWAS conducted in these populations.

Functional analyses. The FUMA online platform38 was used to annotate, prior-
itize, visualize and interpret the GWAS results. This included extensive functional
annotation of all SNPs matching their chromosome base-pair position, and
reference and alternate alleles to databases containing known functional annota-
tions. Genes implicated by the mapping of association signals were further
investigated using the GENE2FUNC procedure in FUMA, which provides

hypergeometric tests of enrichment of the list of mapped genes in 53 GTEx tissue-
specific gene expression sets, 7,246 MSigDB gene sets and chromatin states. Finally,
the Multi-marker analysis of genomic annotation (MAGMA, v1.6) analysis,
implemented in FUMA, was performed using summary statistics of our association
results as input. These gene-based analyses enabled summarization of SNP asso-
ciations at the gene level and association of the set of genes to biological pathways.

Fine-mapping analysis. To perform fine-mapping, we used three software
packages included in the h3agwas pipeline (https://github.com/h3abionet/h3agwas/
tree/master/finemapping) that employ Bayesian calculation of posterior probability
and/or annotation information to identify potential causal variants. For each region
around the Stage 1 GWAS signals, using FINEMAP44, we performed fine-mapping
with stepwise conditioning (--cond) and shotgun stochastic search (--sss), pro-
viding us with Posterior Inclusion Probabilities (PIP). The PIP for the l th SNP is
the posterior probability that this SNP is causal and the Bayes factor quantifies the
evidence that the l th SNP is causal with log10 Bayes factors greater than 2 reporting
considerable evidence (all SNPs greater than 2 with a significant P-value are
included in the credible set). PAINTOR45 empirically estimated the contribution of
each functional annotation to the trait of interest directly from summary asso-
ciation statistics while allowing for multiple causal variants at any risk locus.
Additionally, we used CAVIAR-BF46 for fine-mapping using marginal test statistics
in the Bayesian framework. In addition, COJO-GCTA63 was used to perform a
stepwise model selection procedure to select independently associated SNPs
(--cojo-slct); and we also performed association analysis of the included SNPs
conditional on the given list of SNPs (--cojo-cond).

Prediction and comparison of polygenic risk score (PRS) models. The
clumping and thresholding (C+ T) approach in PRSice264 was used for developing
PRS. Clumping distance of 250 kb, r2 of 0.1, the optimal P-value thresholds for
computing the polygenic risk scores for the lipid traits are indicated in the Sup-
plementary Data 8. Lipid-trait GWAS summary statistics from Gurdasani et al.7,
GLGC15 and PAGE36 studies were used as the base (discovery) and the AWI-Gen
study participants were used as the target dataset. The prediction models were
corrected for age, sex and residual population structure using principal compo-
nents. The R2 (variance) was used to determine the best predictive PRS. The
polygenic risk scores were first tested on a third of the AWI-Gen participants
(n= 3500) and then the best predictive polygenic risk scores were validated in the
remaining two-thirds of the AWI-Gen dataset (n= 7103). Decile plots were used to
evaluate the risk stratification of PRS, by comparing the mean difference of the
lipid traits of the upper deciles from the lowest decile.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The full dataset generated in this study is in the EGA [https://ega-archive.org/] database
under the study accession code EGAS00001002482. This includes the phenotype dataset
EGAD00001006425 and the genotype dataset EGAD00010001996. These datasets are
available subject to controlled access through the Data and Biospecimen Access
Committee of the H3Africa Consortium. The processed data generated in this study are
provided in Supplementary Information and Supplementary Data. Summary statistics
reported in the paper are accessible on GWAS Catalog (https://www.ebi.ac.uk/gwas/) at
the accession numbers: GCST90101741, GCST90101742, GCST90101743,
GCST9010174, GCST90101745, GCST90101746, GCST90101747, GCST90101748. All
data that support the findings of this study are available from the corresponding authors
on request. Publicly available datasets included in the study are the following: 1000
Genomes Project Phase 3 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp), UGR meta-analysis
summary statistics, GLGC summary Statistics, PAGE consortium summary statistics
available at GWAS Catalog (https://www.ebi.ac.uk/gwas/) and gnomAD (https://
gnomad.broadinstitute.org/).

Code availability
The H3A-Africa GWAS pipeline was employed for QC, association testing, meta-analysis
and fine-mapping are available at (https://github.com/h3abionet/h3agwas) (see Methods).
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