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Numerous software tools exist for data-independent acquisition (DIA) analysis of clinical

samples, necessitating their comprehensive benchmarking. We present a benchmark dataset

comprising real-world inter-patient heterogeneity, which we use for in-depth benchmarking

of DIA data analysis workflows for clinical settings. Combining spectral libraries, DIA soft-

ware, sparsity reduction, normalization, and statistical tests results in 1428 distinct data

analysis workflows, which we evaluate based on their ability to correctly identify differentially

abundant proteins. From our dataset, we derive bootstrap datasets of varying sample sizes

and use the whole range of bootstrap datasets to robustly evaluate each workflow. We find

that all DIA software suites benefit from using a gas-phase fractionated spectral library,

irrespective of the library refinement used. Gas-phase fractionation-based libraries perform

best against two out of three reference protein lists. Among all investigated statistical tests

non-parametric permutation-based statistical tests consistently perform best.
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Proteomics denotes the study of the entire set of proteins
produced by an organism under defined conditions. While
the genome of an organism is geared towards remaining

static for almost every cell, the dynamics introduced by the
proteome, including differential expression, altered activity, and
modifications of proteins, allow cells, tissues and even the whole
organism to undergo dramatic changes and to carry out a ple-
thora of different functions. Often, the term ‘proteomics’ is spe-
cifically used to refer to large-scale studies of the proteome
employing liquid chromatography (LC) coupled to tandem mass
spectrometry (LC-MS/MS).

Many studies, e.g., in the clinical context, focus on the detec-
tion of differentially abundant proteins, preferably on a
proteome-wide scale1,2. To identify such proteins, modern mass
spectrometry-based proteomics techniques offer many ways to
quantify and compare proteins between samples3. Due to their
simplicity and cost-effectiveness, label-free approaches have been
used for decades. Historically, label-free samples were measured
using data-dependent acquisition (DDA). In DDA, following a
survey scan, masses of interest are selected for further fragmen-
tation based on their intensity. This allows for narrow isolation
windows and results in fragment spectra of low complexity.
However, the fact that the masses of interest are selected during
the measurement introduces stochastic sampling effects4.

In contrast, parallel fragmentation of precursor ions imple-
mented in data-independent acquisition (DIA) methods is inde-
pendent of ion intensity and other properties, leading to constant
data acquisition between samples5. In DIA proteomics, quantifi-
cation is typically performed on the fragment level and not at the
precursor level as in the case of DDA. The assignment of frag-
ment ions to a single analyte (i.e., peptide) happens post-
measurement and is strongly dependent on properties of refer-
ence spectral libraries as well as on features of the data processing
algorithms6–8.

Spectral libraries for DIA contain peptide reference data, i.e.,
mass-to-charge ratio, retention time and/or fragment spectra.
Typically, only those peptides which are present in the spectral
library can be detected in DIA analyses, highlighting the impor-
tance of spectral library generation. The National Institute for
Standards and Technology (NIST) is developing generally
applicable reference mass spectral libraries. Yet, project-specific
spectral libraries tend to be in more widespread use since they
may better reflect individual properties of a certain mass spec-
trometer as well as the overall proteome composition of the
specific samples under investigation. Spectral libraries predicted
in silico are currently gaining momentum9. Project-specific
libraries can be obtained from analyzing DDA runs of samples,
which are representative of the project, or by refining an in silico
predicted spectral library. Spectral libraries can be refined e.g., by
gas-phase fractionation (GPF), where a single sample is repeat-
edly measured to investigate distinct mass-to-charge ranges in
greater detail.

While its complexity makes the handling and analysis of DIA
data more laborious, it has been demonstrated that the quanti-
fication by DIA is more robust compared to DDA10,11. Recently,
DIA has reached a protein coverage that is comparable to, or even
exceeds, the one of DDA12,13. It has also been shown that for the
analysis of post-translational modifications DIA can outperform
DDA, for example for phosphoproteomics analyses14–16.

To objectively compare data processing and quantitation
methods, the proteomics community often employs so-called
‘spike-in benchmark datasets’, where peptides with known
properties (e.g., sequence and concentration) are added to
‘background’ peptides with likewise known properties. To mimic
the complexity encountered in realistic settings often different
organisms are combined to create benchmark datasets. These

benchmark datasets are valuable tools for controlling and opti-
mizing different aspects of data acquisition and analysis,
including LC-MS/MS parameters8,17, library generation17,18,
analysis software parameters19, data preprocessing, and statistical
analysis20 for detecting differentially abundant proteins. The
critical importance of data processing in DIA proteomics renders
benchmarking datasets particularly useful for this methodology.

Benchmark studies published to date have mainly focused on
technical reproducibility and data acquisition7,8, or on individual
data analysis steps, such as data preprocessing in the form of data
normalization or data imputation, and statistical methods20–22.
Indeed, the downstream analysis of the data acquired by DIA
software suites should be carefully reflected upon, going beyond
peptide-spectrum-matching (PSM) and quantitative signal/fea-
ture integration. Furthermore, valid benchmarking datasets
should represent inter-individual heterogeneity on a scale that is
comparable to present-day, cohort-wide proteome studies, which
is rarely the case.

Hence, especially in biomarker discovery studies in which
highly heterogeneous patient proteomes are investigated, current
benchmark datasets provide little help for a user who has to
decide whether and how to generate a library for DIA analysis,
which tool to use for the DIA analysis itself, and, most impor-
tantly, how this will affect data preprocessing and statistical
analysis for differentially abundant proteins.

Here, using a benchmark dataset reflecting real inter-individual
heterogeneity we show that the choice of library generation and
DIA software affect data properties, such as data sparsity, and
how data preprocessing and statistical analysis methods affect the
identification of differentially expressed proteins. We assess this
by means of objective evaluation measures based on p-values and
log2 fold-changes that result from each investigated analysis
workflow.

Results and discussion
Significance of benchmark studies for the field of proteomics.
Benchmark studies have become an invaluable tool to objectively
assess the advantages and disadvantages of the choices made over
the course of proteomics studies, including the choice of sample
preparation, data acquisition, MS data analysis and statistical
processing. However, benchmark studies often suffer from small
sample sizes and unrealistically low background variance7,23,24.

Yet, biomarker discovery studies often include hundreds of
patients with heterogeneous proteomes and can contain high
within- and between-person variance. Results acquired on
common benchmark datasets not considering such heterogeneity
may not be ideal to guide a researcher to the best suited analysis
workflow in a clinical setting.

Therefore, we set out to create a large benchmark dataset
reflecting real inter-individual heterogeneity to investigate the
interplay between library generation, DIA software analysis, data
preprocessing, and statistical analysis. To this end, we acquired
sentinel lymph nodes from multiple patients as formalin-fixed
paraffin-embedded tissue (FFPE) and used Escherichia coli
(E. coli) peptides as a spike-in peptide subpopulation of known
concentration.

The experimental design of our study aims at investigating
highly complex human samples, i.e., tissues. Other proteomes
such as plasma proteomes may display a lower complexity and
may require dedicated benchmarking25.

Following protein digestion and sample clean-up, we split the
samples into four groups and added E. coli peptides in E. coli to
human peptide ratios of 1:6, 1:12, and 1:25, or did not add E. coli
peptides at all (‘human only’). The spike-in concentrations were
chosen in such a way that the measure of performance can be
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based on a sufficient number of identified E. coli proteins (aiming
for at least 100 identified proteins even in the smallest spike-in
condition). Those four groups are referred to as ‘spike-in
conditions’ and have a size of n= 23 each (Fig. 1).

The E. coli proteome itself comprises a wide dynamic range of
protein concentrations and we expect different DIA software-
library combinations to differ in their ability to detect and
quantify low abundant E. coli proteins. We can objectively assess
those differences as the relative concentration of E. coli proteins is
known for all spike-in conditions.

In comparison to defined protein mixtures such as the
Universal Proteomics standard (UPS1, Sigma), the E. coli
proteome may be regarded as a more trustworthy proxy of
the natural proteome complexity. We believe that our study
design is a good trade-off between a sufficiently complex
proteomic ground truth and the preservation of the intrinsic
heterogeneity of human samples.

As DIA has been shown to outperform DDA in different
settings, we chose to employ DIA for the measurement of our
samples, using an established acquisition scheme26. The resulting
set of DIA LC-MS/MS measurements (92 LC-MS/MS files)
consists of 12.4 million MS2 spectra.

Generation of spectral libraries. Three trends can be observed in
current DIA analysis strategies: (a) using spectral libraries gen-
erated by analyzing pre-fractionated DDA runs27, (b) using
spectral libraries generated by refining predicted libraries using
GPF17, or (c) using no additional experimental data to generate
spectral libraries (e.g., using predicted libraries)9,28.

All of these prototypical approaches are integrated in this
study. We chose to measure our pre-fractionated samples using
DDA, as this allows us to integrate well-established DDA analysis
tools such as MaxQuant and MSFragger. However, it would also
be possible to measure the pre-fractionated master mix using a
DIA method to refine a predicted library in this manner.

Combining spectral library analysis approaches with DIA data
analysis software led to 17 different ‘DIA workflows’. We used
standard parameters, opting for recommended settings whenever
possible, to reflect a realistic average user scenario and to prevent
over-optimization. The resulting 17 DIA workflow datasets were
then combined with ‘data analysis workflows’ combining boot-
strapping with three sparsity reduction methods, four normal-
ization methods, and seven statistical test options resulting in
1428 analysis combinations.

To generate experiment-specific spectral libraries, we per-
formed GPF on a mastermix, which represents an average spike-
in concentration of E. coli to human peptides of 1:15. Using DIA-
NN to refine an in silico predicted DIA-NN spectral library of
E. coli and human proteins, we generated a spectral library
containing 84016 precursor entries mapping to 10459 proteins.
Using an in silico predicted PROSIT spectral library refined by
EncyclopeDIA, we generated a spectral library containing 45445
precursors mapping to 8472 proteins18.

We also pre-fractionated a master mix to obtain samples for in-
depth DDA library generation29. By applying Fragpipe to the
resulting DDA files we generated a spectral library containing
81409 precursors mapping to 7781 proteins. We also used
MaxQuant to build a DDA-based spectral library containing
51260 precursors mapping to 7382 proteins.
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Fig. 1 Benchmarking workflow. A data-independent acquisition (DIA) benchmark dataset was created by adding E. coli peptides in known ratios to peptide
preparations of lymph nodes of 92 individuals. We analyzed the raw data with different spectral libraries and DIA software suites. From samples to which
E. coli peptides were added in the two E. coli: human peptide ratios 1:25 and 1:12, bootstrap datasets with group sizes of 3 to 23 were generated. For each of
those 21 different group sizes, 100 bootstrap datasets were generated. On each bootstrap dataset different data analysis workflows, composed of different
sparsity reductions, normalization options, and different statistical tests for detecting differentially abundant proteins, were applied. The results were
returned in a table containing p-values and log2 fold-changes (log2FCs) for each protein. As the ground truth about the changed proteins (E. coli) is known,
the prediction performance of each workflow can be assessed. This can be done based on the p-values from the statistical tests by calculating the receiver
operating characteristic (ROC) curve, based on which the area under curve (AUC) is calculated. To quantify the accuracy of quantification the root-mean-
square error (RMSE) is calculated based on the detected log2FC.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30094-0 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2622 | https://doi.org/10.1038/s41467-022-30094-0 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


For the spectral library generation, iRT peptides, a well-
established retention time standard, were used to guide the
retention time alignment30. It is, however, also possible to
perform retention time alignment without adding additional
peptides (e.g., DIA-NN does not rely on iRT peptides).

Using DIA-NN in combination with the in silico predicted
DIA-NN GPF-refined spectral library, on average 48,698
precursors were identified per measurement with an average
chromatographic peak width of 8 s (full width at half height). To
avoid batch effects originating from sample preparation or order
of measurement we randomly assigned the lymph nodes to each
spike-in condition. Additionally, we used block randomization
during the data acquisition31. To avoid carry-over of E. coli
peptides, we measured the conditions in order of ascending E. coli
concentration. This restriction of random measurement was
necessary to keep E. coli peptides from appearing in the ‘control’
spike-in condition. No batch effects stemming from sample
preparation or measurement order could be detected in this study
(Supplementary Fig. 1).

Study design for the assessment of data analysis workflows. For
our study we selected four commonly used DIA software analysis
suites: DIA-NN32, Skyline33, OpenSwath34, and Spectronaut10.
Whenever possible, we combined all generated libraries with all
DIA analysis software solutions (especially predicted spectral
libraries in combination with the high number of samples are
challenging for some software suites). We also included ‘Direct-
DIA’, a feature of Spectronaut which does not require any
additional experimental evidence for library generation. This also
holds true when directly using a predicted library without
refinement (here: DIA-NN predicted library used in combination
with DIA-NN). This resulted in a total of 17 different DIA ana-
lysis workflows. It should be noted that the way peptide infor-
mation is summarized to protein information differs between the
investigated software suites. Thus, the number of proteins iden-
tified by different software suites cannot be directly compared.
For all subsequent analysis steps, protein-level output from the
DIA analysis workflows was used. However, some analyses have
been also conducted at the precursor level and can be found in
the Supplementary information file. For the sake of simplicity and
relevance we focused our statistical analyses on the comparison
between the two lowest E. coli spike-in conditions, 1:25 and 1:12,
at the protein level (Fig. 1). This comparison poses the greatest
challenge to any DIA analysis software as quantitations are
usually less precise for low abundant proteins27,35.

To get a robust estimate on the overall ability of the data
analysis workflow to detect differentially abundant proteins as
well as to investigate the effect of sample size, normalization,
sparsity reduction, and choice of a statistical test using boot-
strapping, we drew various subsamples of different sizes from
each of the 17 original benchmark datasets. The analysis
workflows are applied to the resulting bootstrap datasets, which
show varying data characteristics, e.g., differing missing value
percentages or median protein variances. By evaluating the
different workflows on these bootstrap datasets our results
become more robust and generalizable.

In brief, we randomly drew samples from each of the two lowest
E. coli spike-in conditions with group sizes of three to 23 samples.
To each bootstrap dataset, we applied different data analysis
workflows composed of multiple options for the preprocessing
steps in the form of sparsity reduction and normalization,
followed by one of seven statistical tests to identify differentially
abundant proteins.

Taking into account the aforementioned 17 different types of
LC-MS/MS data processing, we acquired prediction performance

information for 1428 different analysis workflows, each of which
was applied to 2100 bootstrap datasets resulting in almost 3
million analyses.

This staggering number illustrates the amount of possible
combinations of library generation methods, DIA software suites,
and downstream data preprocessing and statistical analysis
methods proteomics scientists are confronted with. As every
study is different and there are no truly universally applicable
methods available in proteomics, the level of experience and
choices of the proteomics data analyst determine the reliability
and reproducibility of a proteomics study, which was impressively
demonstrated by Choi et al.24.

Descriptive analysis of LC-MS/MS benchmark dataset. For each
DIA analysis workflow we first assessed the number of identified
and quantified proteins after a 1% protein FDR cutoff had been
applied (Fig. 2, left, see Supplementary Figs. 10 and 11 for the
overlap between the proteins that have been detected by the 17
DIA workflows). The DDA spectral libraries derived from high
pH reversed-phase fractionated samples consistently led to
smaller numbers of identified proteins. As the tissue used in this
study had been formalin-fixed, chemical modifications can reduce
the number of identified peptides and proteins during spectral
library generation. In our experience, GPF-refinement of spectral
libraries often increases the identification rates for DIA-type
proteomics data of FFPE tissue.

In general, the total number of identifiable E. coli proteins
increases with increasing spike-in concentrations, i.e., with increas-
ing amounts of physically present E. coli proteins. Using a
GPF-refined in silico predicted DIA-NN spectral library in
combination with DIA-NN resulted in the highest number of
quantified proteins.

However, in quantitative proteomics, protein identifications
only serve a useful purpose if they are accompanied with robust
and reliable quantitation. When summarizing the protein
abundances as calculated by the different DIA analysis workflows
both the shape of the distribution of log2-transformed protein
abundances (Fig. 2, center) as well as the correlation of log2-
transformed intensities between DIA analysis workflows (Sup-
plementary Fig. 2) mostly depend on the choice of DIA analysis
software, and to a lesser extent on the spectral library.

Further, we determined the variance of E. coli protein
intensities per spike-in ratio and found it to be similar across
all DIA analysis workflows (Fig. 2, right). Since one single batch
of E. coli was used for all spike-in conditions, which reduces the
inter-sample variability of E. coli proteins, a small variance
indicates a reproducible quantitation algorithm. The number,
distribution, and variance of identified precursors can be found in
Supplementary Fig. 3.

We, furthermore, investigated the average number of reported
quantitations for E. coli and human proteins per spike-in
condition (Supplementary Fig. 4 and 5, respectively). For all
DIA analysis software suites, the number of identified and
quantified E. coli proteins decrease in lower spike-in conditions.
We noticed that OpenSwath requires the usage of the TRIC tool
for cohort-wide retention time alignment and chromatographic
peptide filtering to yield the expected decrease of identified and
quantified E. coli proteins in lower spike-in conditions (Supple-
mentary Fig. 7a)36. To this end, we have now integrated the
TRIC tool into the Galaxy environment. TRIC uses a graph-based
alignment strategy on peptide fragment level to integrate
information from all available runs, which leads to a reduced
identification error. If using PyProphet FDR filtering in Open-
Swath without TRIC, the numbers of identified and quantified
E. coli proteins are highly similar across all spike-in ratios.
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DIA-type proteomics promises to reduce the number of
missing values, i.e., the missingness, in multi-sample proteomic
experiments10. In the present dataset, 25% of all samples are
human-only and void of E. coli proteins. This experimental
setting not only supports the illustration of missingness but also
the illustration of false-positive quantitation of proteins (here:
E. coli proteins being found in human-only spike-in condition).

As can be appreciated from Fig. 3a, for all DIA software suites,
there is a slight negative correlation between the means of the
human and E. coli protein intensities and the percentage of
missing values per protein, i.e., proteins with larger average
intensities have less missing values (see Supplementary Fig. 8 for
separate plots for each species). This negative correlation has been
reported previously in a clinical proteomics study employing a
tripleTOF instrument and OpenSwath for data analysis37.

Furthermore, DIA-NN, Skyline, and Spectronaut correctly
yield 25% missingness for most E. coli proteins, while OpenSwath
only reaches this distinction if TRIC is applied for FDR filtering
(Supplementary Fig. 6). The nature of the spectral library only
had a negligible impact in this regard in most cases. An exception
to this rule is DIA-NN combined with the EncyclopeDIA-refined
in silico predicted PROSIT spectral library, which in comparison
to the other DIA-NN-library combinations showed a higher
number of reported E. coli proteins for those samples that
effectively did not contain any E. coli proteins.

At the precursor level, however, as opposed to the protein level,
OpenSwath resembles the other software suites in terms of
missingness, with most E. coli proteins showing a missingness of
at least 25% (Supplementary Fig. 7a). This implies that the
differing behavior of OpenSwath at the protein level may, at least
in part, be due to the protein summarization it performs.

Furthermore, we assessed how the missingness within
each sample correlates with the sample mean of protein
intensities. While for DIA-NN and Spectronaut this correlation
is positive showing a separation of the spike-in conditions by

sample mean of protein intensities, it is negative for Skyline and
OpenSwath with neither of both showing such a separation
(Fig. 3b).

We hypothesize that the counter-intuitive positive correlation
between protein intensity and missingness, as in the case of DIA-
NN and Spectronaut, may be due to sample-dependent detection
thresholds38. In other words, if the intensity of a protein lies
below such a threshold, it is not included into the calculation of
the sample mean of the protein intensities, thus, increasing the
weight of proteins with higher intensities. This, in turn, increases
the sample mean of protein intensities. Interestingly, while at the
protein level DIA-NN showed a positive correlation between
missingness and sample mean, this correlation turns negative at
the precursor level (Supplementary Fig. 7b).

The implications of these findings are far-reaching and should
be taken into consideration when planning studies, as in
practically all proteomics experiments missing values are an issue
that needs to be addressed. To our knowledge, detection of true
missingness and false-positive quantitation is rarely investigated
in benchmarking studies. Our dataset offers a well-suited
platform to investigate (and possibly optimize) these aspects for
future toolsets.

Data analysis scheme and performance measures. Although
complex in its own realm, protein and peptide identification and
quantitation from LC-MS/MS data are only the beginning of the
complete analysis of a multi-sample, quantitative proteomics
experiment. Subsequent steps typically include sparsity reduction,
normalization, and, ultimately, statistical assessment of differ-
ential protein abundance. For each of those steps different
algorithms exist, yielding a variety of possible combinations.

To investigate the performance of the analysis methods in
different possible combinations, we jointly assessed commonly
used approaches for sparsity reduction, normalization, and
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biologically independent samples have been used and for each of the other spike-in conditions data of n= 23 biologically independent samples have been
used. The boxplots show median (center line), interquartile range (IQR, extending from the first to the third quartile) (box), and 1.5 * IQR (whiskers).
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different statistical tests. For sparsity reduction we applied: (a) no
sparsity reduction (NoSR), (b) requiring >66% values per protein
(SR66), and (c) requiring >90% values per protein (SR90). Four
different methods were then applied to investigate the effect of
normalization: (a) unnormalized, (b) quantile normalization
(QN), (c) tail-robust quantile normalization (TRQN), and (d)
median normalization. Finally, we used the following seven
statistical tests to probe for differentially abundant proteins:

Student’s t-test, Welch’s t-test, generalized linear model with
Gamma family and log link (GLMgamma), linear models for
microarray data (limma)39, Wilcoxon–Mann–Whitney test
(Wilcoxon), significance analysis of microarrays (SAM)40, and
reproducibility-optimized test statistic (ROTS)22,41.

To systematically evaluate the performance of each of the above
mentioned parameters, we focused on a sub-dataset, representing
the two lowest E. coli spike-in conditions. We used bootstrapping
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to quantify the uncertainty of the observed assessment score and
to investigate the effect of sample size on the overall ability of the
data analysis workflow to detect differentially abundant proteins.
To this end, we randomly drew (with replacement) from the set of
samples of the two lowest E. coli spike-in conditions to receive
group sizes of three to 23 samples. Although bootstrapping is a
well-established technique, it is known that it can introduce a bias
for small sample sizes (i.e., in non-asymptotic settings). For a fair
comparison of performances, it is most important that this
potential bias is shared among the different statistical tests. This is,
indeed, the case for the exemplarily chosen samples sizes 3, 6, 13,
and 23 (Supplementary Fig. 20). To each bootstrap dataset, we
applied all combinations of the aforementioned sparsity reduc-
tions, normalizations, and statistical testing options to determine
differentially abundant proteins.

To objectively compare the different data analysis workflows,
we introduced a measure of performance for detecting differen-
tially abundant proteins. The experimental design with the known
E. coli spike-in conditions provides us with ground truth
information based on which we can assess true positives (E. coli
proteins, which are determined to be significantly differentially
abundant between the two spike-in conditions), and false
positives (human proteins determined to be significantly
differentially abundant between the two spike-in conditions),
false negatives (E. coli proteins determined to be non-significantly
differentially abundant between the two spike-in levels), and true
negatives (human proteins determined to be non-significantly
differentially abundant between the two spike-in conditions). For
each protein, we can then plot the true-positive rate against the
false-positive rate to obtain a receiver operating characteristic
(ROC) curve.

As a measure of the ability of each workflow to detect
differentially abundant proteins, we determined the area under the
ROC curve. We use the partial area under the curve (pAUC) for
all analyses, as it captures the area of a low false-positive rate (FPR,
1-specificity), which in practice is the most relevant one (Fig. 4a).
While the AUC can be interpreted as the average true-positive rate
(TPR, sensitivity) across the whole range of specificities, pAUCs
correspond to the average TPR over a relevant (often low) FPR
range only21,42. Here, for the calculation of pAUC we focus on
FPRs below 10%. To enhance comparability, the maximum pAUC
value that can be reached this way is scaled up to 100%.

Although the fold-changes of the spiked-in E. coli proteins are
known through our study design, it is unknown which human
and E. coli proteins were actually present in the biological sample
in the first place. Since the TPR and FPR calculations strongly
depend on the definition of the set of proteins present, we
calculated them based on three different protein lists. This allows
us to evaluate the robustness of the outcomes, while ensuring that
no software or library is favored.

The proteins, which are present in the DIA analysis work-
flow dataset, a given bootstrap dataset has been drawn from, are
collectively referred to as ‘DIA Workflow’ proteins (Supplemen-
tary Fig. 10 and 11). The list of proteins which were identified in
at least one of the DIA analysis workflows is referred to as
‘Combined’ (11,533 Human proteins, 2125 E. coli proteins). The
list of proteins which were identified in >80% (at least 14 out of
17) of the DIA analysis workflows is referred to as ‘Intersection’
(4512 human proteins, 740 E. coli proteins), and represents a list
of proteins common to most DIA analysis workflows.

A summary of those three lists is given in Supplementary
Fig. 9. In contrast to the other two reference protein lists, the
‘DIA Workflow’ list is unique for each DIA analysis workflow.
The ‘Combined’ reference protein list, due to its larger size, likely
contains a higher number of true-positive and false-positive
protein identifications and a lower number of true-negative and

false-negative protein identifications as well as a lower quantifica-
tion quality compared to the other reference protein lists. For the
‘Intersection’ reference protein list the opposite is the case. Here,
quantification quality refers to the fact that proteins which are
difficult to identify are also more difficult to quantify and thus
tend to reduce the performance of the analysis. The maximum
TPR that can be reached is 1 for the ‘DIA Workflow’ and
‘Intersection’ reference protein list, while it is DIA analysis
workflow-dependent for the ‘Combined’ reference protein list,
where the maximum TPR is given by the number of identified
proteins identified by the respective DIA analysis workflow over
the number of proteins in the ‘Combined’ reference protein list.

Data analysis results. The impact of the workflow steps and their
choices on the prediction performance quantified by calculating
the pAUC decreases in the following order: (1) DIA analysis
workflows and reference protein lists, (2) sparsity reduction, (3)
normalization and statistical tests.

Both the choice of a DIA analysis workflow and an appropriate
reference protein list strongly impact the outcome of our
workflow comparisons. Figure 4c shows the performance of each
DIA analysis workflow separated by reference protein list.

For some DIA analysis workflows, the performance between
different reference protein lists differs drastically. For example,
the DIA-NN predicted workflow detected the most unique
proteins (Supplementary Figs. 10 and 11) and, thus, is likely to
achieve a high sensitivity if the pAUC is calculated based on the
‘Combined’ reference protein list. However, as not all of the
detected proteins by this specific workflow are reliable and only
quantified in a few samples, this causes the worst of all DIA
workflows performances when calculating the pAUC based on
the ‘DIA workflow’ reference protein list. Also, as the ‘match-
between-runs’ function had not yet been included in the DIA-NN
version we used for this study, the obtained results should be
revisited for newer DIA-NN versions.

The strong dependence of the performance of each DIA analysis
software suite on the spectral library with which it is combined,
and on the protein list against which it was benchmarked, is
demonstrated as follows:

We assess the ‘within workflow’ performance by using the
distinct ‘DIA Workflow’ protein lists to measure the prediction
performance of differentially abundant proteins. We find that
Spectronaut’s ‘DirectDIA’ performs best, while DIA-NN, Skyline
and Spectronaut all perform well using the more classical DDA
spectral libraries generated by MaxQuant and MSFragger.
Combining OpenSwath with the MSFragger-based spectral
library leads to a better prediction performance than combining
it with the MaxQuant spectral library. The opposite is the case for
Skyline. Overall, the GPF-refined libraries show an inferior
performance, except for the refined DIA-NN spectral library in
combination with OpenSwath.

The ‘overall sensitivity’ performance is assessed by including
proteins of all workflows into the reference protein list. When
calculating the pAUC based on this ‘Combined’ reference protein
list, the GPF-refined libraries, but not the in silico predicted DIA-
NN unrefined library, perform well for DIA-NN and OpenSwath
workflows. These libraries do not, however, perform as well for
Spectronaut. Skyline performs better with the refined PROSIT
spectral library as compared to the refined DIA-NN spectral
library for this specific reference protein list. Also, the DDA-
based spectral libraries perform worse than in the case of the ‘DIA
Workflow’ protein list.

Using the ‘Intersection’ reference protein list, on average,
DIA-NN performs slightly better than the other software
solutions. The refined DIA-NN library in combination with
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DIA-NN and OpenSwath, but not with Skyline and Spectronaut,
leads to a good prediction performance against the ‘Intersection’
protein list.

These data highlight the strengths, but also the limitations of
any spectral library-DIA software combination. While some
combinations lead to a high number of reported proteins, others
will result in a lower number but at the same time in a higher

pAUC, or give more accurate results in terms of estimated vs. true
log2 fold-changes (Supplementary Fig. 12).

Furthermore, as opposed to the choice of a statistical test (and
a normalization method) (Fig. 4d), the choice of a DIA analysis
workflows (Fig. 4c) has a much bigger impact on the pAUC that
can be obtained. The multimodal distribution of pAUC, which is
particularly prominent for DIA-NN, Skyline, and Spectronaut, is
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due to the three included sparsity reduction options. For
OpenSwath, on the other hand, this multimodal distribution is
less pronounced. Supplementary Fig. 19 summarizes the ranked
performance of DIA analysis workflows for different choices of
sparsity reduction, normalization, and statistical test.

Third in line in terms of impact on the prediction performance,
after the choice of DIA analysis workflow and reference protein
list, is the extend of sparsity reduction that is selected.

The pAUC values shown in Fig. 4b are calculated based on the
‘DIA Workflow’ protein list. The highest pAUC values are
achieved if no sparsity reduction is performed, while stricter
criteria for missing values resulting in the removal of proteins
lead to a decrease in pAUC. While the removal of proteins via
sparsity reduction can lead to a situation in which the maximum
sensitivity cannot be reached, the same can happen if the
reference protein list, based on which TPR (and FPR) is
calculated, and with it the number of E. coli proteins, is larger
than the list of proteins, for which statistical results are available.
Furthermore, we observed a steep initial increase in the ROC
curve for SR90, after which a plateau is reached. Differences in the
pAUC are then solely based on the height of this plateau, which
itself depends on the number of quantified E. coli proteins in a
given dataset. If testing for differential abundance of a protein
returned a missing value, the p-value for this comparison was set
to one. As human proteins are overrepresented in our benchmark
dataset, this might lead to a bias when performing sparsity
reduction, limiting inter-comparability of sparsity reduction
levels.

We found that virtually all DIA software-spectral library
combinations do not benefit from normalization and perform
best with unnormalized data (Supplementary Fig. 13). All
normalization methods included in this study normalize by
distribution and, thus, act under the assumption of a symmetric
(balanced) differential expression, i.e., that the number of up- and
downregulated proteins is equal43. In this benchmark dataset,
however, the differentially expressed proteins solely change in one
direction. Thus, we hypothesize that the observed decline of
performance when normalization is performed could, at least
partly, be an artifact of the study design. This highlights the
importance of correctly interpreting benchmark results. Also in a
practical setting, e.g., for knock-down models or during
proliferation but also in clinical settings, it is possible that the
number of up- and down-regulated analytes is unbalanced25. As a
way of conducting normalization on an unbalanced dataset,
normalization can be performed on merely a subset of all
measured analytes, which consists of invariant analytes only. This
approach has already been embraced in transcriptomic settings44.

Furthermore, the impact of human proteins on the normal-
ization outcome is higher than of E. coli proteins, due to the larger
number of human proteins being present in the samples. As a
result, the distribution of the human proteins is comparable
across the normalized samples, while this is not the case for the E.
coli proteins. This might lead to a bias in the identification of
differentially abundant E. coli proteins.

Additionally, all employed normalization methods assume that
the relative abundance of proteins within one sample can be used
to normalize all proteins. This, however, cannot be assumed for
this dataset as E. coli and human proteins were pipetted
separately, which leads to changes in the protein abundance
ranks between samples (which are assumed to be stable by the
normalization methods). This highlights the need to employ
special strategies to evaluate normalization strategies in future
benchmark studies. A dilution series of the same samples being
measured with different injection amounts may be more suitable
to investigate normalization methods.

Finally, we evaluated the prediction performance of statistical tests
for two-group comparisons, that have previously been used in
proteomics data analysis (Fig. 4d), again for all three reference protein
lists. In general, the non-parametric permutation-based test SAM
consistently performs best for all DIA analysis workflows followed by
the other non-parametric permutation-based test ROTS and limma
(Supplementary Fig. 14). However, the superiority of SAM over
ROTS might be due to the set hyperparameters, as the SAM statistic
can be derived from the more general ROTS statistic42,45,46.
Interestingly, in the study of Pursiheimo et al. SAM did not perform
well, while the good performance of ROTS is highlighted20. Although
the good performance of non-parametric methods has been described
previously42,45 the simple non-parametric Wilcoxon–Mann–Whitney
test, together with GLMgamma, performs worst in our setting,
suggesting that the good performance of SAM and ROTS stems from
their inherent permutation step.

Impact of data characteristics on prediction performance.
We investigated the connection between data properties of the
bootstrap datasets and statistical prediction performance. As we
identified DIA-NN in combination with the in silico predicted
GPF-refined spectral library as an overall well-performing DIA
analysis workflow, we further investigated which data properties
(Supplementary Fig. 15) correlate with benchmarking perfor-
mance measures (Supplementary Fig. 16).

In general, sample variance, kurtosis, skewness, and the ratio of
variances between two spike-in conditions only slightly influence
the performance of statistical tests to detect differentially

Fig. 4 Statistical analysis of benchmark dataset. a Workflow schematic: for the generation of bootstrap datasets, random samples were drawn with
replacement from samples of spike-in conditions 1:25 and 1:12 mimicking two groups containing differentially abundant proteins, here represented by all E. coli
proteins. The p-values acquired after data preprocessing and statistical analysis were used to build receiver operating characteristic (ROC) curves. The partial
area under the curve (pAUC) was used as a measure of prediction performance. b pAUC distribution for the different sparsity reduction options (as measured
against ‘DIAWorkflow’ protein list). c pAUC for the different DIA analysis workflows as measured against the three reference protein lists. d pAUC distributions
for the statistical tests. All seven statistical tests were two-sided and not adjusted for multiple testing. ‘DIA Workflow’ describes the performance against the
proteins present in the given DIA workflow only, ‘Combined’ describes the performance against proteins identified at least by one of all DIA analysis workflows.
‘Intersection’ describes the performance against proteins which were found in >80% (in at least 14 of 17) of the DIA analysis workflows. For each reference
protein list, the respective median of all pAUC values is indicated by a red line, and the best performing option with a cross. b–d are based on n= 2100
bootstrap datasets which have been generated by drawing with replacement from data of n= 23 biologically independent samples of spike-in conditions 1:12
and 1:25, respectively. The sample size of these bootstrap datasets ranged from 3 to 23 samples, which due to drawing with replacement can appear multiple
times. For c that comes to a total of n= 2100 * 17 DIA workflows * 4 normalizations * 7 statistical tests= 999600 data points per sparsity reduction setting, for
c to a total of n= 2100 * 3 sparsity reductions * 7 statistical tests= 176400 per library-software combination, and for d to a total of n= 2100 * 17 DIA
workflows * 3 sparsity reductions * 4 normalizations= 428400 per statistical test setting. The boxplots show median (center line), interquartile range (IQR,
extending from the first to the third quartile) (box), and 1.5 * IQR (whiskers).
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abundant proteins, and the correlation behavior of the data
characteristics differs between the DIA analysis workflows
(Supplementary Fig. 17).

As we included different sample sizes during bootstrapping to
mimic limited replicate availability in practice, we were also able
to investigate the performance of the different DIA analysis
workflows for different sample sizes (Supplementary Fig. 18). We
observed a moderate positive correlation between pAUC values
and sample size for all DIA analysis workflows (shown in
Supplementary Fig. 16 at the example of DIA-NN in combination
with the in silico predicted GPF-refined spectral library).

Overall, SAM performed best for all sample sizes over all
workflows, with ROTS and limma achieving a similar perfor-
mance for small sample sizes (n < 5). Van Ooijen et al., who
compared different statistical tools to detect differentially
abundant proteome features, also found limma to perform well
for small sample sizes47.

In conclusion, with this comprehensive benchmark study in
which we assessed multiple processing options simultaneously,
we strive to support the proteomics community by providing
deeper insights into the interaction between spectral libraries,
DIA software suites, data preprocessing, and statistical testing for
differentially abundant proteins.

From the four DIA software suites we investigated we found
that DIA-NN, Skyline, and Spectronaut robustly avoided the false
detection of E. coli proteins, which are truly absent in human-
only samples. However, the same can be achieved by using the
TRIC tool in the OpenSwath Galaxy workflow. This is highly
relevant for studies inferring biological relevance from missing
values, especially in a clinical context.

Naturally, the amount of missing values also influences the
effect of sparsity reduction. This effect is smaller for OpenSwath
as compared to DIA-NN, Skyline, and Spectronaut.

By conducting multiple analysis workflows on bootstrap
samples derived from 17 DIA software-library combinations,
we found that the choice of DIA analysis workflows and reference
protein lists had the highest impact on the prediction perfor-
mance for differentially abundant proteins, followed by the choice
of sparsity reduction, while the choice of normalization and
statistical tests had only a minor impact.

The ability of the DIA software-library combinations to detect
differentially abundant proteins varied with the reference protein
list that was used to calculate the true-positive and false-positive
rate. When all proteins were included appearing in at least one
DIA software-library combination, DIA-NN in combination with
the in silico predicted DIA-NN spectral library (GPF-refined by
DIA-NN) performed best. The same is true when considering the
‘Intersection’ reference protein list (proteins identified in 80% of
all DIA analysis workflows). If only those proteins are taken into
account, which were found in the dataset of the respective DIA
software-library combination, Spectronaut’s ‘DirectDIA’ excelled.
This highlights the importance of spectral library generation and
the quality of the resulting spectral libraries. For in silico
prediction of spectral libraries (and their refinement on LC-MS/
MS measurements), which is currently gaining momentum, the
choice of library prediction algorithm, possible LC-MS/MS
refinement, and the actual DIA analysis software lead to even
more complex combinatorial workflows.

In general, the depth of proteome coverage can be increased by
using GPF-refined libraries. While this leads to an increase in low
quality identifications or quantitations, we see that the positive
effects of GPF-refined libraries on the quantitation of the
‘Intersection’ reference protein list outweigh the negative effects.

The pAUC strongly decreased with stricter sparsity reduction
options, which is due to the increased removal of E. coli proteins
containing missing values, which leads to a decrease in sensitivity.

The minor impact of the choice of normalization highlights the
quality of internal protein inference and summarization algo-
rithms for all tools, especially for DIA-NN and Spectronaut.

As for statistical testing, the non-parametric permutation-
based statistical tests SAM consistently performed best, followed
by ROTS and limma. However, as the Wilcoxon–Mann–Whitney
test as a simple non-parametric test shows an inferior
performance, this implies that the good performance of SAM
and ROTS is due to these algorithms performing permutations.
Looking at the parametric statistical tests, limma performed best
compared to other parametric statistical tests, especially for very
low sample sizes.

In the future, we strive to further exploit the data characteristics
information we acquired for each bootstrap dataset, by looking for
interactions between those data characteristics and algorithm
performances in order to provide algorithm recommendations for
researchers with datasets of certain characteristics.

In summary, we found that the reliability and reproducibility
of proteomics data analyses heavily depend on properly choosing
and combining the options provided for each proteomics
workflow step, as downstream analyses rely on certain assump-
tions about data characteristics, e.g., regarding missing values,
which are themselves heavily influenced by the choice of DIA
software and spectral libraries.

We encourage others to assess their own approaches and
workflows – specifically those used in clinical settings – using our
dataset as it mimics a realistic biomedical setting with its
inherent heterogeneous background.

Methods
Sample preparation. The study has been approved by the Ethics Board of the
University Medical Center Freiburg (approval 280/18) and written patient consent
was obtained before inclusion. The study design and conduct complied with all
relevant regulations regarding the use of human study participants and was con-
ducted in accordance with the criteria set by the Declaration of Helsinki. Histo-
logically non-infiltrated lymph nodes from patients with acinary prostate cancer
were collected (with consent) as sentinel samples and preserved as FFPE tissue.
Consecutive slices of 10 μm thickness were deparaffinized, stained, and macro-
dissected to acquire 0.5–1 mm³ of lymph node tissue per patient. Subsequently,
antigen retrieval was performed in 4% (v/v) SDS, 100 mM HEPES pH 8.0, with
samples being sonicated using a Bioruptor device for 10 cycles (40 s/20 s, high
intensity), heated to 95 °C for 1 h, and sonicated again.

E. coli K12 bacteria were provided by Christoph Schell (University Medical
Center, Freiburg) as cell pellets. E. coli samples were lysed in 4% SDS in 100 mM
HEPES pH 8 and heated to 95 °C for 10 min and subsequently sonicated using a
Bioruptor for 15 cycles (40 s/20 s, high intensity).

All samples were centrifuged at 15,000 × g for 10 min at room temperature.
Only the supernatant was used for MS sample preparation.

FFPE tissue samples and E. coli samples were reduced at 95 °C for 10 min using
5 mM TCEP. Samples were alkylated for 20 min at room temperature in the dark
using 10 mM iodoacetamide. Samples were prepared for MS analysis using micro
S-TRAP columns (PROTIFY) according to manufacturer’s instructions48. In brief,
protein concentration of samples was determined using a BCA assay (Thermo) and
25 μg of protein was loaded onto separate columns after acidifying (with
phosphoric acid) and diluting the sample (1:6 v/v to sample volume corresponding
to 25 μg) with loading buffer (100 mM TEAB pH 7.1 in 90% MeOH). The samples
were then washed four times using loading buffer. For digestion, a mix of trypsin
and Lys-C (Promega, 1:20 w/w to sample protein amount) was used in 50 mM
TEAB pH 8 and incubated at 47 °C for 1 h. Resulting peptides were eluted from the
columns in three steps: (a) 50 mM TEAB pH 8, (b) 0.2% formic acid and (c) 50%
acetonitrile, 0.2% formic acid. No further peptide purification was performed, and
peptide content was measured using BCA assay (Thermo). Aliquots containing
5 μg peptide per sample were dried and stored at −80 °C until measurement.

For spectral library generation, a masterpool sample with an E. coli to lymph
node peptide ratio of 1:15 was generated by combining peptides from 12 randomly
chosen samples (three from each spike-in condition). For DDA library generation,
the master mix sample was pre-fractionated using offline high-pH prefractionation
as described previously49. In brief, 45 μg of master mix were taken and loaded onto
an XBridge Peptide BEH column (Waters, 150 × 1 mm) coupled to an Agilent 1100
HPLC system and separated using a 45 min linear gradient from 4 to 30%
acetonitrile in 10 mM ammonium formate adjusted to pH 10. Of the 24 fractions
collected in total, the 20 fractions, which contained peptides according to the
chromatogram, were pooled using the following scheme: 1+ 11, 2+ 12, etc.,
resulting in ten pooled samples.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30094-0

10 NATURE COMMUNICATIONS |         (2022) 13:2622 | https://doi.org/10.1038/s41467-022-30094-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


LC-MS/MS measurements. All LC-MS/MS runs were acquired using an Orbitrap
Eclipse Mass Spectrometer (Thermo) coupled to an Easy nLC 1200 (Thermo). Self-
fritted precolumns (Frit Kit, Next Advance) with 100 μm ID were self-packed with
3 μm C18 AQ (Dr. Maisch) beads to a length of 2 cm. A 75 μm ID Picofrit column
(New Objective) was self-packed with 1.9 μm C18 AQ (Dr. Maisch) beads to a
length of 20 cm as previously described50. For every injection, 500 ng of peptides
were used. iRT peptides (Biognosys) were added to a final quantity of 50 fmol/
injection. Buffer A consisted of 0.1% formic acid, buffer B consisted of 80%
acetonitrile in 0.1% formic acid. All samples were separated using a 70 min linear
gradient from 5 to 31% B followed by a 5 min linear gradient from 31 to 44% buffer
B. For the data acquisition of the dilution series the mass spectrometer was
operated in DIA mode and the standard parameters from the staggered DIA
method editor node were used. Briefly, a survey scan (60k resolution) from 390 to
1010 m/z was followed by MS2 scans (15k resolution) with 8 m/z isolation width
covering 400 m/z to 1000 m/z. A second survey scan was followed by MS2 scans
with an offset of 4 m/z as compared to the first cycle. For MS2 scans, peptides were
fragmented using HCD and stepped collision energy 30 (5%), and maximum
injection time was set to 22 ms. The data were recorded in centroid mode. For GPF
measurements, the masterpool sample was repeatedly measured. A tSIM scan with
an isolation width of 110 m/z was followed by MS2 scans with 4 m/z isolation
width over 100 m/z. A second tSIM scan with 110 m/z was followed by MS2 scans
with an offset of 2 m/z as compared to the first cycle. A total of six measurements
were performed to cover a scan range from 400 to 1000 m/z. For data-dependent
acquisition measurements, the masterpool sample was pre-fractionated offline
prior to LC-MS/MS measurement as described previously (see above). A survey
scan of 120k ranging from 390 m/z to 1010 m/z was recorded. Following the survey
scan, a Top 15 method was employed. MS2 scans were recorded at 15k resolution
with the isolation window set to 1.6 m/z and maximum injection time set to 60 ms.
Pre-fractionated samples were measured in duplicates. DDA data integrity was
validated using PTXQC51. All acquisition methods are accessible by downloading
the raw data and extracting the instrument method from the raw files.

To generate experiment-specific spectral libraries, we performed GPF on a
master mix, which represents an average spike-in concentration of E. coli to human
peptides of 1:15. Using DIA-NN to refine a combined E. coli and human in silico
predicted DIA-NN spectral library, we generated a spectral library containing
84016 precursor entries mapping to 10459 proteins. Using an in silico predicted
PROSIT spectral library refined by EncyclopeDIA, we generated a spectral library
containing 45445 precursors mapping to 8472 proteins18.

We also pre-fractionated a master mix to obtain samples for in-depth DDA
library generation29. By applying Fragpipe to the resulting DDA files we generated
a spectral library containing 81409 precursors mapping to 7781 proteins. We also
used MaxQuant to build a DDA-based spectral library containing 51260 precursors
mapping to 7382 proteins.

Spectral library generation. For all spectral libraries, a reviewed human and E.
coli K12 FASTA (one entry per gene) were downloaded from Uniprot on Nov 22nd
202052. The GPF-refined PROSIT53 spectral library was generated as described
previously18. In brief, EncyclopeDIA35 (0.9.5) was used to generate PROSIT input
csv files. PROSIT (2019 iRT prediction model) was used to predict spectra and
retention times, which were reimported into EncyclopeDIA. Destaggered GPF
mzml files were then used to generate a GPF-refined library, which was exported in
tabular format. The GPF-refined DIA-NN spectral library was predicted and
refined using DIA-NN. In brief, DIA-NN was provided with a combined FASTA
protein database (human+ E. coli) as input and neural networks were used to
generate spectra and retention times for the appropriate mass range of
390–1010 m/z. N-terminal methionine excision was enabled. Carbamidomethyla-
tion of cysteine was activated as fixed modification. The GPF mzml files were then
used (with the same settings as described in the spectral library prediction step) to
generate a GPF-refined library, which was exported in tabular format. For the DIA-
NN in silico predicted library, the refinement step was skipped and the unrefined in
silico predicted library (of all FASTA entries) was directly used for DIA analysis.
The MaxQuant DDA library was generated using MaxQuant (1.6.14.0) searching
the DDA files resulting from prefractionation directly as raw files. Carbamido-
methylation of cysteine was set as fixed modification, whereas oxidation of
methionine and acetylation of the protein N-terminus were set as variable mod-
ification. A first search with a precursor mass tolerance of 20 ppm was performed,
followed by the main search of the recalibrated data with 4.5 ppm mass tolerance.
The false discovery rate was set to 1% on peptide-spectrum-match and protein
level. The MaxQuant output was imported into Spectronaut, converted to library
format and exported in tabular format. The MSFragger DDA library was generated
using MSFragger (3.2) in the Fragpipe GUI (14.0) in conjunction with easyPQP
(0.1.25), following conversion of DDA raw files to mzXML format. Precursor mass
tolerance was set to 20 ppm and mass calibration as well as parameter optimization
was enabled. Carbamidomethylation of cysteine was set as fixed modification,
whereas oxidation of methionine and acetylation of the protein N-terminus were
set as variable modification. MSFragger output was converted to tabular format
using DIA-NN. Raw files were destaggered and converted to mzML or mzXML
format using MSConvert in conjunction with ProteoWizard (3.0.20315)54 or
demultiplexed and converted to htrms format using Spectronaut HTRMS converter
(14.0).

DIA data acquisition and processing. DIA-NN (1.7.12) was used with recom-
mended settings. Mass ranges were set appropriately for the search space (MS1:
390 m/z to 1010 m/z; MS2: 150 m/z to 1500 m/z) and RT profiling was activated.
For the in silico predicted library search, the reduced memory option was addi-
tionally activated. Protein and precursor FDR was set to 1%. All DIA-NN com-
putations were performed on an Intel(R) Xeon(R) Gold 6246 CPU.

Skyline55 (64 Bit) (20.2.0.343) analyses were performed as described in the
Skyline tutorials ‘Analysis of DIA/SWATH data’ and ‘Advanced Peak Picking
Models’. In brief, the ‘Import Peptide Search’ daemon was used to import spectral
libraries and implement the iRT retention time predictor30. The allowed deviation
of measured retention times versus predicted retention times was set to 3 min.
Mass accuracy was set to 10 ppm. An mProphet model was trained not including
MS1 information and results were filtered based on the q-value given by the
mProphet model (1% precursor FDR). Results were then imported into MSstats
(3.21.3), where protein summarization was performed using the ‘MSstats’ protein
summarization method56, which was adjusted (by modifying
MSstats::preProcessIntensities() which is called by
MSstats::MSstatsPrepareForDataProcess()) such that intensities below one were
not set to 1 as would be the default. Also, for better comparison with the other DIA
workflows, no imputation and normalization has been performed.

The OpenSwath34 Workflows (2.6) were used in Galaxy with the default settings
except for minor adjustments as previously described57,58. Briefly, the mass
accuracy on the MS1 and MS2 level was set to 10 ppm. For iRT peptide extraction,
20 ppm was used, and a minimum of seven iRT peptides was requested. Target-
decoy scoring was performed using PyProphet (2.1.4.2) in Galaxy with the
‘XGBoost’ classifier for semi-supervised learning including MS1 as well as MS2
information59. Identification results were filtered based on a peptide and protein
FDR of 1% using PyProphet.

To assess the impact of an alternative FDR filtering and feature alignment
approach in the OpenSwath analysis (Supplementary Fig. 6), TRIC (0.11.0) was
used with two different max_fdr_quality settings, of 1 and 5%, respectively36. The
alignment score was set to 0.0005.

Spectronaut’s (14.0) ‘import’ function was used for converting tabular libraries
into Spectronaut format. Before import, the retention times of the PROSIT-
EncyclopeDIA and the DIA-NN libraries were converted to minutes and a linear
model was used to convert retention times to iRT values.

Prior to performing data analysis on the protein intensity datasets derived from
the 17 DIA workflow analyses, data were transformed to a common format, in
which all proteins were annotated with their respective UniProtKB/Swiss-Prot
entry names. For some DIA analysis workflows, some protein identifiers were
composed of multiple protein names. Proteins were excluded if they were labeled
both as human and as derived from E. coli. Proteins without reported quantitations
were removed. For further analysis and visualization, the resulting protein
intensities were log2-transformed. Peptide-level data were treated analogously. Due
to corrupted recording of sample 28 of spike-in condition 1:6 it was not included in
the analysis.

Data analysis workflow
Bootstrapping. To evaluate data analysis workflows—comprised of different com-
binations of sparsity reduction, normalization, and statistical tests options—in
regard to their ability of identifying differentially abundant proteins in omics data,
the two lowest human:E. coli spike-in ratios 1:25 and 1:12 have been used (Fig. 1).
Bootstrap datasets were generated by randomly drawing (with replacement) a
defined number of samples from each of the two spike-in conditions. We varied the
group sizes for each spike-in condition from three to 23 samples and generated 100
bootstrap datasets for each of those group sizes, resulting in 2100 bootstrap datasets
in total. To each of those bootstrap datasets all data analysis workflows have been
applied.

Sparsity reduction. We included the following three sparsity reduction options:
including all protein entries (NoSR), only those protein entries present in at least
66% (SR66), or 90% (SR90) of all samples.

Normalization. We included the following four normalization options: no nor-
malization (unnormalized), tail-robust quantile normalization (TRQN)38, quantile
normalization (QN)60,61, and median normalization (median).

Statistical tests. The following seven statistical tests were included in our analyses:
Student’s t-test (with equal variance assumption, t-test equal Var), Welch’s t-test
(with unequal variance assumption, t-test unequal Var), generalized linear model
with Gamma family and log link (GLMgamma, applied after back-transformation
of the log2-transformed intensities), linear models for microarray data (limma)39,
Wilcoxon–Mann–Whitney test (Wilcoxon), significance analysis of microarrays
(SAM) (250 permutations used to estimate false discovery rates)40, and
reproducibility-optimized test statistic (ROTS)22,41 (with 100 bootstrap and per-
mutation resamplings and the largest top list size considered being 500. For run-
time reasons this largest top list size is chosen to be smaller than recommended.
Thus, a larger value of this setting is likely to improve the performance of ROTS).
All conducted statistical tests were two-sided.
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Performance measures. In total, we acquired performance information for 2100
bootstrap datasets × 17 DIA analysis workflows × 3 sparsity reduction options × 4
normalization options × 7 statistical test options= 2,998,800 cases. For each of
those cases, we received for each protein of a bootstrap dataset a p-value as a result
of a statistical test and the estimated log2-fold change (log2FC) between the two
different E. coli to human spike-in ratios 1:25 and 1:12.

To evaluate which analysis workflow performed best in predicting the
differentially abundant proteins, we used the partial area under the receiver
operating characteristic (ROC) curve (pAUC). For the calculation of pAUC below
a false-positive rate of 10% we used a modified version of the ‘auc’ function of the
pROC R package62. For better comparability we set the maximal value that can be
reached to 100%. If statistical tests returned a missing value for a given protein, the
p-value of this protein was set to 1 in the respective analysis. We also calculated the
sensitivity at a significance level of 0.05.

To quantify the preciseness of quantification, we calculated the root-mean-
square error (RMSE) based on the estimated log2FC and the true log2FC, which is
0 for human proteins and 1.11 for E. coli proteins.

We calculated the performance measures for three reference protein lists in
parallel: the ‘Intersection’ reference protein list with proteins appearing in >80% (at
least 14 of 17) DIA analysis workflow datasets, the ‘Combined’ protein list with
proteins appearing in at least one DIA analysis workflow dataset, and the ‘DIA
Workflow’ protein list, which is specific for each DIA analysis workflow.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data, libraries, analysis log files, and analysis output files data are available under
restricted access for medical data protection reasons at the European Genome-phenome
Archive (https://ega-archive.org) under the accession code EGAD00010002223. Access
can be obtained via a data access agreement. The data access agreement for this dataset
corresponds to the ‘harmonised Data Access Agreement (hDAA) for Controlled Access
Data’ as brought forward by the ‘European standardization framework for data
integration and data-driven in silico models for personalized medicine—EU-
STANDS4PM’. Please contact the corresponding author for access
oliver.schilling@uniklinik-freiburg.de. Requests will be answered within 2 weeks.
Source data, including the processed protein and peptide intensity data as well as the

benchmarking results and data characteristics, are provided with this paper at Zenodo
(https://doi.org/10.5281/zenodo.6379087)63.

Code availability
The R code used for the statistical analyses is available at https://github.com/kreutz-lab/
dia-benchmarking (https://doi.org/10.5281/zenodo.6371925)64.
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