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Observing polarization patterns in the collective
motion of nanomechanical arrays
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In recent years, nanomechanics has evolved into a mature field, and it has now reached a

stage which enables the fabrication and study of ever more elaborate devices. This has led to

the emergence of arrays of coupled nanomechanical resonators as a promising field of

research serving as model systems to study collective dynamical phenomena such as syn-

chronization or topological transport. From a general point of view, the arrays investigated so

far can be effectively treated as scalar fields on a lattice. Moving to a scenario where the

vector character of the fields becomes important would unlock a whole host of conceptually

interesting additional phenomena, including the physics of polarization patterns in wave fields

and their associated topology. Here we introduce a new platform, a two-dimensional array of

coupled nanomechanical pillar resonators, whose orthogonal vibration directions encode a

mechanical polarization degree of freedom. We demonstrate direct optical imaging of the

collective dynamics, enabling us to analyze the emerging polarization patterns, follow their

evolution with drive frequency, and identify topological polarization singularities.
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When the vectorial character of electromagnetic waves
was established in the 19th century, this opened the
door to the interpretation of a wealth of important

phenomena, launching the field of polarization physics. Surpris-
ingly, the detailed nature of spatially inhomogeneous polarization
patterns in wave fields began to be analyzed only much more
recently. Careful theoretical studies revealed, among other
aspects, features such as the topological robustness of certain
polarization singularities1,2. Overall, this appreciation of the
spatial patterns observed in polarization fields has opened a novel
domain of inquiry that continues to draw fresh attention and
enables modern applications, e.g. tailoring and understanding
polarized emission and scattering patterns in nano-optics3–6.

In recent years, the field of nanomechanics has had wide-
ranging impact from sensing applications7–9 to fundamental
physics10–12. However, in the world of nanomechanical resona-
tors, it remains challenging to observe polarization physics, even
at the level of a single resonator. In the mechanical domain,
“polarization” refers to the excitation of motion along different
directions. Observing nontrivial effects requires that these vibra-
tional modes are at least almost degenerate, i.e. a geometry with a
high degree of symmetry. This condition has been accomplished
in macroscopic mechanical setups, such as pendula, which have
actually been used in a different domain of experiments, studying
transport in arrays13,14. It is significantly more demanding in the
nanoscopic regime, even though benefits like fast response, high
integration density, and the possible combination with other
measurement and actuation modalities (optomechanics, surface
acoustic waves, embedded quantum dots) create a strong incen-
tive to enter that domain. For nanomechanical resonators, pio-
neering experimental works have observed two degenerate
orthogonal modes with strong coupling within string resonators
or nanowires8,9,15, as well as nonlinear coupling between two
near-degenerate orthogonal modes in a nanowire16. Going from
one or a few such resonators with polarization degrees of freedom
to an entire coupled array would enable accessing the wealth of
phenomena in polarization fields that have so far only been
studied for electromagnetic waves. In recent years, coupled
nanomechanical arrays have emerged as a promising platform for
observing collective phenomena and transport 17–25. However,
what has been missing so far is a successful integration of
polarization degrees of freedom into an array of coupled
resonators.

In view of the goal to observe and study polarization patterns,
an important aim (besides large-scale integration and coupling) is
the ability to easily visualize the motion, in a spatially resolved
way. This rules out stiff resonators such as nanobeams or -strings,
which, as a result of their small vibrational amplitudes need to be
measured individually by very sensitive optical or electrical means
and where imaging could at best be achieved in a slow sequential
fashion in a scanning tip approach.

On the other hand, nanopillar resonators8,9,26–28 offer large
flexural motion in two orthogonal directions, and have thus been
proposed29 as a natural candidate for rapid spatially resolved
optical whole-array imaging of polarization patterns.

Results
Description of the sample and measurement technique. In this
work, we investigate an array of 400 nanomechanical pillar
resonators (Fig. 1a, b). Each nanopillar exhibits two almost-
degenerate orthogonal fundamental flexural vibration modes. The
mean frequency and mean anisotropy of the array amount to
ω ≈ 2π × 1.3 MHz and Δ ≈ 2π × 7.5 kHz, respectively. Coupling
between adjacent nanopillars via the strain mediated by the
substrate has recently been demonstrated27, joining a small

number of platforms in which strong coupling between nano-
mechanical resonators was successfully explored22–24,30–34. The
coupling strength can be engineered by adjusting the pillar geo-
metry as well as the separation of the pillars. Here, the geome-
trical parameters of the array are optimized for both large
coupling rate J ≈ 2π × 10 kHz and vibration amplitude x ≈ 0.5 μm.

The nanopillars are driven at a variable frequency Ω/2π using a
piezo actuator. Due to the large vibration amplitudes of the pillar
heads even in the linear response regime, the envelope of their
trajectories can be captured by optical imaging from the top (for
details see Supplementary Note 1 and Supplementary Fig. 1). The
optical imaging allows for the simultaneous detection of up to
several thousands of nanopillars and their spatial trajectories as a
function of frequency, whereas typical measurement techniques
for resonator arrays rely on sequential measurements of every
single resonator28 or compromise by giving up spatial
resolution17. In the resulting micrographs, a pillar at rest appears
as a bright circle (Fig. 1c), whereas a vibrating pillar is swept
along its trajectory during the imaging process, yielding the
envelope of its motion pattern (Fig. 1d, e). We reconstruct
the trajectory by demanding that its convolution with the image

Fig. 1 Characterization of the sample and spatially resolved imaging of
vibrational motion. a, b Scanning electron micrographs of a 20 × 20
nanopillar array with lattice constant 1.4 μm, pillar diameter d≈ 300 nm
(measured at the bottom), height H≈ 6.5 μm and taper angle φ≈ 1. 5∘ in a
60∘ tilted view and in top view. The inset in a shows a zoom of the array
corner in the tilted view. False-colors on a single pillar indicate the inverted
conical GaAs pillar (red) and the SiO2 etch mask (blue). c–e show top view
images of three different pillars (extracted trajectories added in green)
differentiating between c a pillar at rest and vibrating pillars with d linear
trajectory and e elliptical trajectory. f Visualization of the convolution
equation. The reconstructed moving pillar image (here, shown for the
pillar in e) is a convolution (denoted by *) of the stationary (non-driven)
pillar image and the time-average of the fitted elliptical trajectory; details
can be found in Supplementary Note 2 and Supplementary Figs. 2 and 3.
g Top view of the 16 × 16 central pillars of the array in a driven at
Ω= 2π × 1.3694MHz including trajectories (green). The outermost two
rows are omitted here.
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of a resting pillar reproduces the observation (Fig. 1f; cf.
Supplementary Note 2 and Supplementary Figs. 2 and 3 for
details on the algorithm). The extracted trajectories range from
linear to elliptical (Fig. 1d, e).

The variety of motional patterns observed in the whole array
(Fig. 1g) indicates a certain amount of disorder. Even as a result
of minute geometrical variations arising during fabrication,
nanoresonators, though nominally identical, typically show a
spread in their eigenfrequencies δω ≈ 2π × 25 kHz (Supplemen-
tary Notes 7 and 8; Supplementary Figs. 6, and 7; Supplementary
Table 1). Nonetheless, and despite their narrow linewidth of
roughly Γ ≈ 2π × 5 kHz at ambient conditions, a large group of
nanopillars vibrates at the same drive frequency. This already
suggests that the array exhibits collective motion, which will be
demonstrated in more detail later on.

Polarization physics in a single nanopillar. We note that ellip-
tical trajectories are observed despite a linear drive, and we will
now briefly describe the physics behind that for a single pillar,
before moving on to the dynamics of the entire array. When
applying an external drive, it will generally excite both linear
polarizations with displacements x and y, respectively. In general,
due to fabricational anisotropies, the underlying eigenmodes will
have different resonance frequencies ωx,y. As discussed in the
following, this leads to a phase lag in the response to the drive,
which can create elliptical motion.

It is convenient to employ complex notation,

bx ¼
ffiffiffiffiffiffiffiffiffiffi

ωx=2
p

ðx þ i _x=ωxÞ; ð1Þ
and likewise for y. Then, we will have bx= fxe−iΩt/((ωx−Ω)−
iΓ/2) where f x � cosðφÞ is proportional to the force amplitude
along x, for a linear drive along direction φ, and likewise for by
(Supplementary Notes 3 and 4 and Supplementary Fig. 4).
Crucially, as we sweep the drive frequency Ω, the phase lag
between both linear polarizations (i.e., the phase of by/bx)
shifts. This leads to a transition from linear polarization to
elliptical back to linear, even for a single pillar, as shown in
Fig. 2a, b.

At first sight, it might seem surprising that elliptical motion
patterns can emerge in this system, as they are not time-reversal
invariant (selecting a sense of circulation), while both the bare
model of an anisotropic oscillator and the linear drive itself
conserve time-reversal symmetry. This is resolved by noting that

the phase lag leading to such motion only arises in the presence of
dissipation, which does break time-reversal symmetry.

This theoretical description is borne out when observing a
single pillar within the array (Fig. 2c–e). Both the spectrum
(Fig. 2c) and the Poincaré sphere trajectory (Fig. 2d) show
deviations from the idealized response of a single pillar, but this
can be explained by the influence of the collective modes of the
array. Apart from this, the overall features of the frequency
evolution of the mechanical polarization (Fig. 2d, e) are consistent
with two spectrally overlapping linear eigenmodes, showcasing
the transition between the two orthogonal modes via an elliptical
trajectory.

Tight-binding model. Based on our analysis of a single pillar and
its polarization physics, we can now study the full array. Our
theoretical analysis relies on a tight-binding model. In ref. 27, it
has been shown experimentally that the coupling strength
between pillars decreases with distance. Thus, in the model, we
only consider the couplings between the nearest (side) and the
next-to-nearest (diagonal) neighbors (Fig. 3a).

The interaction between neighboring pillars depends both on
the relative vibration direction of the two pillars (Fig. 3b) and
their distance. If the two pillars move perpendicular (parallel) to
their line of connection, we call the interaction transversal
(longitudinal), with coupling strength Jtt (Jll). Arbitrary aniso-
tropies of any pillar can be fully characterized by introducing the
frequencies ωx,y and a coupling J between x and y (cf. Fig. 3c).

In summary, the Hamiltonian of a N ×N pillar array can be
expressed in terms of the complex amplitudes bx,y (Eq. (1)) of the
individual pillars as

H ¼ ∑
s;r
ωr;sb

�
r;sbr;s � Jrb

�
r;sbr;�s

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

on-site Hamiltonian

� J ll ∑
s;hr;r0is

b�r;sbr0;s
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

n.n longitudinal coupling

� J tt ∑
s;hr;r0i�s

b�r;sbr0;s
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

n.n transversal coupling

þ
Hd
|{z}

n.n.n coupling

:

ð2Þ

Here, r= (i, j) indicates the position of a pillar in the array,
s= {x, y} labels the direction of motion, and hr; r0is indicates the
nearest neighbors (n.n) in the s direction. The bar symbol in the
on-site Hamiltonian and the transversal coupling interchanges
the two directions, i.e. �x ¼ y and vice-versa. For a realistic
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path is depicted on the upper hemisphere for convenience. e Experimental evolution of the pillar's trajectory with drive frequency in the center of the
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analysis of the experiment, this model is supplemented by a
description of the disorder, as shown in the Supplementary
Note 5 and Supplementary Fig. 5 (together with the explicit form
of the next-to-nearest neighbor (n.n.n) coupling terms in
Supplementary Note 6).

The steady-state response of the array can then be understood
by decomposing into contributions from all the eigenmodes, cf.
Fig. 3d–f (Methods).

Evolution of polarization patterns. With this theoretical model
in hand, we can now study the experimentally observed
frequency-dependent polarization patterns of the array, where we
focus on the central 16 × 16 pillars, to avoid boundary effects (see
Supplementary Note 7). This is in contrast to Fig. 2, where we
were interested in the dynamics of a single pillar.

In Fig. 4a, we show the experimentally observed steady-state
patterns and the RMS amplitude

ffiffiffiffiffiffiffiffiffiffiffi

∑rA
2
r

p

=N as a function of the
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drive frequency Ω. The amplitude response peaks at certain
frequencies, as opposed to observing an uninterrupted band
extending over all the eigenfrequencies of the array. This is
because only eigenmodes with predominantly long-wavelength
contributions couple constructively to the spatially uniform drive
such that only the lower end of the frequency band and hence its
first few modes are experimentally accessible. In other words, if
we would have a spatially non-uniform drive, then we should see
a much larger frequency band than what we observe. In addition,
the two strongest peaks feature elliptical pillar motions (see
insets of Fig. 4a), hence according to our earlier analysis there
must exist at least two (linearly polarized) array eigenmodes
within the bandwidth of these peaks. A well-established
useful quantity in polarization physics is the complex Stokes
field σ ¼ A2 cosð2ζÞe2iθ (Fig. 2a, b). By studying its average across
all pillars, ∑rσr=∑rA

2
r , we can extract both the mean orientation

(via the phase) and its fluctuations (via the magnitude). In Fig. 4a,
these quantities have been color-coded to illustrate the evolution
with frequency.

We now go beyond average quantities and study the
distribution of individual ellipticities ζ across all the observed
162 pillars. The resulting scatterplot (Fig. 4b) reveals that the
majority of elliptical trajectories are observed at the two strongest
resonances. It is equally illuminating to track the frequency
evolution of attributes like minor and major axis of each pillar
Fig. 4e, which clarifies that strongly elliptical motion is confined
to a handful of pillars only.

It is not practicable to extract the (large) number of tight-
binding model parameters from the experimental data, but
fortunately many of our observations can still be qualitatively
captured very well by the theoretical model. The effects of
disorder are neatly illustrated by running numerical simulations
on nominally identical parameters, but for different disorder
realizations (Fig. 4c, d). On the one hand, this shows relatively
significant fluctuations, but on the other hand, robust features can
be identified. For instance, in agreement with the experimental
observations, some of the resonances are primarily linearly
polarized, while others support the elliptically polarized motion
patterns discussed above.

All in all, the findings of Fig. 4 convincingly demonstrate the
existence of collective motional polarization patterns in the
nanopillar array. The observed vibrational patterns can not be
explained by the independent co-vibration of individual pillars,
but require the coupling between adjacent pillars of the array.

Topological singularities in mechanical polarization patterns.
By virtue of setting up hundreds of coupled nanopillars in an
array and the fast optical imaging measurement technique, our
system opens the door to investigating the general area of com-
plex spatial polarization patterns. This includes, in particular, the
analysis of topologically robust polarization features1,2. The sce-
nario that underlies the study of those mathematical concepts is
the one realized both in the present work but also when observing
electromagnetic waves projected on a planar cross-section: a
monochromatic time-dependent vector field in two space
dimensions. For such a situation, the polarization pattern can
contain two elementary features. The first are isolated points of
perfectly circular polarization, so-called ‘C points’, and the second
are ‘L lines’, i.e. curves of linear polarization (Fig. 5a, b). When
the polarization pattern is distorted smoothly, e.g. by changing
the frequency of the waves or the geometry in which they pro-
pagate, both of these features are in general stable. This means the
C points and L lines will move around but cannot disappear. The
only exception is when L lines touch each other or contract to a
point, or when C points meet. This robust behavior is understood

as a consequence of topology1,2. Polarization patterns of wave
fields thus constitute one of the areas in physics where topology
helps to gain insights. We emphasize that this is conceptually
distinct from the investigation of topological band structures and
transport along edge states that has drawn much attention
recently (for a mathematical link between the two fields,
see ref. 29).

In our nanomechanical platform, we focus on the experimental
observation of C points, since they can be extracted more reliably.
One example is clearly visible in the experimental data of Fig. 2e,
panel 5, where a particular nanopillar exhibits a clear circular
trajectory.

Even when the distinction between left- and right-circular
polarization is already accounted for, C points still can be
distinguished by a further binary feature, the so-called winding
index2, somewhat similar to vortices in a phase field (Fig. 5b). We
can make use of this to extract the locations of C points by
investigating the winding of the ellipse orientation θ around any
plaquette of the array. This technique is able to indicate the
plaquettes of nonzero winding number, which are shown in
Fig. 5c, for a particular drive frequency. As explained in the
Supplementary Note 9 and Supplementary Fig. 10, these are
topologically robust by mathematical necessity, i.e., they can only
annihilate pairwise, which we also observe in the data. Going
beyond that, we can even suggest the more detailed location of C
points inside each plaquette, although this requires interpolating
between the discrete grid points and thus depends to some degree
on the interpolation scheme. We overcome the challenges posed
by the disorder and measurement noise via careful data analysis,

a c
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Fig. 5 Topological singularities in mechanical polarization patterns.
a, b Illustration of L lines and C points as topological singularities in a
simulated motion pattern (with disorder level reduced compared to the
experiment for easier visualization). A plaquette likely contains a C point if
it maps to a patch on the Poincaré sphere that encloses the pole.
c Experimentally observed pattern with algorithmically suggested
candidates of C points (Supplementary Note 9 and Supplementary Figs. 8
and 9). Their topological winding index I (winding of the orientation θ
around the C point) is indicated by color. d A frequency sweep reveals a
situation where a pair of C points of opposite index are created and move
apart. Note that the algorithm achieves sub-lattice-spacing resolution via
interpolation, and estimated trajectory data have been smoothed in c and
d, (Supplementary Note 2 and Supplementary Fig. 3).
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including both averaging and numerical simulations confirming
the robustness of the data analysis results (Supplementary
Notes 2, 9 and Supplementary Figs. 3, 8, and 9).

By employing this automated procedure, we extract the
evolution of C points from the experimental data, e.g. while
sweeping the drive frequency. One example is shown in Fig. 5d,
where we identify a pair-creation event of C points of opposite
topological index I= ± 1/2. We can also study systematic trends,
such as the evolution of the number of C points with frequency
(Supplementary Note 10 and Supplementary Fig. 11 for one
example). In the future, stroboscopic imaging could reveal the
handedness of the motion, which would allow reliable detection
of L lines as well, since they separate areas of different
handedness.

Discussion
In summary, we have observed polarization patterns with sig-
natures of collective dynamics in a two-dimensional array of
coupled nanomechanical pillar resonators. Our measurements
have been enabled by a whole-array optical imaging approach
that allowed us to track the evolution of motional patterns with
drive frequency. The platform introduced here enables the
exploration of polarization fields in nanomechanics, unlocking
phenomena for the domain of mechanics that in the past few
years have led to a great number of insights and applications in
electromagnetic systems. We have also discovered first indica-
tions of topological singularities in mechanical polarization fields.

In future experiments, the nanopillars can be even more
strongly driven, which would permit the exploration of the col-
lective motion in the nonlinear regime. In a different vein, the
platform’s flexibility in fabrication will naturally allow for the
exploration of other actuation and measurement modalities. For
example, the possible coupling of the array to electrical circuits or
optical modes promises to both exploit alternative sensing tech-
niques as well as optomechanical manipulation, up to and
including the excitation of limit cycles composed of collective
polarization patterns. Moving to a slightly different material
platform, one could embed quantum dots inside the pillars, which
could serve as light sources, where the mechanical drive could be
used for beam steering applications. Highly parallelized vectorial
force sensing suggests itself naturally as another potential appli-
cation of the platform presented here.

In addition, one might implement more complex lattice geo-
metries, such as variants of a honeycomb structure, which could
be used to study entirely different effects, such as topological
transport (e.g., in the valley Hall effect) and their interplay with
collective polarization physics. Indeed as explained in29, if our
platform were modified to introduce time-reversal symmetry
breaking (and reduced disorder), it would also allow the obser-
vation of band structure topology via the monitoring of real-space
polarization patterns as a function of wave vector. In this context,
individual actuation of pillars could be achieved for example by a
photothermal drive. This would then allow to observe the pro-
pagation of wave packets through the array or along edge chan-
nels. In general, the investigation of time-dependent intrinsically
non-periodic motion might be possible using a stroboscopic
optical imaging scheme, if used in conjunction with periodically
repeated reproducible excitations. As with any array platform
there can of course be considerable disorder effects, but we
managed to reduce these by careful control of the fabrication.
Further improvements would enable more detailed studies of
topological polarization phenomena. On the other hand, one
might choose to focus on issues like Anderson localization, by
deliberately increasing the disorder strength.

Methods
Fabrication details. The conically inverted GaAs nanopillars (cf. Fig. 1a) are
fabricated in a top-down fabrication process from a (100) GaAs wafer. The two-
dimensional pattern of the array is defined via electron-beam lithography. This
allows for a dense spatial integration of the pillars and a high control over the array
geometry. A subsequent SiCl4/N2 anisotropic reactive-ion etch with protective etch
mask of SiO2 yields an array of high aspect ratio nanopillars.

Imaging setup. We measure the pillars’ response to an external drive at room
temperature and atmospheric pressure. The external periodic force is applied by a
shear piezo glued underneath the sample. The response of the pillars to this drive is
then imaged from above the sample (see Supplementary Note 1 and Supplementary
Fig. 1 for more details). Resting pillars are identified as bright circles. Moving
pillars appear smeared out compared to the resting pillar. The image of a moving
pillar captures the envelope of its vibrational motion, as the exposure time of the
camera, which is in the range of a second, greatly exceeds the oscillation period.

Dynamical response. All pillars in the array are subjected to an identical harmonic
drive at frequency Ω and angle φ with respect to the x-axis. Thus, the driving rate
fx(fy) is proportional to cosφðsinφÞ. For a mechanical damping Γ (assumed iden-
tical for all pillars), the equation of motion of a pillar in the array is given by

dbr;s
dt

¼ �i
∂H
∂b�r;s

� Γ

2
br;s þ if se

�iΩt : ð3Þ

The partial derivative ∂H=∂b�r;s is taken only over b�r;s , while br,s is held as a
constant. The steady-state solution can be written as a superposition of all
the eigenmodes bðnÞr;s (eigenmode index labeled by n) of the Hamiltonian H
(cf. Fig. 3d, e) as

br;s ¼ ∑
2N2

n¼1
χðnÞf Ω½ �bðnÞr;s e

�iΩt ; χðnÞf ½Ω� ¼ ∑s0 ;r0b
ðnÞ�
r0 ;s0 f s0

ðEn �ΩÞ � iΓ=2
: ð4Þ

Here, the mechanical susceptibility χðnÞf ½Ω� depends on both the drive frequency Ω

and the overlap of the eigenmode with the drive (cf. Fig. 3f).

Data availability
The data supporting the results presented in this article are available at Zenodo open-
access repository under [https://doi.org/10.5281/zenodo.6127743]35.

Code availability
The code supporting the results presented in this article are available at Zenodo open-
access repository under [https://doi.org/10.5281/zenodo.6127743]35.
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