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Leveraging omic features with F3UTER enables
identification of unannotated 3'UTRs
for synaptic genes

Siddharth Sethi® 2, David Zhang?, Sebastian Guelfi®?4, Zhongbo Chen® 23, Sonia Garcia-Ruiz® 23>,
Emmanuel O. Olagbaju3, Mina Ryten® 3>/ Harpreet Saini"’/ & Juan A. Botia2®’

There is growing evidence for the importance of 3" untranslated region (3'UTR) dependent
regulatory processes. However, our current human 3'UTR catalogue is incomplete. Here, we
develop a machine learning-based framework, leveraging both genomic and tissue-specific
transcriptomic features to predict previously unannotated 3'UTRs. We identify unannotated
3'UTRs associated with 1,563 genes across 39 human tissues, with the greatest abundance
found in the brain. These unannotated 3'UTRs are significantly enriched for RNA binding
protein (RBP) motifs and exhibit high human lineage-specificity. We find that brain-specific
unannotated 3'UTRs are enriched for the binding motifs of important neuronal RBPs such as
TARDBP and RBFOX1T, and their associated genes are involved in synaptic function. Our data is
shared through an online resource F3UTER (https://astx.shinyapps.io/F3UTER/). Overall,
our data improves 3'UTR annotation and provides additional insights into the mRNA-RBP
interactome in the human brain, with implications for our understanding of neurological and
neurodevelopmental diseases.

T Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, UK. 2 Department of Neurodegenerative Disease, Institute of Neurology, University
College London, London, UK. 3 Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WCIE
6BT, UK. 4\/erge Genomics, South San Francisco, CA 94080, USA. ° NIHR Great Ormond Street Hospital Biomedical Research Centre, University College
London, London, UK. ® Department of Information and Communications Engineering, University of Murcia, Murcia, Spain. “These authors contributed equally:
Mina Ryten, Harpreet Saini, Juan A. Botia. ®email: mina.ryten@ucl.ac.uk

| (2022)13:2270 | https://doi.org/10.1038/541467-022-30017-z | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30017-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30017-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30017-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-30017-z&domain=pdf
http://orcid.org/0000-0002-4398-4295
http://orcid.org/0000-0002-4398-4295
http://orcid.org/0000-0002-4398-4295
http://orcid.org/0000-0002-4398-4295
http://orcid.org/0000-0002-4398-4295
http://orcid.org/0000-0001-6668-7202
http://orcid.org/0000-0001-6668-7202
http://orcid.org/0000-0001-6668-7202
http://orcid.org/0000-0001-6668-7202
http://orcid.org/0000-0001-6668-7202
http://orcid.org/0000-0003-4913-5312
http://orcid.org/0000-0003-4913-5312
http://orcid.org/0000-0003-4913-5312
http://orcid.org/0000-0003-4913-5312
http://orcid.org/0000-0003-4913-5312
http://orcid.org/0000-0001-9520-6957
http://orcid.org/0000-0001-9520-6957
http://orcid.org/0000-0001-9520-6957
http://orcid.org/0000-0001-9520-6957
http://orcid.org/0000-0001-9520-6957
https://astx.shinyapps.io/F3UTER/
mailto:mina.ryten@ucl.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

he 3°UTRs of protein-coding messenger RNAs (mRNAs)

play a crucial role in regulating gene expression at the post-

transcriptional level. They do so by providing binding sites
for trans factors such as RBPs and microRNAs, which affect
mRNA fate by modulating subcellular localisation, stability and
translation>2. There is evidence to suggest that these RNA-based
regulatory processes may be particularly important in large,
polarised cells such as neurons. Recent studies have shown that
transcripts which are highly expressed in neurons have both
significantly longer 3’UTRs and higher 3’'UTR diversity>*. Fur-
thermore, it has been shown that thousands of mRNA transcripts
localise within subcellular compartments of neurons and undergo
regulated local translation, allowing neurons to rapidly react to
local extracellular stimuli*~7. Thus, there has been growing
interest in the impact of 3’'UTR usage on neuronal function in
health and disease.

However, despite ongoing efforts to identify and characterise
3’UTRs in the human genome®-11, there is evidence to suggest
that our current catalogue is incomplete®12-14, Large-scale 3’end
RNA-sequencing (RNA-seq) has identified a large number of
novel polyadenylation (poly(A)) sites, many of which are located
outside of annotated exons!213, These insights are complemented
by increasing recognition of the functional importance of tran-
scriptional activity outside of known exons, particularly in human
brain tissues!>~17. This raises the possibility of developing new
approaches for 3’UTR identification seeded from short-read
RNA-seq data, but this is challenging, as evidenced by the
shortcomings of transcript assembly tools to accurately annotate
3UTRs!8-20 and the subsequent development of alternative
polyadenylation profiling tools?!. The latter also has limitations,
including the dependence on a priori gene annotations (e.g.,
TAPAS?%, APAtrap?3, DaPars?4¢ and QAPA2%) or assembled
transcripts (e.g, ExXUTR2® and Aptardi?’) and the focus on
identifying novel poly(A) sites within or in the vicinity of
annotated 3’'UTRs. This hinders their application to other tran-
scriptionally active intergenic regions and so to the identification
of unannotated 3’UTRs. Deep learning-based methods to predict
poly(A) sites directly from DNA sequences e.g, APARENTZS,
DeepPASTA??, OmniPolyA3? and Leung et al.3!, can alleviate this
problem, but these tools do not incorporate transcriptomic data
and only work on sequences of 206 nucleotides in length (with
APARENT as an exception), which makes them unsuitable to
identify tissue-specific and full-length unannotated 3’UTRs.
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In this study, we present a machine learning-based framework,
named F3UTER, which leverages both genomic and tissue-
specific transcriptomic features to identify unannotated 3'UTRs.
We apply FBUTER to RNA-seq data from Genotype-Tissue
Expression Consortium (GTEx) to predict hundreds of unan-
notated 3’'UTRs across a wide range of human tissues, with the
highest prevalence discovered in the brain. We provide evidence
to suggest that these unannotated 3'UTR sequences are func-
tionally significant and have higher human lineage specificity
than expected by chance. More specifically, we found brain-
specific unannotated 3’'UTRs were enriched for genes involved in
synaptic function and interact with neuronal RBPs implicated in
neurodegenerative and neuropsychiatric disorders. We release
our data in an online platform, FAUTER (https://astx.shinyapps.
io/F3UTER/), which can be queried to visualise unannotated
3’UTR predictions and the omic features used to predict them.

Results

Annotation-independent expression analysis suggests the
existence of unannotated 3’°UTRs in the human brain. There is
growing evidence to suggest that the annotation of the human
brain transcriptome is incomplete and disproportionately so
when compared to other human tissues!>~17. We hypothesised
that this difference may in part be attributed to an increased
number of unannotated 3’'UTRs in the human brain. To inves-
tigate this possibility, we analysed unannotated expressed regions
of the genome (termed ERs) as previously reported by Zhang and
colleagues!®>. These ERs were identified through annotation-
independent expression analysis of RNA-seq data generated by
GTEx with ER calling performed separately for 39 human tissues,
including 11 non-redundant human brain regions. We focused
on the subset of ERs most likely to be 3'UTRs, namely intergenic
ERs which lie within 10 kb of a protein-coding gene (‘Methods').
We found that these intergenic ERs were significantly higher in
number (p = 1.19x 107, two-sided Wilcoxon rank-sum test)
and total genomic space (p = 2.39x 1077, two-sided Wilcoxon
rank-sum test) in the brain compared to non-brain tissues
(Fig. 1a). Furthermore, we discovered that intergenic ERs were
significantly more likely to be located at 3’- rather than 5’-ends of
their related protein-coding genes (p = 3.08x 1074, two-sided
Wilcoxon rank-sum test) (Fig. 1b), suggesting that a proportion
of ERs detected in the human brain could represent unannotated
3’UTRs.
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Fig. 1 Enrichment of intergenic ERs across 39 GTEXx tissues. a Scatter plot showing the number of intergenic ERs and their total genomic space covered in
39 human tissues. b Enrichment of intergenic ERs grouped by location with respect to their associated protein-coding gene. Box plots show the median
value (middle line), 25th and 75th percentile (box), and 1.5 times the interquartile range (whiskers). Each data point in the box plot represents the
proportion of total intergenic ERs in a tissue. p: p value calculated using two-sided Wilcoxon rank-sum test.
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Differentiating 3’UTRs from other expressed genomic ele-
ments is challenging. Given that existing studies indicate high
levels of transcriptional noise and non-coding RNA expression in
intergenic regions32-3%, only some intergenic ERs are likely to be
generated by unannotated 3’'UTRs. This prompted us to develop a
method to distinguish 3’'UTRs from other transcribed genomic
elements (non-3’UTRs) using short-read RNA-seq data. To
achieve this aim, we first constructed a training set of known
3’UTRs (positive examples) and non-3"UTRs (negative examples)
from Ensembl human genome annotation (v94). We obtained
17,719 3°UTRs and a total of 162,249 non-3"UTRs, consisting of
five genomic classes: 21,798 5UTRs, 130,768 internal coding
exons (ICE), 3718 long non-coding RNAs (IncRNAs), 3819 non-
coding RNAs (ncRNAs) and 2146 pseudogenes (Methods). For
each of the positive and negative examples, we constructed a set
of 41 informative omic features, which were broadly categorised
as either genomic or transcriptomic in nature. Features calculated
from genomic data included poly(A) signal (PAS) occurrence,
DNA sequence conservation, mono-/di-nucleotide frequency,
transposon occurrence and DNA structural properties. Features
calculated from transcriptomic data included entropy efficiency
of the mapped reads (EE, a measure of the uniformity of read
coverage over a genomic region3®), and percentage difference
(PD, a measure of the absolute difference) between the reads
mapped at the boundaries (‘Methods'). To gain a better under-
standing of these features, we performed a univariate analysis to
individually inspect the relationship between each feature and the
genomic classes in our training dataset (i.e., 3UTRs and all types
of non-3'UTRs). Overall, while the genomic and transcriptomic
features used had overlapping distributions amongst some
genomic classes, each feature was significantly different when
compared across all the genomic classes (p<2.2x 1076,
Kruskal-Wallis Test and two-sided proportion Z-test, Supple-
mentary Fig. 1). This suggested that the features selected could be
used to distinguish 3’UTRs from other genomic elements.

To further investigate this for all 41 features across all six
genomic classes, we applied a uniform manifold approximation
and projection (UMAP)3” for dimensionality reduction into a 2D
projection space. We found that while most 3’UTRs clustered
separately from other classes within that space, some of them
highly overlapped with other genomic classes such as IncRNAs,
ICEs and 5UTRs (Fig. 2a and Supplementary Fig. 2). These
findings suggested that many unannotated 3’UTRs would be
difficult to identify, and thus, may require an advanced
classification approach based on machine learning to accurately
distinguish them from other genomic elements.

F3UTER accurately distinguishes 3’UTRs from other genomic
elements across species. Next, we measured the predictive value
of the omic features we had identified to distinguish between
unannotated 3’'UTRs and other expressed elements if used col-
lectively. We trained a random forest multinomial classifier and
evaluated its performance using fivefold cross-validation repeated
20 times ('Methods' and Supplementary Table 1). Consistent with
the UMAP visualisation (Fig. 2a), we found that known 3’UTRs
were most likely to be misclassified as IncRNAs (11%), followed
by ncRNAs (4%), 5’UTRs (2.7%), ICEs (2.6%) and pseudogenes
(2%) (Fig. 2b). On the other hand, false-positive 3'UTR predic-
tions, which totalled 10%, were predominantly composed of
known 5UTRs (4%) and IncRNAs (3%). We compared this
random forest multinomial classifier to an elastic net multinomial
logistic regression model (Supplementary Table 2) and found that
the random forest multinomial classifier had a significantly higher
accuracy (76%; p<2.2x 1076, two-sided Wilcoxon rank-sum test)
and kappa (0.56; p<2.2x 10716, two-sided Wilcoxon rank-sum

test) in comparison to the multinomial logistic regression model
(Supplementary Fig. 3). While the false-negative rate was higher
(random forest classifier rate of 22%; logistic regression rate of
9%, Fig. 2c), importantly the random forest-based classifier
reduced false-positive calling of 3’'UTRs to 10% compared to 44%
(17% ICEs, 16% 5UTRs, 5% ncRNAs, 4% IncRNAs and 2%
pseudogenes) using logistic regression. We also simplified the
classification problem to a binary one and generated a second
random forest classifier, aiming only to distinguish between
3’UTRs and non-3"UTRs. This resulted in the development of our
final random forest classifier, Finding 3" Untranslated Expressed
Regions (F3UTER, Fig. 2d).

To assess F3UTER’s performance, we performed fivefold cross-
validation (repeated 20 times) and calculated metrics such as
accuracy, sensitivity, specificity, kappa, area under the ROC curve
(AUROC) and area under the precision-recall curve (AUPRC).
F3UTER achieved a mean accuracy of 0.96, sensitivity of 0.92,
specificity of 0.96, kappa of 0.78, AUROC of 0.98 (Fig. 2e) and
AUPRC of 0.91 (Fig. 2f) on the validation datasets (hold out)
(Supplementary Table 3). We found that F3UTER performed
similarly on both the training and validation datasets in the cross-
validation (Fig. 2g). In addition, increasing the sample size of
training data reduced the variability in model predictions and
hence, made it more stable. Taken together, these findings
suggested that we were not overfitting the classifier. Finally, we
investigated the contributions of individual features towards the
accuracy and node homogeneity (Gini coefficient, 'Methods') of
3’UTR classification. Interestingly, we found that features derived
directly from sequence data (e.g., conservation and PAS) as well
as from the transcriptomic data, namely mean-PD and mean-EE
(Supplementary Fig. 4), most significantly contributed to the
accuracy of FAUTER. This shows that FAUTER leverages both
genomic and transcriptomic features to classify 3’UTRs, which
would be expected to enable the identification of tissue-specific
unannotated 3’UTRs.

We next investigated whether F3UTER, a model trained on
features derived from the human genome, can classify 3’UTRs in
non-human species. For this analysis, we selected three
commonly used model organisms: mouse (Mus musculus), fruit
fly (Drosophila melanogaster) and zebrafish (Danio rerio). For
each species, known 3’UTR and known non-3"UTR regions from
Ensembl were used as the validation data for F3UTER (Methods
and Supplementary Table 4), and omic features required by
F3UTER were calculated. The genomic features were calculated
from the DNA sequence of each species, whereas the transcrip-
tomic features were calculated using publicly available RNA-seq
data in the liver (for M. musculus and D. rerio) and midgut (for
D. melanogaster) (Supplementary Table 5). We found that
F3UTER performed remarkably well in classifying 3’UTRs in
M. musculus, achieving an AUROC of 0.96 and AUPRC of 0.8
(Fig. 3 and Supplementary Table 6). Interestingly, given that
F3UTER was trained on data that included expression features
derived from human tissues, and PASs commonly found in
mammals, F3UTER performed surprisingly well in D. rerio
(AUROC=0.88; AUPRC=0.62) and D. melanogaster
(AUROC = 0.83; AUPRC = 0.62), as these species are far apart
from humans on the evolutionary tree. Overall, this analysis
demonstrates that FAUTER can accurately classify 3’UTRs in M.
musculus, and can potentially be used on data from other non-
human species.

Evaluation of F3UTER using 3’-end sequencing data validates
unannotated 3’UTR predictions. We evaluated the performance
of F3UTER using an independent dataset from Singh et al.3
consisting of both RNA-seq data and paired 3’-seq in four types
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of B cells (namely CD5 + B cells (CD5), germinal center B cells
(GCB), memory B cells (MB) and naive B cells (NB); Supple-
mentary Table 7). The latter, a form of 3’-end sequencing, was
performed to identify poly(A) sites experimentally. Since poly(A)
sites are present at the very end of 3’UTRs, unannotated 3’UTRs
should overlap or be in the close vicinity of a poly(A) site. It
should be noted that unlike the GTEx RNA-seq dataset which we
used for our previous analyses and which consists of hundreds of
samples for most tissues, the Singh et al. data consisted of a
maximum of four RNA-seq samples. Since detecting unannotated
ERs relies on averaging RNA-seq coverage across many samples
to reduce the contribution of transcriptional noise to ER defini-
tion, calling ERs from <4 samples would likely result in inac-
curacies at ER boundaries (Supplementary Fig. 5). Although this
would be expected to significantly reduce the confidence in the
detection of unannotated ERs and potentially underestimate the
performance of F3UTER, the paired RNA-seq and 3’-seq nature
of the Singh et al. data enabled us to confidently validate 3’UTR
predictions using gold-standard experimental data.

Using the RNA-seq data in B cells from Singh et al, we
identified 3’ unannotated intergenic ERs following the pipeline
used by Zhang et al.!l>. Then, we used F3UTER to predict
unannotated 3’'UTRs in these ER datasets, and compared these
predictions to intergenic poly(A) clusters detected using paired
3’-seq (Fig. 4a). ERs predicted to be 3’UTRs which also
overlapped with a poly(A) cluster were considered to be validated.
Based on this approach, we calculated F3UTER’s positive
predictive value (PPV, ie., 3'UTR predictions overlapping a
poly(A) cluster) and false omission rate (FOR, i.e., non-3UTR
predictions overlapping a poly(A) cluster) at varying prediction
probabilities (‘Methods' and Supplementary Fig. 6). As expected,
we found that as we increased F3UTER’s prediction probability,
its PPV increased, but the number of 3'UTR predictions
decreased. Through visual inspection, we identified that a
threshold of 0.6 for FAUTER’s prediction probability provided
an optimal balance between PPV/FOR and the number of
unannotated 3’UTR predictions. Therefore, we focused on only
confident 3’UTR predictions, defined as those with a prediction
probability of >0.6. As a reference, we noted that 88% of known
3’UTRs overlapped with a poly(A) cluster in B cells. We found
that on average, 35% of 3’'UTR predictions (with a prediction
probability >0.6) were validated (Fig. 4b), as exemplified by the
intergenic ER predicted to be an unannotated 3'UTR of the gene
MTF2 (Fig. 4c). The validation rate of 3’UTR predictions was
17.5-fold higher than that for randomly selected intergenic
regions (2%, p <0.0001, permutation test; Supplementary Fig. 7)

and ~twofold higher than the validation rate of non-3’UTR
predictions (18%, Fig. 4b). As would be expected, due to the
inaccurate ER definitions in B cells as a result of small sample
sizes, F3UTER’s performance in this setting was significantly
lower as compared to that observed in cross-validation. However,
we would expect F3UTER to perform better on ERs from GTEx
as they were identified using hundreds of RNA-seq samples.
Overall, these observations demonstrate the accuracy of F3UTER
and show that it can effectively distinguish unannotated 3’UTRs
from other functional genomic elements in the genome, even
when applied to a small number of RNA-seq samples.

Lastly, we took advantage of paired RNA-seq and 3’-end
datasets from Singh et al. to compare the performance of
F3UTER with other tools to identify unannotated 3’UTRs from
intergenic ERs. We compared F3UTER to a range of existing
alternative polyadenylation profiling tools capable of predicting
poly(A) sites, namely APARENT?%, GETUTR?® and TAPAS%2.
We applied these tools to the same intergenic ER datasets
generated from Singh et al. data to predict poly(A) sites within
the ERs ('Methods). If at least one of the predicted poly(A) site
contained in an ER was within 30 nucleotides (nt) of a poly(A)
cluster in the corresponding 3’-end data, it was considered a true
positive. Whereas if an ER without any predicted poly(A) site
overlapped a poly(A) cluster, it was considered a false negative.
On average across the four cell types, APARENT, GETUTR and
TAPAS achieved a PPV of 25%, 15% and 10%, and a FOR of 14%,
16% and 14%, respectively (Fig. 4b and Supplementary Table 8).
However, we found that F3UTER not only achieved the highest
PPV amongst all the tools (35%), but also gained the highest
PPV-FOR ratio (1.9-fold). This analysis shows that F3UTER
outperforms the three other tools in predicting unannotated
3’UTRs on these ER datasets.

Applying F3UTER across 39 GTEx tissues identifies hundreds
of unannotated 3’UTRs with evidence of the functional sig-
nificance. We applied F3UTER to 3’ unannotated intergenic ERs
identified by Zhang and colleagues!® in 39 tissues using RNA-seq
data provided by GTEx. Similar to the ER datasets produced from
Singh et al. data, we focused on confident 3’UTR predictions with
a prediction probability of >0.6 (Supplementary Data 1). Across
all tissues, we found that on average 7.8% of analysed ERs were
predicted as unannotated 3’'UTRs, with 8.3% being called in the
brain (Supplementary Fig. 8). This equated to an average of 193
potentially unannotated 3’UTRs per tissue (ranging from 94 in
adipose-subcutaneous to 358 in the frontal cortex, Fig. 5a),
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Fig. 4 Evaluation of F3UTER predictions on an independent ER dataset using 3'-seq. a Schematic describing the framework of the process implemented
to evaluate the performance of F3UTER on ERs in B cells. b Barplot showing the positive predictive value (PPV) and false omission rate (FOR) of 3'UTRs
predicted by F3UTER, APARENT, GETUTR and TAPAS. The bars represent the average value across the four cell types (CD5, GCB, MB and NB), while the
error bars show the standard deviation. The data points show the exact value of PPV and FOR in each cell type. € Genome browser view of the MTF2 locus,
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human genome mappability scores from UCSC (Umap). Umap S50 and S100: Single-read mappability for 50- and 100-mers; Umap M50 and M100: Multi-

read mappability for 50- and 100-mers.

covering 63-280kb of genomic space (mean across tissues =
144 kb, Fig. 5b). By assigning predicted 3’UTRs to protein-coding
genes either through the existence of junction reads or by
proximity (‘Methods' and Supplementary Fig. 9a), we estimated
that 1563 distinct genes in total had unannotated 3’UTRs with an
average of 171 genes per tissue (Fig. 5¢). Of these 1563 genes
across 39 tissues, 222 (14%) had at least one unannotated 3’UTR
connected via junction reads, with a median distance of 2.7 kb
between them (Supplementary Fig. 9b). The remaining 1341
genes (86%) were associated with unannotated 3’'UTRs based on
proximity, with a median distance of 2kb between them. As
expected, the number of predicted unannotated 3’UTRs was
significantly higher in the brain relative to non-brain tissues
(median values of 304 and 146 in the brain and non-brain tissues,
respectively; p = 1.65x 107, two-sided Wilcoxon rank-sum test).
This was associated with a significantly higher total genomic
space (median values of 247 kb and 106 kb in the brain and non-
brain tissues, respectively; p = 8.35x 1077, two-sided Wilcoxon

rank-sum test) and a higher number of implicated genes (median
values of 278 and 126 in the brain and non-brain tissues
respectively; p = 1.65x 107°, two-sided Wilcoxon rank-sum test).
These data suggest that incomplete annotation of 3’UTRs is
present in all human tissues but is most prevalent in the brain.
Given that the intergenic ERs identified by Zhang et al. were
defined based on Ensembl v92, we recognised that some of our
predicted unannotated 3’UTRs could now be annotated in recent
versions of reference gene annotations. Therefore, we assessed
how many of our predicted unannotated 3’'UTRs were annotated
in Ensembl v104, Gencode v38 and RefSeq v109 (Curated). An
unannotated 3’UTR was categorised as annotated if at least 50%
of the unannotated 3’UTR overlapped with an annotated 3’'UTR
from the reference annotations. Of the 7528 predicted unan-
notated 3’UTRs across the 39 tissues, 1060 (14%; covering
0.92 Mb of genomic space and associated with 182 distinct genes)
were annotated in at least one of the reference annotations
(Supplementary Fig. 10a). We found that 90% of these 3'UTRs
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Fig. 5 Unannotated 3'UTR predictions across 39 GTEx tissues. a Number of unannotated 3'UTRs predicted by F3UTER. b Total genomic space of
unannotated 3'UTRs. The predictions are grouped and colour-coded based on their prediction probability score from F3UTER. ¢ Number of genes
associated with unannotated 3'UTRs, grouped by the type of gene association. In each barplot, tissues are sorted in descending order of the values plotted
on the y-axis. The square boxes below the bars are colour-coded to group the tissues according to their physiology. d Violin plot comparing the RBP-
binding density across known 3'UTRs (n =14,924), predicted 3'UTRs (n = 7162), predicted non-3'UTRs (n = 57,688) and negative control (di-nucleotide
shuffled sequences of predicted 3'UTRs, n = 6877). Only regions with RBP enrichment score greater than zero were displayed. Box plots show the median
value (middle line), 25th and 75th percentile (box), and 1.5 times the interquartile range (whiskers). e Density distributions comparing the “constrained
non-conserved” (CNC) scores between known (n=15,279) and predicted 3'UTRs (n=6522). p: p value of comparison calculated using two-sided
Wilcoxon rank-sum test; es: Wilcoxon effect size (r).

were associated with a protein-coding transcript and up to 77%  highly reliable annotations. Furthermore, 96% of the predicted
were labelled as transcripts of the highest confidence (i.e, unannotated 3’UTRs were associated with the same gene as
transcript support level = 1) in Ensembl v104 and Gencode v38 annotated in Ensembl v104 and Gencode v38. We also compared
(Supplementary Fig. 10b, c), suggesting that these 3’UTRs are our unannotated 3’UTRs to a previous study by Miura et al.3
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where the authors identified unannotated 3’UTR extensions in 11
corresponding human tissues, including the brain. We found that
208 (3%) of our unannotated 3’UTRs (covering 188kb of
genomic space and associated with 99 distinct genes) were
previously detected by Miura et al. in the corresponding tissues
(Supplementary Fig. 10d). Overall, taking both reference gene
annotations and Miura et al. data into account, 16% (1226) of our
predicted 3'UTRs were annotated, covering 1.1 Mb of genomic
space associated with 257 distinct genes (Supplementary Fig. 11).
Thus, this analysis not only served to validate a significant
proportion of our findings but indicated that many remain
unknown.

Next, we investigated the functional significance of unanno-
tated 3’UTRs by analysing their potential interaction with RBPs.
This in silico analysis was performed because selective RBP
binding at 3’UTRs is thought to be key in explaining the selection
of alternate PASs and its impact on mRNA stability and
localisation0. Using the catalogue of known RNA binding motifs
from the ATtRACT database*!, we examined the binding density
of 84 RBPs across all unannotated 3’UTRs ('Methods'). Consistent
with previous reports demonstrating higher RBP-binding den-
sities in known 3’UTRs relative to other genomic regions*?, we
found that 3’UTR predictions were enriched for RBP-binding
motifs compared to non-3"UTR predictions (p < 2.2x 10716, effect
size (es) = 0.17, two-sided Wilcoxon rank-sum test) and negative
control set (p<2.2x 10716, es = 0.32, two-sided Wilcoxon rank-
sum test) comprising of di-nucleotide shuffled sequences of
3’UTR predictions (Fig. 5d). Although non-3’'UTR predictions
exhibited some enrichment of RBP binding, we found that 34% of
these regions had no RBP enrichment, which was ~fourfold
higher than for the other sets (Supplementary Fig. 12a).
Surprisingly, we noted that unannotated 3’UTRs were also
enriched for RBP-binding motifs compared to known 3’UTRs
(p<2.2x 10716, es=0.29, two-sided Wilcoxon rank-sum test,
Fig. 5d), suggesting that these regions may be of particular
functional significance. We repeated this analysis using a set of 97
RBPs from the CISBP-RNA database*3 and found similar
enrichment results (Supplementary Fig. 12b). To investigate this
further, we leveraged constrained, non-conserved (CNC) scores*4,
a measure of human lineage specificity, to determine whether the
unannotated 3’UTRs identified were of specific importance in
humans. CNC score, a metric combining cross-species conserva-
tion and genetic constraint in humans, was used to identify and
score genomic regions which are amongst the 12.5% most
constrained within humans but yet are not conserved. We found
that unannotated 3'UTRs exhibited significantly higher CNC
scores compared to known 3’'UTRs (p = 0.04, es=0.01, two-
sided Wilcoxon rank-sum test, Fig. 5e). Thus, together our
analyses suggested that unannotated 3’UTRs are not only
functionally important but may be particularly crucial in
human-specific biological processes.

F3UTER identifies unannotated 3’UTRs of genes associated
with synaptic function. Given the evidence for the functional
importance of unannotated 3’UTRs predicted by F3UTER, we
wanted to explore their biological relevance. To do this, we began
by categorising all unannotated 3’UTRs into four sets based on
their tissue-specificity: absolute tissue-specific (n = 308), highly
brain-specific (n=1571), shared (n=2951) and ambiguous
(n=2698) ('Methods' and Supplementary Fig. 13). Using this
non-redundant set of 3’UTRs, we found that on average, we
extended the current annotation per gene by 710 nt in highly
brain-specific (1.1x the known maximal 3'UTR length), 602 nt in
tissue-specific (0.75x the known maximal 3'UTR length), and 713
nt in shared predictions (1x the known maximal 3’UTR length)

respectively. Next, we repeated the RBP and CNC analysis for
each category finding that all unannotated 3’UTR sets showed
significant enrichment of RBP-binding motifs when compared
not only to non-3’UTR predictions (p<2.2x 107!6, two-sided
Wilcoxon rank-sum test), but also to known 3’UTRs
(p<8x 1072, two-sided Wilcoxon rank-sum test), with the brain-
specific set having the largest effect size (Fig. 6a and Supple-
mentary Table 9). Focussing on CNC scores, we found that while
shared unannotated 3’UTRs showed no significant difference in
score compared to known 3’UTRs (p = 0.8, two-sided Wilcoxon
rank-sum test), absolute tissue-specific unannotated 3’UTRs
trended to significance (p = 0.02, two-sided Wilcoxon rank-sum
test) and brain-specific unannotated 3’'UTRs showed a prominent
difference (p = 3x 107, es = 0.08, two-sided Wilcoxon rank-
sum test) (Fig. 6b and Supplementary Table 10). Together, these
observations lead us to conclude that highly brain-specific 3UTR
predictions were likely to be of most biological interest.

These observations raised the question of what types of genes
are associated with highly brain-specific 3'UTR predictions.
Interestingly, we found that genes linked to unannotated brain-
specific 3’'UTR predictions were significantly enriched for
synapse-related GO terms (e.g., ‘neuron to neuron synapse’,
‘postsynaptic specialisation’ and ‘AMPA glutamate receptor
complex’) (Fig. 6¢ and Supplementary Data 2). Moreover, genes
linked to unannotated brain-specific 3'UTRs were more strongly
associated with synapse compared to those linked with brain-
specific non-3’UTR predictions (Supplementary Fig. 14). Using
SynGO (the synaptic GO database*’) to obtain more granular
information, we found that genes associated with unannotated
3’UTRs were more significantly enriched for biological processes
in the postsynapse (g = 3.2x 107) as compared to presynapse
(q = 0.16) (Fig. 6d and Supplementary Data 2). Furthermore, we
found that 52 genes linked to unannotated brain-specific 3’UTRs
were known to be associated with rare neurogenetic disorders
(p = 0.28, hypergeometric test), of which 10, more specifically,
were associated with adult-onset neurodegenerative disorders
(p = 0.09, hypergeometric test) (Supplementary Table 11). For
example, we detected an unannotated 3’UTR in the brain linked
to the gene, APP, a membrane protein that when mutated gives
rise to autosomal dominant Alzheimer’s disease and encodes for
amyloid precursor protein, the main constituent of amyloid
plaques®. We detected a 920-nt long brain-specific unannotated
3’UTR located 1.8 kb downstream of APP (Fig. 6e) and only 51 nt
from an intergenic poly(A) site on the same strand as APP gene
as reported by the poly(A) atlas. Other similar examples included
the genes, C190rf12, SCN2A, RTN2 and OPAI (Supplementary
Figs. 15-18).

Brain-specific unannotated 3’UTRs interact with RBPs impli-
cated in neurological disorders. Next, we investigated the
information content of brain-specific unannotated 3’UTRs by
comparing RBP-binding enrichments between brain-specific and
shared 3’°UTR predictions (‘Methods’). By using shared 3'UTR
predictions as the negative control, we removed RBPs associated
with non-brain tissues and so identified RBP binding of greatest
relevance to human brain function. This analysis identified eight
RBPs with significantly enriched binding in the brain-specific
unannotated  3'UTRs  (adjusted p<107>)  (Supplementary
Table 12). We found that five of these RBPs were previously
known to be associated with “mRNA 3'UTR binding”
(g = 4.7x107°, Supplementary Data 3), including TARDBP, an
RNA binding protein implicated in both frontotemporal
dementia and amyotrophic lateral sclerosis*’. Of the 80 gene
targets that we identified for TARDBP through unannotated
3’UTRs, up to 41 had a TARDBP-binding site in their existing
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3’UTR annotations, based on either computational scanning of
TARDBP motif (44%, p = 1.7x 107*, hypergeometric test) or
TARDBP iCLIP experiments in brain (20%, p = 0.01, hypergeo-
metric test). However, this implied that 39 gene targets were not
previously known to harbour TARDBP-binding motifs based on
current annotation. Another RBP which was identified to be
significantly enriched in brain-specific unannotated 3’UTRs was
RBFOX1, a neuronal splicing factor implicated in the regulation
of synaptic transmission*® and whose mRNA targets have been
implicated in autism spectrum disorders*®. We identified 87 gene
targets with a predicted RBFOXI-binding motif within their
associated unannotated 3’'UTRs. Of these 87 genes, only 27 (31%,
p = 0.01, hypergeometric test) had a predicted RBFOXI-binding
motif within their existing 3’'UTRs, again implying that unan-
notated 3’UTRs provide valuable novel binding sites. Further-
more, SynGO enrichment analyses demonstrated that the target
genes of RBFOX1 were significantly enriched for processes in the
synapse (e.g., 'synapse adhesion between pre- and post synapse’,
g=3.1x10"% and ‘'regulation of presynapse assembly’,
q = 2x107%) (Supplementary Data 3), consistent with the pre-
viously known functions of RBFOX18. These results show that
the identification of brain-specific unannotated 3’UTRs can
recognise additional genes within known regulatory networks,
which can provide novel disease-relevant insights.

Discussion

In this study, we generate a machine learning-based classifier,
F3UTER, which leverages transcriptomic as well as genomic data
to predict unannotated 3'UTRs. F3UTER outperforms elastic net
logistic regression, whilst retaining its interpretability capabilities,
and three other alternative polyadenylation profiling tools in
identifying unannotated 3’UTRs. We apply F3UTER to tran-
scriptomic data covering 39 human tissues studied within GTEx,
enabling the identification of tissue-specific unannotated 3"UTRs.
Using this large, public, short-read RNA-seq dataset, we predict
unannotated 3’UTRs for 1563 genes, (equating to 5.6 Mb of
genomic space in total across 39 tissues) and demonstrate that
F3UTER can be successfully applied to human genomic regions
from any tissue with existing bulk RNA-seq data. In fact, even
though intergenic ERs in the four types of B cells were generated
using <4 samples, we were able to validate 35% of the unan-
notated 3’UTR predictions using 3’-end sequencing data, showing
that FAUTER can be a useful tool even for small RNA-seq
datasets. Furthermore, it should be noted that F3UTER does not
depend on ER datasets as input, but instead any set of interesting
human genomic regions can be used. We note that F3UTER can
also be applied to data from the mouse genome, which is evident
from its high accuracy to classify known 3’UTRs in mice. Given
the continued popularity and high availability of short-read RNA-
seq data across tissues, cell types and disease states, we believe
that (1) F3UTER could be applied more broadly to predict
unannotated 3’UTRs and improve our understanding of 3’UTR
diversity and usage, and (2) the set of omic features devised
within this study could form the basis for other predictive models
aimed at increasing the accuracy of human transcriptomic
annotation.

We focus on F3UTER-predicted 3’UTRs in the human brain,
which we find to be most prevalent when comparing predictions
across all 39 human tissues. We believe that the higher frequency
of incomplete 3’UTR annotation in human brain could be
attributed to several factors including: (1) higher transcript
diversity with many rare isoforms expressed in this tissue; (2)
high cellular heterogeneity complicating detection of tissue-/cell-
type-specific transcripts; (3) historically lower availability of
human brain samples; and (4) reliance on post-mortem tissues,

which suffer from RNA degradation resulting in decreased
accuracy of transcript identification.

While we find that collectively the unannotated 3’UTRs pre-
dicted by FAUTER were significantly enriched for RBP binding
and exhibited high human lineage specificity, the latter was pri-
marily driven by brain-specific 3’'UTR predictions. Overall, these
findings suggest that predicted 3’UTRs are likely to be func-
tionally important in the human genome. Moreover, these find-
ings provide some explanation for the difficulties of identifying
3’UTRs through cross-species analyses particularly when con-
sidering brain-specific transcripts. Interestingly, we find that
brain-specific unannotated 3’'UTRs were enriched for binding of
RBPs already implicated in neurological disorders, such as
TARDBP and RBFOXI. Furthermore, genes linked to unan-
notated brain-specific 3'UTRs were significantly enriched for
those involved in synaptic function, and although not a sig-
nificant enrichment, some were already associated with rare
neurogenetic and adult-onset neurodegenerative disorders.

Taken together, our results demonstrate that FAUTER not only
improved 3’UTR annotation, but also identified unannotated
3’UTRs in the human brain which provided additional insights
into the mRNA-RBP interactome with implications for our
understanding of neurological and neurodevelopmental diseases.
With this in mind, we note the growing interest in the role of
3’UTR-based mechanisms in translational regulation within
complex, large, polarised cell types such as neurons*>°0-1,
Although increasing the use of single-nuclei RNA-seq, together
with long-read RNA-seq will provide further insights into alter-
native 3’UTR usage and will impact the field considerably, these
technologies still have significant limitations for the identification
of rare transcripts. Therefore, we believe that FAUTER, which can
effectively utilise existing short-read RNA-seq datasets, will be of
interest to a wide range of researchers. Furthermore, we release
our results through an online resource (F3UTER: https://astx.
shinyapps.io/F3UTER/) which allows users to both easily query
unannotated 3’'UTRs and inspect the omic features driving the
classifier’s prediction for an ER of interest.

Methods

ER data. We collected the set of intergenic ERs identified by Zhang and
colleagues!® in 39 GTEx (v6) tissues, comprising of 11 non-redundant brain tissues
and 28 non-brain tissues (total intergenic ERs = 9,339,770). Each ER was asso-
ciated to the gene which connected to the ER via a junction read. In cases where no
junction read was present, the nearest expressed gene (rpkm >0.1) in the corre-
sponding tissue was assigned to the ER. From this dataset, we selected intergenic
ERs which were associated with protein-coding genes and were located within

10 kb of their associated genes, resulting in 240,529 ERs. Based on the location of
intergenic ERs with respect to their associated genes, i.e., whether upstream or
downstream, we annotated their orientation as 5’ (92,600 ERs) or 3’ (147,929 ERs)
respectively. The total genomic space covered by these intergenic ERs was calcu-
lated by adding the length of all ERs in each tissue. To further remove ERs which
were unlikely to be 3'UTRs, we selected 3’ intergenic ERs with a length <2 kb—
which is the third quartile limit of known 3’'UTR exon lengths. We also removed
short ERs with length <40 nt for which feature calculation can be problematic. This
resulted in a set of 94,922 intergenic 3’ ERs across all 39 tissues, and this set was
used as input to F3UTER. Since the GTEx RNA-seq data used was un-stranded, the
detected intergenic ERs had no strand information, and therefore, strand attribute
was not used for orientation and filtering of intergenic ERs.

In this 3’ intergenic ER dataset, 5% of the ERs were connected to genes via
junction reads, with a median distance of 2.5 kb between them. The remaining ERs
were associated to genes based on proximity, i.e., the nearest expressed gene in the
corresponding tissue, with a median distance of 2 kb between them. Overall, in the
complete dataset (i.e., ER-gene associations based on both junction read and
proximity), ERs were located at a median distance of 2 kb from their associated
genes, with the majority of them (62%) located within 3 kb. We associated all ERs
to a total of 5716 distinct genes across the 39 GTEx tissues, of which 834 genes
(15%) were associated with at least one ER via junction reads. Amongst the ER-
gene associations based on proximity, 93% of the nearest expressed genes were also
the nearest gene. We found this percentage to be the same in the complete dataset.
We identified that 446 genes associated with ERs via proximity (8% of total
associated genes) overlapped another protein-coding gene on the same strand.
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Based on this we estimated that only 9% of the total ER-gene associations could be
affected by overlapping genes.

Assembling positive and negative 3'"UTR learning datasets. For positive
examples, we used known 3’UTRs, while for negative examples, we used regions in
the genome which are known to be non-3’'UTRs, namely 5UTRs, internal coding
exons (ICEs), IncRNAs, ncRNAs and pseudogenes. Ensembl human genome
annotation (v94 GTF) was used to extract the genomic coordinates of these dif-
ferent genomic classes. For all classes in our training dataset, firstly, we selected
high confidence annotations at the transcript level with transcript support level
(TSL) = 1. Secondly, we collapsed and combined multiple transcripts associated
with a single gene to make a consensus 'meta-transcript' per gene. This merged all
the overlapping regions emerging from the same gene. Finally, we extracted exons
with width >= 40 (nt) from these meta-transcripts to serve as learning examples.

To capture regions of 3’UTR exons, 5UTR exons and ICEs, transcripts from
protein-coding genes were selected. For ICE examples, transcripts with at least
three coding exons were further selected (as transcripts with less than three exons
would not contain an internal exon) and their first and last coding exons were
removed to capture ICEs. To capture IncRNA, ncRNA and pseudogene exons, we
selected annotations from the GTF file with the following gene biotypes:

IncRNA:  “non_coding”,  “3prime_overlapping ncRNA”,  “antisense”,
“lincRNA”, “sense_intronic”, “sense_overlapping”, “macro_IncRNA”

ncRNA: “miRNA”, “misc_RNA”, “rRNA”, “snRNA”, “snoRNA”, “vaultRNA”
pseudogene: “pseudogene”, “processed pseudogene”, “unprocessed_pseudogene”,
“transcribed_processed_pseudogene”, “transcribed_unitary_pseudogene”, “transcri-
bed. unprocessed pseudogene”, “translated_processed_ pseudogene” “unitary_pseu-
dogene”, “unprocessed_pseudogene”, “TR_V_pseudogene”, “TR_J_pseudogene”,
“rRNA_pseudogene”, “polymorphic_pseudogene”, “IG_V_pseudogene”, “IG_pseu-

dogene”, “IG_J_pseudogene”, “IG_C_pseudogene”

» o«

Calculating omic features. For each region in the training dataset, we calculated
several genomic and transcriptomic-based features. Transcriptomic features were
used to account for tissue-specific properties of transcribed elements in the
genome.

Genomic (sequence)-based features.

®  Poly(A) signals (number of features, n = 1): Previous studies have shown
that 3’UTR sequences of most mammalian genes contain the consensus
AAUAAA motif (or a close variant) 10-30 nt upstream of the poly(A) siteS.
These motif sites are recognised and bound by the cleavage and
polyadenylation  specificity factor (CPSF), and are referred to as
polyadenylation signals (PASs). PASs are an important characteristic of
3’UTRs and are involved in the regulation of the polyadenylation process®.
We used 12 commonly occurring PASs (AAUAAA, AUUAAA, AGUAAA,
UAUAAA, AAUAUA, AAUACA, CAUAAA, GAUAAA, ACUAAA,
AAUAGA, AAUGAA, AAGAAA)%125253 to construct a consensus
position weight matrix (PWM). Each region was scanned for potential
PWM matches and a binary outcome was reported i.e., whether the region
contains a potential PAS or not. The “searchSeq” function (with
min.score= “95%”) from the R package “TFBSTools” (v1.24.0)>* was used
to detect PWM matches.

®  Mono- and di-nucleotide frequency (n = 20): The sequence composition
in 3'UTRs, especially near the poly(A) sites has been shown to be
important for polyadenylation®*>2. The frequency probability of each
mono-nucleotide (i.e. A, T G, C; n=4) and di-nucleotide pair (n = 16; e.g.
AA, AT, GC, GG) was calculated as the number of nucleotide occurrences
divided by the length of the region.

® DNA sequence conservation (n=1): Sequences of non-protein-coding
transcripts and untranslated regions are poorly conserved compared to
protein-coding sequences®>>°. For every genomic position, we extracted
the phastCons score of the human genome (hg38) across seven species pre-
computed by the UCSC genome browser, and averaged it across the region
to calculate mean sequence conservation score for each region.

® Transposons (n = 1): Previous studies have revealed that transposons are
highly enriched within IncRNAs compared to protein-coding genes and
other non-coding elements®”>>. These transposable elements are con-
sidered to be the functional domains of IncRNAs. We calculated the total
fraction of region covered with transposons—LINEs, SINEs, LTRs, DNA
and RC transposons. The hg38 genomic coordinates of the transposable
elements (Dfam v2.0) were downloaded from http://www.repeatmasker.
org/species/hg.html.

® DNA structural properties (n = 16): The underlying sequence composition
of a DNA molecule plays an important role in determining its structure. As a
result, similar DNA sequences have a tendency to have similar DNA
structures®. We calculated 16 properties of DNA structures which can be
predicted from a nucleotide sequence based on previous experiments. To
quantitatively measure a structural property from a nucleotide sequence, we

used pre-compiled conversion tables downloaded from http://bioinformatics.
psb.ugent.be/webtools/ep3/?conversion®’. Depending on the structural prop-
erty, we extracted scores for each di-nucleotide or tri-nucleotide occurrence in
the sequence from the conversion tables, and averaged the scores across
the region.

Transcriptomic-based features.

®  Entropy efficiency (n =1): We measured the uniformity of read coverage
across a region using entropy efficiency, as described in Gruber et al.3¢. The
entropy efficiency (EE) of a region (x) was calculated as,
EE(x) = 7%1‘;“’(“) (x;) = =, where n represents the length of
the region and p(xs is the read coqﬁt"at position i divided by the total read
count of the region. For each region, we calculated EE in 39 GTEx tissues
and averaged it across all the tissues to obtain a baseline distribution of EE
scores.

® Percentage difference (n=1): We calculated the percentage difference
(PD) between the read counts at the boundaries of a region. For read
counts r; and r, measured at the boundaries of a region x, PD was
calculated as: PD(x) = me‘a:: 2l % 100. For each region, we calculated PD
in 39 GTEx tissues and avelgageti it across all the tissues to obtain a baseline
distribution of PD scores.

Univariate and multivariate analysis. For univariate analysis, we performed non-
parametric Kruskal-Wallis test and two-sided proportion Z-test for continuous
and categorical variables, respectively, to identify features with significant differ-
ences across all the genomic classes. We used UMAP? to visualise all the features
in two-dimensional space. The UMAP analysis was performed using the R package
“umap” (v0.2.7.0) with default parameters. The clusters were visualised as a 2D
density and a scatter plot. Each data point was labelled and coloured according to
its genomic class.

To perform multivariate analysis, a feature matrix was generated where rows
represented regions from the training dataset (n =179,968), and columns
represented the quantified features (n = 41). The features were scaled and centred
in R using the preProcess function of R 'Caret’ package (v6.0-85)°!. The elastic net
multinomial logistic regression model was trained using the 'glmnet' R package
(v4.0-2)%2 with the following parameters: family = 'multinomial’, alpha = 0.5,
nlambda = 25 and maxit = 10,000. The random forest multinomial classifier was
trained within Caret using the “randomForest” package (v4.6-14)%% with default
parameters (ntree = 500, nodesize = 1). We performed a fivefold cross-validation
(repeated 20 times) to evaluate the performance of these multinomial classifiers,
where the model was trained on 80% of the data (training dataset) and tested on
20% of the remaining data (validation dataset). Downsampling of the data was
employed to correct for imbalance in the sample size of the classes. For each cross-
validation run, we produced a confusion matrix for each prediction class using the
Caret’s confusionMatrix function and computed the false-positive and negative
rates. In addition, we report model’s overall Cohen’s kappa, which estimates the
accuracy of a model compared to the expected accuracy and is a more accurate
measure of performance for imbalanced datasets. These metrics were averaged
across all the cross-validation runs for reporting purposes. With the elastic net
logistic regression model, we found that known 3’UTRs were most likely to be
misclassified as IncRNAs (4.98%), followed by ICEs (2.46%) and pseudogenes
(0.88%). On the other hand, false-positive 3’UTR predictions, which totalled 44%,
were predominantly composed of known ICEs (17.23%) and 5’UTRs (16.06%).

F3UTER construction and evaluation. We designed F3UTER as a binary classifier
to categorise an ER into a 3’UTR (positive) or a non-3’UTR (negative). This
random forest classifier was implemented in R using Caret as the machine learning
framework and 'randomForest’ as the machine learning algorithm within Caret.
The random forest classifier was trained using the default parameters (ntree = 500,
nodesize = 1). We performed a fivefold cross-validation (repeated 20 times) to
evaluate the performance of the F3UTER. For each cross-validation run, we cal-
culated the performance metrics such as accuracy, kappa, sensitivity, specificity,
ROC curve and precision-recall curve, using the caret’s confusionMatrix function.
Variable importance was measured using mean decrease in accuracy and Gini
coefficient, as natively reported by random forest. The Gini coefficient measures
the contribution of variables towards homogeneity of nodes in the random forest
tree. These metrics were averaged across all the cross-validation runs for reporting
purposes. For bias-variance trade-off analysis, we trained F3UTER on sequentially
increasing sample size of training data (0.1%, 0.5%, 1%, 5%, 10%, 30%, 50%, 80%
and 100%), hence sequentially increasing the complexity of the model. For each
sample size value, a fraction of the training data was randomly selected, and a
fivefold cross-validation was performed which captured all the performance
metrics for both the training and validation datasets. This process was repeated
20 times for each sample size. To make 3’'UTR predictions on ER datasets, the
classifier with the highest kappa statistic was selected from the cross-validation
process.
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F3UTER evaluation in non-human species. For validation data in each species,
we extracted known 3’UTR and known non-3’UTR (5’UTRs, ICEs, IncRNAs,
ncRNAs and pseudogenes) regions from Ensembl (Mus musculus (GRCm38):
v102; Drosophila melanogaster (BDGP6.32): v104; Danio rerio (GRCz10): v91). The
processing of all genomic classes and the calculation of omic features for each
region in the validation data was done in a similar way to F3UTER’s training data.
Since F3UTER was trained on PASs found in mammals, each test region was
scanned for the same set of PASs. PhastCons scores for M. musculus
(mm10-60wayEuarchontoGlire) and D. melanogaster (dm6-27way) were down-
loaded from the UCSC genome browser. The genomic coordinates of transposable
elements for all three non-human species were downloaded from http://www.
repeatmasker.org/species/hg.html. Since pre-computed phastCons scores were not
available for D. rerio, and pre-computed tables of DNA structural properties were
not available for all three non-human species, we constructed two additional
F3UTER models for this analysis: (1) trained without DNA structural properties
and sequence conservation—applied to validation data from D. rerio; and (2)
trained without DNA structural properties—applied to validation data from M.
musculus and D. melanogaster.

The transcriptomic features were calculated using publicly available RNA-seq
data in liver and midgut (details reported in Supplementary Table 5). The RNA-seq
reads were downloaded from SRA using SRA-Toolkit (v2.10.0) in fastq format and
were aligned to the respective genomes using STAR%* (v2.5). The reads were
allowed to map to a maximum of one locus (--outFilterMultimapNmax 1). The
resulting aligned reads were then converted into bigwig signals for calculating
coverage over test regions. We also used kallisto® (v0.45.0) to quantify gene
abundance in transcripts per million (TPM). Known 3’UTR and non-3’UTR
regions associated with genes not expressed (TPM <0.1) in the corresponding
tissues (i.e., liver for M. musculus and D. rerio, and midgut for D. melanogaster)
were removed from the validation data. This resulted in a total of 190,310, 108,786
and 47,517 test regions in D. rerio, M. musculus and D. melanogaster, respectively
(Supplementary Table 4). The performance of FAUTER on these test regions was
evaluated using performance metrics, such as accuracy, sensitivity, specificity, ROC
curve and precision-recall curve.

Validation of 3'UTR predictions using 3'-end sequencing data. Previously
published RNA-seq and its corresponding 3’-end sequencing data from Singh

et al.38 in four types of B cells (CD5 + B cells (CD5), germinal center B cells (GCB),
memory B cells (MB) and naive B cells (NB)) was used for validating 3’UTR
predictions (Supplementary Table 7). The RNA-seq reads were downloaded from
SRA using SRA-Toolkit (v2.10.0) in fastq format and were aligned to the human
genome (hg38) using STAR v2.5. The reads were allowed to map to a maximum of
one locus (--outFilterMultimapNmax 1). The resulting aligned reads were then
converted into bigwig signals and 3’ intergenic ERs were identified using the
pipeline detailed in Zhang et al.!>—which is compiled into a R package (ODER:
https://github.com/eolagbaju/ODER). Multiple replicates were used for ER calling.
Candidate 3’ intergenic ERs were processed and selected in the same way as ERs
from GTEx. This resulted in 726 ERs in CD5 cells, 1158 ERs in GCB cells, 624 ERs
in MB cells and 985 ERs in NB cells. Omic features required by F3UTER were then
calculated for these 3’ intergenic ERs.

Processed poly(A) site clusters for 3’-end data associated with the RNA-seq
samples from Singh et al. were downloaded from the poly(A) atlas!3. Poly(A) site
clusters from multiple replicates were unified and collapsed to produce a non-
overlapping set. These poly(A) site clusters were compared to Ensembl human
genome annotation (v92) to identify sites which occur within the intergenic
regions. F3UTER was applied to 3’ intergenic ERs produced from Singh et al. data
and the resulting predictions were compared to intergenic poly(A) site clusters to
calculate their overlap. Predictions with at least a 1 base overlap with a poly(A) site
were considered to be overlapping. Positive predictive value (PPV) was calculated
as the number of 3’UTR predictions overlapping a poly(A) site divided by the total

P t itives B . .
number of 3’UTR predictions (p—oqm b ——). Likewise, false omission rate
rue positives+false psoitives

(FOR) was calculated as the number of non-3’UTR predictions overlapping a
poly(A) site divided by the total number of non-3’UTR predictions

( false negatives
false negatives-true negatives

the observed overlap between 3’UTR predictions and intergenic poly(A) sites is
more than what we would expect by random chance. Using BEDTOOLS®®
(v2.29.2), the locations of 3’UTR predictions were shuffled in the intergenic
genomic space on the same chromosome, hence generating random intergenic ERs
with length, size and chromosome distribution similar to 3’'UTR predictions in B
cells. To shuffle the locations within the intergenic space, we excluded the genomic
space covered by genes (all Ensembl biotypes) and intergenic ERs (both 3’ and 5°)
in the respective B-cells data. The overlap between these randomly generated
intergenic ERs and poly(A) sites was then calculated, and this process was repeated
10,000 times to produce a distribution of expected overlap. The p value was
calculated as 3, where x is the number of times the expected overlap was greater
than the observed overlap, and N is the total number of permutations. The z-score
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permuted distribution.

Comparison to alternative polyadenylation profiling tools. F3UTER was com-
pared to other alternative polyadenylation profiling tools using two metrics: PPV
and FOR. TAPAS?? was included in this benchmarking study because it was
identified as the top-performing method for predicting poly(A) sites in a previous
benchmarking study?! comparing all alternative polyadenylation profiling tools
using RNA-seq data. We also included APARENT?® (a recently published con-
volutional neural network) in our benchmarking analysis. This is because we noted
that Chen and colleagues?! did not consider 3’'UTR identification tools based on
deep learning applied to DNA sequences.

APARENT analysis. APARENT (APA REgression NeT)?8 is a deep neural net-
work trained to predict alternative polyadenylation in human 3’UTRs. We used
APARENT’s poly(A) detection model (aparent_large_less-
dropout_all_libs_no_sampleweights.h5) downloaded from APARENT’s GitHub
repository (https://github.com/johli/aparent), which can predict the locations of
poly(A) sites from DNA sequence. APARENT was applied on the DNA sequence
of ER datasets from Singh et al. using default parameters. For each ER sequence,
APARENT either predicted one or more poly(A) site(s), or no poly(A) site was
predicted. ER sequences in which no poly(A) site was predicted by APARENT were
considered to be non-3"UTR predictions.

GETUTR analysis. GETUTR (Global estimation of the 3’ UTR landscape based on
RNA-seq)? predicts poly(A) cleavage sites in 3’UTRs using RNA-seq data.
GETUTR’s source code (v2.0.0) was downloaded from http://big.hanyang.ac.kr/
GETUTR/download.htm. GETUTR requires a refFlat reference file from which the
genomic coordinates of 3’UTRs are extracted, and RNA-seq mapped reads in BAM
format. We provided ERs to GETUTR as 3’'UTRs in refFlat files and RNA-seq
mapped reads from multiple replicates were pooled together. GETUTR was run
with default parameters. For each ER, GETUTR either predicted one or more
poly(A) site(s), or no poly(A) site was predicted. It should be noted that in many
cases, GETUTR also predicted poly(A) sites outside the genomic coordinates of the
input ERs. However, we followed a lenient approach and if such predicted poly(A)
site overlapped with a true poly(A) site from 3’-end data, it was considered a true
positive. ERs in which no poly(A) site was predicted by GETUTR were considered
to be non-3’UTR predictions.

TAPAS analysis. TAPAS (Tool for Alternative Polyadenylation Site analysis)?2 is a
programme to detect novel alternative polyadenylation sites from RNA-seq data.
TAPAS’s model to find novel alternative polyadenylation sites (APA_sites_detec-
tion) was downloaded from its GitHub repository: https://github.com/arefeen/
TAPAS. Similar to GETUTR, TAPAS requires a reference annotation file in refFlat
format, and a coverage file for RNA-seq mapped reads. We provided ERs to
TAPAS as 3’UTRs in refFlat files and coverage was calculated using pooled RNA-
seq mapped reads. TAPAS was run with default parameters. For each ER, TAPAS
either predicted one or more novel poly(A) site(s), or the original end of the ER
was output. ERs for which the original end was output were considered to be non-
3’UTR predictions.

3'UTR predictions in 39 GTEx tissues. A feature matrix of 3’ intergenic ERs was
generated in each tissue. FAUTER was applied to each matrix to categorise inter-
genic ERs into 3’'UTR (prediction probability >0.60) and non-3"UTR (prediction
probability <0.60) predictions. Out of 94,922 3’ intergenic ERs across 39 tissues
which were input to F3UTER, 7528 were predicted as 3’UTRs and 87,394 as non-
3’UTRs. Of the predicted 3’UTRs, 811 (11%) were connected to genes via junction
reads, with a median distance of 2.7 kb between them. Whereas the remaining
predicted 3'UTRs were associated to genes based on proximity, with a median
distance of 2 kb between them. Overall, a majority of the predicted 3’UTRs (64%)
were located within 3 kb of their associated genes. Predicted 3’UTRs across all
tissues were associated with 1563 distinct genes, of which 222 genes (14%) were
connected to at least one predicted 3’UTR via junction reads. Of these 1563 genes,
we identified that 120 genes associated with ERs via proximity (8%) overlapped
another protein-coding gene on the same strand. Based on this we estimated that
7.5% of the total predicted 3’UTR-gene associations could be affected by over-
lapping genes. For each tissue, the lengths of the 3’UTR predictions were added to
calculate their total genomic space (in kb). To compare brain and non-brain tis-
sues, a two-sided Wilcoxon rank-sum test was applied to statistically compare the
associated numbers between the two groups. The 3’'UTR predictions were com-
pared to gene annotations from Ensembl v104, Gencode v38 and RefSeq Curated
v109. The comprehensive gene annotation file for reference chromosomes was used
for Genocde, while the 3’UTRs for RefSeq were retrieved from the UCSC Table
Browser. A 3’UTR prediction was considered detected if at least 50% of its region
overlapped with an annotated 3’UTR from the reference gene annotations. The
genomic coordinates of unannotated 3’'UTR extensions identified by Miura et al.3
were extracted from the supplementary files provided with their study. These
coordinates were mapped to hgl9 and therefore were converted to hg38 for
comparison. We considered all categories of predictions annotated by Miura et al.
(candidate, confident and precise regions) in 11 human tissues (adipose, adrenal,
brain, colon, heart, kidney, liver, lung, skeletal muscle, thyroid and white blood
cells) corresponding to our set of GTEx tissues.
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To explore the biological relevance of 3’UTR predictions, they were categorised
into four groups based on their tissue-specificity: absolute tissue-specific, highly
brain-specific, shared and ambiguous. To do such categorisation, the genomic
coordinates of ER predictions were compared across the 39 tissues. An ER which
did not overlap any other ER across the tissues was labelled as “absolute tissue-
specific” or present in only one tissue (n =7337). On the other hand, for an ER
which overlapped (=1 nt) ERs from other tissues, we calculated the proportion of
brain tissues in which the ER was detected. If more than 75% of the tissues were
brain-related, the ER was labelled as “highly brain-specific” (n = 21,111). From the
remaining data, ERs detected in at least five tissues, with their start and end
coordinates within a 10-nt window, were labelled as “shared” (n = 31,516). All the
remaining ERs which did not fall in any of the above categories were labelled as
“ambiguous” (n = 34,958).

RBP and CNCR analysis. For the set of known 3’UTRs, we selected annotated
3’UTRs from Ensembl v94 which were “expressed” (mean coverage >5) in at least
one of the 39 GTEx tissues. To do this, we calculated mean coverage of each
annotated 3’'UTR region using the GTEx RNA-seq data (v6). Annotated 3’UTRs
with mean coverage of less than 5 reads in all 39 tissues were removed, resulting in
16,407 known 3’UTRs. We further categorised this known set of 3’UTRs into three
groups: absolute tissue-specific, highly brain-specific and shared. 3’UTRs which
were expressed in only one tissue were labelled as 'absolute tissue-specific’
(n=739). For 3UTRs expressed in multiple tissues, we calculated the proportion
of brain tissues in which the 3’'UTR was expressed. If more than 75% of the tissues
were brain-related, the 3’UTR was labelled as 'highly brain-specific' (n = 733).
From the remaining data, 3UTRs which were expressed in at least five tissues were
labelled as 'shared' (n = 13,652). To scan genomic regions for RBP binding, we
extracted the DNA sequence (hg38) of regions in predicted 3’UTRs, predicted non-
3’UTRs and known 3’UTRs. The set of negative control sequences was obtained by
shuffling the predicted 3’UTR sequences while preserving the di-nucleotide fre-
quency, using the universalmotif R package (v1.4.10; method = “euler”).

The position weight matrices (PWMs) of RBP-binding motifs in humans were
collected from the ATtRACT database!. Motifs with less than 7 nt in length and
with a confidence score of less than one, were removed to reduce false positives in
the motif matches. To remove redundancy between multiple motifs of a RBP, we
further selected the longest available motif. This resulted in 84 unique PWMs,
which were then used for identifying potential RBP-binding using tools from the
MEME suite (v5.1.1)67. Curated RBP motifs from the CISBP-RNA database
(n=97) were retrieved from the MEME motif database (Homo_sapiens.dna_
encoded_cisbp_rna). We used FIMO%® with a uniform background to scan query
sequences for potential RBP motif matches. For each RBP motif and query
sequence pair, we calculated normalised counts as the number of motif matches
(with p < 107°) per 100 nt of query sequence. To summarise this analysis, we then
calculated an overall RBP-binding score for each query sequence by adding the
normalised counts across all the RBPs. We used AME® with default parameters to
compare binding enrichment of RBPs between highly brain-specific (query) and
shared 3’UTR predictions (control). RBP motifs with an enrichment adjuested p —
value <10~° were considered to be significantly over-represented in highly brain-
specific 3’'UTR predictions compared to shared 3’'UTR predictions. We used RBP
motif scanning results from FIMO to identify unannotated 3’'UTRs with a
predicted TARDBP and RBFOX1 binding. The existing 3’UTRs of genes associated
with these unannotated 3’'UTRs were scanned for TARDBP and RBFOX1 motifs in
a similar way using FIMO. Binding sites of TARDBP identified using iCLIP
technology were extracted from the POSTAR2 database’’. We downloaded all the
curated RBP-binding sites in the human genome from POSTAR2, and selected
TARDBP sites in the brain, which resulted in 133,037 binding sites from multiple
iCLIP experiments. These binding sites were then collapsed and unified, resulting
in a set of 118,157 non-redundant TARDBP-binding sites.

The CNC scores, as reported by Chen et al.44, were used to quantify the
occurrence of CNCRs within unannotated 3’UTRs. We extracted the CNC score
for each 10-nt window and averaged it across the query region to calculate a mean
CNC score for each query region. Regions for which the CNC score could not be
calculated due to gaps in the data were removed from the analysis, resulting in
15,279 known 3’UTRs and 6522 predicted 3’UTRs.

Calculating gene enrichment. To investigate molecular functions and biological
processes significantly associated with a gene list, we performed GO enrichment
analysis in R using the clusterProfiler package (v3.14.3)71. All genes expressed in brain
were used as the background (n = 18,036). The list of brain expressed genes was
obtained from the SynGO portal*®. GO terms attaining an enrichment q value (false-
discovery rate computed using Benjamini-Hochberg method) <0.05 were considered
significant. Similarly, SynGO*® was used to identify enriched GO terms (q value
<0.05) associated with synaptic function, using brain expressed genes as the back-
ground. To calculate enrichment of genes associated with rare neurogenetic disorders,
OMIM?7? genes related to neurological disorders were used (1948 genes). The list of
genes associated with adult-onset neurodegenerative disorders was extracted from
Genomic England PanelApp (254 green labelled genes)”>. A hypergeometric test was
used to calculate the enrichment using brain expressed genes as the ‘gene universe’.

Statistical analysis. All data processing, statistical analysis, and plotting were
conducted in R (version 3.6.2) software. All statistical tests were two-sided. The
Wilcoxon effect size (r) was calculated using the rstatix package (v0.6.0).

Public datasets used in this study. ER data: http://rytenlab.com/browser/app/
vizER

GTEx median gene expression (vé6p): https://www.gtexportal.org/home/datasets

Ensembl GTF: https://www.ensembl.org/index.html

Gencode GTF (comprehensive gene annotation): https://www.gencodegenes.
org/human/

UCSC Table Browser: https://genome.ucsc.edu/cgi-bin/hgTables

phastCons scores: https://hgdownload.soe.ucsc.edu/downloads.html

Transposable elements: http://www.repeatmasker.org

DNA structural properties: http://bioinformatics.psb.ugent.be/webtools/ep3/?
conversion

Poly(A) site atlas: https://www.polyasite.unibas.ch/atlas

ATtRACT database: https://attract.cnic.es/

MEME motif database: https://meme-suite.org/meme/db/motifs

POSTAR2: http://lulab.life.tsinghua.edu.cn/postar2/index.php

SynGO: https://www.syngoportal.org/

OMIM: https://www.omim.org/

Genomics England PanelApp: https://nhsgms-panelapp.genomicsengland.co.uk/

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All the data used and generated in this study is publicly available. The unannotated
3’UTR predictions across 39 GTEx tissues generated in this study are provided in
Supplementary Data 1. FAUTER’s training dataset, ER feature matrix and all 3’ intergenic
ER predictions are available to download from the F3UTER web app. RNA-seq data used
for non-human species: SRA accession numbers—ERP013119 (mouse liver), SRP197261
(fruit fly midgut) and SRP213938 (zebrafish liver). Paired 3’-seq and RNA-seq data: GEO
accession number GSE111310.

Code availability

The code for FAUTER and the analysis associated with this manuscript is maintained on
GitHub: https://github.com/sid-sethi/F3UTER”4. The source code for running the
analyses has been provided as a snakemake pipeline for complete reproducibility.
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