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Visual barcodes for clonal-multiplexing of live
microscopy-based assays
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Ravid Straussman 1✉

While multiplexing samples using DNA barcoding revolutionized the pace of biomedical

discovery, multiplexing of live imaging-based applications has been limited by the number of

fluorescent proteins that can be deconvoluted using common microscopy equipment. To

address this limitation, we develop visual barcodes that discriminate the clonal identity of

single cells by different fluorescent proteins that are targeted to specific subcellular locations.

We demonstrate that deconvolution of these barcodes is highly accurate and robust to many

cellular perturbations. We then use visual barcodes to generate ‘Signalome’ cell-lines by

mixing 12 clones of different live reporters into a single population, allowing simultaneous

monitoring of the activity in 12 branches of signaling, at clonal resolution, over time. Using the

‘Signalome’ we identify two distinct clusters of signaling pathways that balance growth and

proliferation, emphasizing the importance of growth homeostasis as a central organizing

principle in cancer signaling. The ability to multiplex samples in live imaging applications,

both in vitro and in vivo may allow better high-content characterization of complex biological

systems.
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The ability to multiplex samples has revolutionized science
as well as medical practice. Genetic barcoding applications
enabled unprecedented multiplexing, followed by parallel

processing and analysis of dozens to hundreds of thousands of
samples in applications like scRNA-Seq or functional CRISPR/
shRNA/open-reading frame (ORF) screens. In contrast, in the
field of image-based screens, high-order multiplexing is limited
by the small number of channels that can be practically separated
with common microscopy equipment. To address this, we
developed visual barcodes that enable multiplexing of
microscopy-based applications and used them to multiplex live-
cell reporters for the study of signaling pathways dynamics in
cancer cells.

To maintain growth, individual cells must balance a network
that integrates information from numerous branches of signaling.
In cancer, genetic and non-genetic alterations in major signaling
pathways have been tightly linked to tumor initiation, progres-
sion, and response to anticancer therapies. It was also demon-
strated that many of these alterations can be classified into a
dozen signaling pathways, which together regulate core cellular
processes such as cell fate, cell survival, and genome
maintenance1,2.

To facilitate understanding of cancer signaling, previous stu-
dies have developed genetically tagged activity reporters, i.e.,
fluorescent proteins that exhibit changes in abundance or loca-
lization in response to particular signaling activities3,4. Unlike
endpoint assays, which necessitate ending the experiment in
order to measure a phenotype, these reporters helped reveal the
intricate dynamics of individual branches of signal transduction
pathways, in live cells, at single-cell resolution. However, since it
is difficult to multiplex fluorescence reporters, mutual depen-
dencies between these separate branches of signaling remained
less explored.

In this study, we describe the development and application of
visual barcodes, a technology that enables multiplexing live-cell
imaging applications. The visual barcodes are used as labels of the
clonal identity of single cells in mixed populations. To advance
the understanding of cancer signaling pathways and their cross-
talk, we used visual barcodes to multiplex 12 live reporters of
major signaling pathways, generating an experimental system that
we term, the “Signalome”.

Using the Signalome, we investigated the coordinated (multi-
plexed) dynamics of 12 signal transduction pathways in cancer
cells that were challenged with well-characterized chemical per-
turbants. Our results show that multiplexing 12 reporter lines not
only increases throughput but also eliminates noise associated
with well-to-well variations in high-throughput drug screens.
Surprisingly, our results also identify a previously undescribed
binary partitioning of cancer signaling into two distinct clusters.

To maintain homeostasis, proliferating cells require mechan-
isms that coordinate rates of cell division with appropriate rates
of biosynthesis. To sustain the proliferative demands of onco-
genes, cancer cells require precisely tuned rates of biosynthesis5. If
cells fail to double their mass between consecutive cell divisions,
cell mass will progressively diminish. Conversely, rates of bio-
synthesis that exceed rates of cell division can result in cellular
enlargement and senescence6–8. We show that the two clusters of
signaling pathways identified by the Signalome system represent a
general stress response that correlates with the cells’ need to
balance between growth and proliferation. Implementing Signa-
lome in cancer cell lines thus revealed the previously under-
appreciated importance of growth homeostasis as a central
organizing principle in cancer signaling.

Our findings thus demonstrate that the Signalome is a robust
technology that can help study the dynamics of signaling path-
ways in a single-cell resolution and the interconnection between

different signaling branches. As the system is highly modular,
replacing reporters can be easily achieved to allow the study of
many other questions across the different fields of biology. In
addition, the visual barcodes can be used in numerous in vitro
and in vivo applications in which visual deconvolution of mul-
tiplexed cell lines is of need.

Results
Developing visual barcodes to allow multiplexing of live ima-
ging applications. To construct visual barcodes, we first stably
infected the A375 melanoma cell line with a lentivirus containing
the nuclear marker histone 2A fused to iRFP (iRFP-H2A) to
accurately demarcate nuclear and cytoplasmic compartments
(Fig. 1A). Next, iRFP-H2A cancer cells were used to generate five
subclones, each labeled with a cyan fluorescent protein (CFP)
tagged with unique cellular localization sequences, targeting the
CFP into one of five subcellular locations: nucleus, endoplasmic
reticulum (ER), cytoplasm (NES), peroxisomes (Peroxi), and
whole cell (WC) (Fig. 1B). CFP localization was thus used as a
visual barcode that can discriminate clonal identity.

To test the accuracy of the visual barcodes, we imaged each of
the five subclones separately with both phase-contrast as well as
in iRFP and CFP channels. We then used CellProfiler9 to: (1)
segment the cells, (2) identify both nucleus and cytoplasmic
compartments, and (3) extract texture, shape, and intensity-based
features in the CFP channel for each cell (Sup code). CellProfiler
Analyst10 was used to classify single cells based on visual barcode
readouts. In our implementation, we used 70% of the cells as a
training set, with the remaining 30% as a validation set. The
average false detection rate (false-positive barcode labeling) was
1.15%, while miss rate (false-negative rate) was 1.17%, represent-
ing very high precision and recall rates respectively (Fig. 1C and
Supplementary Fig. 1A). The highest false detection rate and miss
rate were both detected between nuclear and ER localizations,
which were thus deprioritized from additional follow-up.

To scale up the dimensionality of visual barcodes to a 12-
barcode system, we fused three of the localization signals to four
fluorescent proteins (CFP, BFP, GFP, and YFP), resulting with 12
distinct visual barcodes (Fig. 1D). This increase in barcode
number still maintained a very high accuracy with an average
false detection rate of 1.45% and a miss rate of 1.34% (Fig. 1E and
Supplementary Fig. 1B). Most detection errors were between
subclones with the same fluorescence color, with the highest false
detection rate detected between whole-cell and peroxisomal BFP
(Fig. 1E). To explore the robustness of the system under different
types of perturbations, we treated each of the subclones separately
with 75 drugs (Supplementary Data 1). We found that after 48 h
of drug treatment, both precision and recall were still very high in
almost all drugs with only eight drugs (12%) having a miss rate of
above 3%, five of which strongly affecting cell proliferation and
viability. (Fig. 1F and Supplementary Fig. 1B, C).

Note that one option to further increase the number of
barcodes is to combine two barcode proteins into a single cell. By
using four fluorescent proteins and five localizations, up to 160
different visual barcodes can be generated. Indeed, we were able
to demonstrate a very high precision and recall rate for barcode
calling even when barcodes with the same localization but
different colors were combined (Supplementary Fig. 1D, E).

Lastly, we showed that the clones can also be separated when
cells are in suspension, using the Imagestream high-resolution
microscopy and flow cytometry system (Fig. 1G–J). As our system
lacked a laser to detect YFP, we only multiplexed nine of the
subclones. To demonstrate that the visual barcodes can also be
used in vivo, we mixed the nine clones and implanted them
subcutaneously in a nude mouse. When the tumor reached a
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diameter of 8 mm it was excised, dissociated into single cells, and
analyzed by the Imagestream system, demonstrating that all nine
clones could be detected (Supplementary Fig. 1F–J).

Generating the “Signalome” reporting cell lines. To generate
the Signalome, we assembled 12 previously published and well-
characterized reporter constructs (Supplementary Fig. 2A), each

associated with the activity of a different cancer-related signaling
pathway. To enable their multiplexing, we replaced the original
tagged fluorescent protein in each of the 12 reporter vectors with
the mStrawberry fluorescent protein. We used two different types
of reporters: reporters that drive the expression of the fluorescent
protein by a specific transcription response element (TRE) or
kinase translocation reporters (KTRs) that translocate the
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fluorescent protein from the nucleus to the cytoplasm upon
activation of upstream signaling (Supplementary Fig. 2A).

We then infected each of the 12 A375 subclones that have
visual barcodes with one of the 12 reporters (Fig. 2A). Next, we
validated that the proliferation rate of the single-cell derived
reporter subclones is not different from that of the parental cell
line (Supplementary Fig. 2B). We also validated that all
12 subclones are as sensitive to the BRAF inhibitor, vemurafenib,
as the parental A375 cell line (Supplementary Fig. 2C). Lastly, we
pooled together all 12 subclones generating the A375 signalome
cell line, and demonstrated that the proportions of the 12
different clones remained constant over 48 h of culture (Fig. 2B).

An advantage of single-cell measurements is that perturbations
can be characterized not only for their influence on population
average but also on the full distribution (i.e., the frequency of cells
with low, medium or high signaling activity). To quantify
condition-dependent differences in the distribution of reporter
activity, we used the Kolmogorov–Smirnov (KS) test as it is a
nonparametric test that can also detect changes in the distribution
that are not reflected by the mean of the distribution
(Supplementary Fig. 2D, E)11,12. To add to the KS score, activity
scores were assigned a positive or negative sign based on the
change in direction of the mean of these distributions. We used a
threshold of ± 0.2 to mark a significant change in activity as it
represents the 0.5 percentile of reporter activity across our DMSO
control wells (Supplementary Fig. 2H). To validate the reporters’
activity, we first used known positive or negative regulators for
each of the reporters demonstrating a perfect correlation between
the reporter’s score and the expected drug effect (Supplementary
Fig. 2F). We also compared the A375 signalome cell line activity
scores to the activity of all 12 reporters when tested separately and
found a very strong correlation between the two (r= 0.75,
P < 10−16) (Fig. 2C). As expected, we also found that Vemur-
afenib and the MEK inhibitor Trametinib, both inhibitors of the
MAPK pathway, exerted highly similar effects on the A375-
Signalome cell line (Fig. 2D–F). Finally, to validate our reporters’
activity using different methods, we used western blot analysis
demonstrating full agreement between both techniques (Supple-
mentary Fig. 2G).

An advantage of multiplexed, time-dependent measurements
on signaling is the ability to differentiate direct and indirect drug
influences. For example, while MAPK inhibitors (vemurafenib
and trametinib) promoted detectable changes in measured ERK
signaling that were observed 1.5 h into drug treatment, an
influence of these same drugs on other pathways was also
observed, albeit at much later times (Fig. 2D–F). This is in
agreement with the direct effect of these drugs on the MAPK
pathway and the subsequent adaptive response of the other
pathways to the inhibition of the MAPK pathway. Indeed,
previous reports already described activation of PKA13, NFkB14,
HIF15, and YAP/TAZ16 in response to vemurafenib and
suggested that these adaptations can contribute to resistance to
MAPK inhibition. In addition, we observed a significant
upregulation of retinoic acid receptor activity 48 h after BRAF

or MEK inhibition (P value < 6 × 10−5). Interestingly, examina-
tion of three independent cohorts of melanoma patients
demonstrated that patients with high activity of the RAR/RXR
pathway, as calculated from expression data by PathOlogist17,18,
had an overall better survival (Supplementary Fig. 2I–K). There-
fore, it may be of interest to continue and better explore the role
of RAR in melanoma and its response to therapy. These
measurements also demonstrate the efficiency and throughput
of the Signalome system: with one 384-well plate, we screened the
influence of 75 drugs (in triplicates) and 39 DMSO controls on 12
branches of signaling, in multiple time points, and at single-cell
resolution. A single signalome plate thus provided measurements
on half a million cells from each of the different time points.

To demonstrate that the visual barcodes and a signalome
system can be readily applied to other cell lines we generated two
more signalome cell lines using the PC9 EGFR-mutated non-
small-cell lung cancer cell line and the SK-MEL-5 BRAF-mutated
melanoma cell line. We were able to demonstrate that our
barcode precision and recall rates are also very high in these cell
lines (Supplementary Fig. 3A–D) and that an early inhibition of
ERK by both inhibitors can be detected followed by cell-line-
specific adaptive mechanisms. For example, while inhibition of
BRAF or MEK in A375 melanoma cell line resulted in activation
of the YAP/TAZ pathway, the effect of BRAF/MEK inhibition in
the SK-MEL-5 cell line resulted in inhibition of the YAP/TAZ
pathway (Supplementary Fig. 3E–H). Here, again we found that
EGFR inhibition in the PC9 cells also drives upregulation of RAR
activity.

Large-scale correlations in signaling suggest a generalized
response that is compound independent. To investigate inter-
dependencies in the cancer signaling, we treated the pooled
A375 signalome cell line with a library of 422 well-characterized
chemical perturbants (Supplementary Data 2, Supplementary
Data 3, and Supplementary Fig. 4A). Of all tested compounds,
122 (28.9%) promoted significant changes in at least one of the
reported pathways (KS absolute score > 0.2) (Fig. 3A, Supple-
mentary Fig. 4I, Supplementary Data 4, and Supplementary
Data 5). As expected, different drugs with similar targets dis-
played similar patterns of reporters’ changes in response to these
drugs (Supplementary Fig. 4B–G).

Surprisingly, in addition to target-specific signatures, unsu-
pervised clustering of the reporters’ activity scores also suggested
a higher structure that partitions the signal transduction
signatures into three clusters, two of which seem anticorrelated
(Fig. 3A and Supplementary Fig. 4I). Cluster A groups
compounds that seem to all activate the pathways PKA, AKT,
ERK, p38, and JNK while inhibiting WNT, p53, NFkB, RAR, HIF,
and YAP\TAZ; while cluster B contains drugs that orchestrate the
opposite response. Cluster C contained drugs that did not follow
this dichotomy. The large number of drugs with varying
mechanisms of action that result in signaling clusters A and B,
suggests a coordinated response to drug treatment that involves
all of our measured branches of signaling and is surprisingly

Fig. 1 Developing visual barcodes for multiplexing live imaging applications. A Representative image of the A375 cell line with an iRFP-H2A nuclear
marker. B Representative images of five CFP localizations in the A375 cell line: Whole Cell (WC), Nuclear Export Signal (NES), Nuclei, Peroxisome (Peroxi),
and Endoplasmic Reticulum (ER). C Heatmap of false detection rate (FDR) for barcode calling for the five CFP localizations in the A375 cell line.
D Representative images of all 12 visual barcodes used in A375 cell line. E Average miss rate of barcode calling for all 12 visual barcodes of the A375 cell
line, treated with DMSO controls (n= 39). Numbers in the diagonal represent the sensitivity for each barcode. F Violin plots showing miss rate for all 12
visual barcodes of the A375 cell line, treated with DMSO controls (n= 39) or with drugs (n= 75). G–I Scatter plot showing the separation of nine A375
clones with visual barcodes by the ImageStream system according to their fluorescent color and localization. The separation by localization is only
demonstrated for GFP-positive clones (I). J Representative images from ImageStream of all nine clones. Two cells from each clone are presented. Scale bar
in (A and B) is 50 µm, in (D) 100 µm and in (J) 7 µm. Source data are provided with this paper.
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independent of drug target. As a case in point, Fig. 3B shows a
negative correlation between the activities of p53 and p38 which
is persistent across a wide diversity of chemical perturbations.
Drugs that diminished p38 activity correlate with equivalent
increase in the activity of p53 and vice versa (Pearson’s
r = −0.517, P < 2.2 × 10−16) (Fig. 3B). More generally, drugs
promoted positive correlations among pathways within cluster A

or B (intracluster correlations) and negative correlations when
comparing pathways from cluster A to pathways from cluster B
(intercluster correlations). For simplicity, we will refer to these
two clusters as the p38 signaling state (cluster A) and the p53-
signaling state (Cluster B) (Fig. 3A).

Chemical perturbations can generate correlated influences by
simultaneously affecting more than one target. Such correlated
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Fig. 2 Generating the A375 “Signalome” reporter cell line. A Illustration of the 12 clones that were used to generate the A375 Signalome cell line. A375
cells were first infected with iRFP-H2A to mark the cell nucleus. Then, 12 clones were generated with 12 visual barcodes. Lastly, a different live reporter was
added to each of the clones. Transcription activating reporters are represented by gold while translocation reporters are represented in red. Binding
partners in the nucleus are represented in purple. B Relative number of cells from each clone in a DMSO control wells over time. C Scatter plot showing the
correlation between the reporter activity scores, for all 12 clones when grown separately or as part of the Signalome cell line, in response to 75 drugs.
D–F Reporter activity plots of the A375 signalome cell line in response to DMSO, vemurafenib (1 µM) or trametinib (0.125 µM) over time. Blue and red
backgrounds represent activation or inhibition scores above 0.2 or below −0.2, respectively. The average cell count per reporter in (D–F) is: 656, 545, and
530 cells, respectively. Source data are provided with this paper.
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influences, however, should be compound-specific, relating to
target affinities that differ from one compound to another. By
contrast, we found that the same pairs of pathways are positively,
or negatively correlated, across a large number of drugs (n= 122)
that have multiple and highly different targets. (Fig. 3B, C). To
demonstrate that this partition is not cell line-specific, we treated
the PC9 signalome cell line with 247 drugs and found very similar
bifurcation into two anticorrelated clusters of pathways (Supple-
mentary Fig. 4H and Supplementary Data 6). The question,
therefore, is as follows: how can such a wide variety of
perturbations, each associated with different targets, converge
onto only two main outcomes? We reasoned that the partitioning
of the signaling pathways into two clusters suggests a regulatory
process that is common and upstream of all of our measured
branches of signaling (Fig. 3D).

Large-scale correlations in signaling are present pre-treatment
and increase over time by multiple drugs. To gain insight into
the nature of this upstream regulatory process, we first performed
time-course measurements to ask, how soon after drug treat-
ments do the pairwise correlations become apparent? We found
that pairwise correlations in pathway activity became more and
more prominent throughout the 48 h following drug treatments
(Fig. 4A, B). The segregation of the two signaling states post drug
treatment is also apparent from visual inspection of time-course
measurements (Fig. 4C–H). Trajectories of activity of the repor-
ters in response to six representative drugs that are chemically
distinct and associated with different targets, demonstrated that
while three drugs promoted the p38 signaling state (Fig. 4C–E),
the other three activated the p53-signaling state (Fig. 4F–H).
Altogether, these results demonstrate the binary partitioning of
the signaling pathways by showing that a variety of different
drugs, each associated with different targets, converge to promote
two main signaling states outcomes.

These results suggest that the p38- and p53-signaling states are
mediated by a process that, in response to drug treatments,
gradually increases its influence, or activity, over time. Since it is
likely that the drug treatments only promoted the activity of an
already existing process, we were curious as to why the
correlations shown in Fig. 3C seem absent in unperturbed cells
(Fig. 4B)? One possibility is that, prior to drug treatments,
signaling pathways are subjected to the simultaneous influence of
several competing regulatory demands, each pulling in a different
direction. According to this interpretation, drug treatments
promote correlated signaling by increasing the relative weight
of one particular regulatory process—most likely a stress response
—such that its effect is no longer averaged by competing
influences. This model suggests a testable hypothesis: the binary
partitioning of the 12 pathways should become apparent in
untreated cells if the measurements are normalized for indepen-
dently existing correlations.

To this end, we used Principal component analysis (PCA), a
technique that transforms a dataset into a linear combination of
independently existing multivariate correlations. As expected,
PCA confirmed the high degree of correlations by identifying a
single principal component (PC1) that explains almost 50% of the
variance after 48 h of treatment (Fig. 5A). Further, the first
principal component clearly identified the two signaling states;
drugs that promote the p38-signaling or p53-signaling states are
characterized by negative or positive values of PC1 respectively
(Fig. 5B). Next, we repeated the PCA, but this time on
measurements collected prior to drug treatments (time zero).
Note that in this latter implementation of PCA, variation in
measured activities did not reflect differences in drug response, as
no drugs were yet applied, but rather, small well-to-well

variations like differences in evaporation rate or oxygen
concentrations. In early landmark studies19,20, such well-to-well
(or sample-to-sample) variation in cell division rates and in cell
size served as pivotal evidence for the functioning of cell size
checkpoints in animal cells21. Since the signalome provides
measurements on 12 pathways in each well, it can test whether
these small variations will lead to a well-specific shift in the
signaling states that can be detected by PCA. Indeed, PCA
significantly identified both p38- and p53-signaling states also in
the unperturbed cells (Fig. 5C).

To further explore whether the p38- and p53-signaling states
precede drug treatments, we tested whether measurements on
cells that were not exposed to drug treatments can predict the
specific correlations observed post drug treatments (Supplemen-
tary Fig. 5). This analysis identified dynamics that are classically
characteristic of homeostasis (Fig. 5D). In the first hour post drug
treatment, chemical perturbations effectively eliminated corre-
lated activities that linked the different branches of signaling in
the unperturbed cells. Several hours into drug treatment,
however, correlated activities resumed and, in fact, gained more
prominence. These results suggest a general stress program that:
(A) had functioned in cells that were not subject to drug
treatment (B) was effectively eliminated in the first hour of drug
treatment and (C) had resumed activity in the hours following
drug treatment. This observation can also be visualized in
Fig. 4C–H, in which the two signaling states are apparent at time
zero (pre-drug treatment), lost at one hour, and gains significance
at the latter time points.

The p38- and p53-signaling states are linked to perturbations
in cell size. The constancy of the two signaling states, in the face
of diverse chemical perturbations, suggests that the large-scale
correlations described by these signaling states function to sup-
port some process that is critical in our cell lines. Since our
measurements were performed on cancer cells, we further rea-
soned that the process in question may relate to demands
imposed by continuous cell divisions. To maintain homeostasis,
proliferating cells must double their mass between consecutive
cell divisions. In cancer, this requirement may be more
critical22–24. If cancer cells fail to match the proliferative demands
of an oncogene with equivalent increases in biosynthesis, cell size
will decrease over time21. We therefore wondered whether the
observed pattern of coordinated signaling results from stress-
sensing systems that respond to changes in cell size resulting from
imbalances in cell growth and cell division (Fig. 6A).

As a first step, we asked whether drugs that selectively interfere
with rates of biosynthesis trigger compensatory mechanisms that
will help the cell to reach a new steady-state between growth and
proliferation rates. We first used the Retinal epithelial line RPE1,
an hTERT immortalized non-cancerous cell line, as it is highly
suitable for studies of cell size21. To inhibit cell division rate, we
used various chemical inhibitors of Cyclin-dependent kinases
(CDK) like SNS-03221 while to lower biosynthetic activity (cell
growth), we either inhibited protein synthesis by Cycloheximide
or mTOR activity by Rapamycin and Torin. In all cases, drug
doses were carefully optimized to ensure that cells are still
proliferating and are not undergoing complete cell cycle arrest.
For quantitative measurements of cell growth (protein synthesis
per unit time), we followed a previously described protocol for
single-cell measurements of total macromolecular protein mass
using fluorescently labeled succinimidyl ester (SE) that label all
proteins (Supplementary Methods)21,25,26.

Our results demonstrate that during the initial hours of
Rapamycin treatment, while cell growth was rapidly inhibited, the
rates of cell division were relatively unaffected (Fig. 6B).
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Conversely, the CDK2 inhibitor SNS-032 lowered rates of cell
division but did not affect cell growth (Fig. 6B). At the later time
points, however, a coordination of growth and proliferation was
re-established, but at a slightly different setpoint. Cells with
inhibited rates of biosynthesis adapted by promoting longer
periods of biosynthetic activity (longer cell cycles). Yet, this
lengthening of the cell cycle fell short of a perfect adaptation,

resulting in paired values of growth and division that fell slightly
below the proportionality line. Similarly, to adapt to the longer
growth periods imposed by CDK2 inhibitors, cells lowered the
amount of protein synthesized per unit time. Yet, here too, the
compensation was incomplete, resulting in paired values that lay
above the line. Extending these results to multiple cell cycle or cell
growth inhibitors across five cell lines demonstrated that
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incomplete compensation of the growth and proliferation rate is a
general phenomenon (Fig. 6C). In conclusion, our results suggest
that: (A) Drugs that perturb rates of biosynthesis trigger
compensatory changes in division rates, and vice versa; (B) The
adaptation of growth rates and division rates to drug treatments is
typically incomplete, resulting in paired values of growth and
division rates that lie above and below the proportionality line.

To investigate the possibility that the p38- and p53-signaling
states that we observed are related to the homeostasis of cell size,
we asked whether drugs that induce these two states differ in their
influence on cell size. To that end, we scored each compound for
the extent that it promoted the p38-signaling vs p53-signaling
states (Supplementary Methods). We then used the signalome
single-cell resolution measurements to calculate the influence of
each drug on cell division rate and cell size. Consistent with our
hypothesis, we found that drug treatments that promote the
p38 state correlated with a smaller cell size while drugs that
promote the p53 state correlated with increased cell size
(Pearson’s r = −0.625, P = 1.68 × 10−23) (Fig. 6D).

To further strengthen our model, we asked whether drug
targets that promote the p53- and p38-signaling states were

previously characterized as regulators of cell-size homeostasis. In
mammalian cells, a comprehensive screen for mechanisms of cell-
size homeostasis was described in Liu et al.25. In that study, highly
quantitative cell-size measurements were performed on cells that
were interrogated with the NIBR MoA drug library27—a highly
characterized chemical library designed to interrogate mechan-
isms of action. To extract target-specific cell-size influences, we
implemented a linear regression model (Supplementary Meth-
ods). This resulted with a list of genes, each with a predicted
influence on rates of cell division and on cell size. Figure 6E
reveals a significant correlation between the influence of drug
targets on cell size (as quantified in Liu et al., Supplementary
Data 7). Specifically, targets that were characterized in Liu et al. as
inhibitors of cellular growth were independently identified in our
study as targets that promote the activation of the p38-signaling
state. Conversely, targets characterized by Liu et al.25 to slow the
rates of cell division were independently identified in our study as
targets that promote the activation of the signalome reporters
associated with the p53-signaling state. Notice, that while the
signalome data were produced on A375 melanoma cells, the data
of Liu et al.25 was generated using HeLa cervical cancer cells.

Fig. 4 Drug treatments increase the correlations between the activity of pathways. A Scatter plots of the activity scores of p38 and p53 reporters in the
A375 signalome cell line before and at multiple time points after treatment with 122 active drugs. Each dot represents a different drug. Pearson’s r is
depicted for each of the time points. B Pearson correlation coefficients were calculated for each pair of pathways in the A375 signalome cell line before and
at different time points after treatment with 122 active drugs. Each datapoint represents a correlation value for one given pair of pathways over all 122
active drugs. The correlation between the activity score of p38 and p53 pathways is marked by a red circle. C–H Locally weighted smoothing (Lowess)
regression of all reporters in each of the two signaling states is shown for six representative drug treatments, each associated with different drug targets.
While three of the drugs drive the p53-signaling state (C–E), the other three drugs drive the p38 signaling state (F–H). The bold (red and blue) lines and
the gray sleeves represent mean values and+ /− SEM respectively. Source data are provided with this paper.
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These correlations between signal transduction measurements on
A375 cells and cell-size measurements on HeLa cells indicate that
the link of the two states with cell size is common across different
cell lines.

Next, we used the signalome to test whether the two signaling
states correlate with imbalances in cell growth and division rates.
We found that drugs that disproportionately decrease growth

rates (i.e., data points below the diagonal) were associated with
the p38-signaling state, while drugs that disproportionately
decrease proliferation (i.e., points above the diagonal) induced
the p53-signaling state (Fig. 6F, G).

Additional support for the distinct association of the p38- and
p53-signaling states with cell growth and cell division came from
functional annotation enrichment analysis using the STRING
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database (http://string-db.org/)28–31. Relying on the list of the
drugs that selectively promote the p38- or p53-signaling states, we
asked whether drug targets that promote the p38- or p53-
signaling states are functionally distinct. Indeed, we found that
while drugs that promote the activation of the p53-signaling state
were enriched for inhibitors of the cell division cycle, drugs that
promoted the activation of the p38 state were significantly
enriched for regulators of anabolic activity, including the Insulin/
mTORC1 pathway, as well as regulators of glucose, glycogen and
carbohydrate metabolism (Supplementary Fig. 6A, B).

In cancer, disproportional changes in growth and division can
spontaneously result from intracellular genetic changes or from
external stresses, including nutrient or growth factor deprivation.
To test if the p38- and p53-signaling states are represented in
human cancers, we mined the TCGA (https://www.cancer.gov/
tcga) to retrieve proteomic measurements from 8167 human
tumors that span 32 different types of cancer32,33. To compare
signalome reporters with TCGA, we assembled a list of eight
proteins or phosphoproteins that are known to correlate with the
activity of pathways included in the signalome. Using these
proteins as a surrogate for pathway activity we separately
analyzed each of the 32 cancers for correlated signaling.
Specifically, for each cancer, we calculated all pairwise-
correlation coefficients related to the signalome pathways. Our
results demonstrated that, with the exception of cholangiocarci-
noma, similar signaling bifurcation was present in all of the other
cancer types as demonstrated in Supplementary Fig. 6F. This
further indicates a common regulatory process upstream of all of
our measured branches of signaling (Fig. 3D).

As a final question, we asked what is different about the drugs
in cluster C (Fig. 3A) that allows them to escape the mutually
exclusive association with either the p53- or the p38-signaling
states? One possible hypothesis is that drugs in this cluster target
mechanisms that are essential for the maintenance of cell-size
homeostasis by uncoupling the cellular feedback mechanisms that
balance cell proliferation and cell growth. In this context, it is
intriguing to point out that CDK4 inhibitors are among the
highest-scoring drugs in this group. Indeed, recently, we and
others have shown that cell-size homeostasis critically depends on
the CDK434 (but not CDK2) which may thus explain why CDK4
inhibitors do not adhere to the p38- pr p53-signaling states
(Supplementary Figs. 6C–E and 7). Further studies are needed to
better understand the mechanisms that drive other drugs to
cluster C.

Discussion
Live reporters are widely used to study signaling dynamics in
cells. However, currently, the ability to multiplex live reporters
together is limited by the number of reporters that can be mul-
tiplexed and the ability to follow multiplexed reporters for

multiple days rather than hours35. The integration of information
from multiple signaling branches is critical for the understanding
of complex biological processes. In this study we introduced
visual barcodes, a fluorescent protein coupled to a specific sub-
cellular localization peptide, which allows multiplexing cells in
live imaging applications. We demonstrate that visual barcodes
are robust to perturbations, have a high precision and recall rates
and are applicable for multiplexing both in vitro and in vivo.
Multiplexing of different subclones not only increases the
throughput of experiments but also reduces cost and well-to-well
or animal-to-animal variation36. Adding more fluorescent pro-
teins or cellular localizations to the system can augment its
multiplexing potential, and we predict that the system can be
easily expanded to 20-plex combinations if only one barcode is
used per cell and more than a 200-plex if two visual barcodes are
used per cell. Deconvolution of the visual barcodes was done
using freeware, thus enabling the use of the system without
licensing limitations. The visual barcodes system can be used for a
very wide variety of applications such as competition assays
between clones with different perturbations in vitro or in vivo,
live tracking of cells with reduced risk of switching between
subclones, as well as multiplexing of live reporters, as we
demonstrated by the Signalome cell lines.

For generating the Signalome cell lines, we added a different
fluorescent reporter for each of our 12 validated visual barcodes
subclones, reporting for major signaling pathways in cancer cells.
While we generated each of the Signalome subclones using three
consecutive rounds of infections (nuclear marker, visual barcode,
fluorescent reporter), we envision that a visual barcode and a
reporter could be integrated into a single plasmid thus allowing
one round of infection with a mix of plasmids on a cell line with a
nuclear marker, allowing the generation of additional Signalome
cell lines in days rather than weeks.

While the signalome technology allows multiplexing live
reporters in the same cell (Supplementary Fig. 1D, E), adding
more than a very small number of such reporters per cell may
have a substantial effect on the cells. Indeed, to the best of our
knowledge, previous works that combined multiple live reporters
in a single cell, have not exceeded a maximum of five reporters
per cell35,37–40. To achieve a much greater multiplexing, we
mixed clones of cells, each containing a single reporter. While we
demonstrate the use of 12-plex signalome cell lines we believe that
much higher multiplexing can be easily achieved by this tech-
nology. In addition to the advantage in throughput by hi-plex
reporter cell lines, as the readout of all reporters comes from the
same wells, a substantial reduction in well-to-well variability is
expected when comparing between the effect of perturbations on
the different reporters. On the other hand, there are clear lim-
itations for not comparing between reporters that are present in
the same cells. The most obvious limitation is the difficulty to

Fig. 6 Cell growth and proliferation are tightly regulated and correlate with p38- and p53-signaling states. A A model demonstrating how sensing of
cell size can affect both cell growth and proliferation to keep homeostasis of cell size. B Scatter plot showing the initial and long-term effects of rapamycin
or SNS-032 on the average cellular growth rate and division rate of Rpe1 cells. Data points indicate the average growth and division rates measured: (1)
during the first 24 h of drug treatment and (2) during 24–60 h of drug treatment. C Average growth rate vs. division rate in five cell lines (Rpe1, HeLa,
U2OS, SAOS2, 16HBE) treated with either growth inhibitors (red) or cdk1/2 inhibitors (blue). Measurements in each cell line were normalized by the values
measured for untreated control samples (gray) of the same cell line. The growth inhibitors used were: Cycloheximide, Torin-2, and Rapamycin, at varying
doses (de- tailed in “Methods”). The cdk1/2 inhibitors used were: SNS-032, PHA848125, Cdk2 Inhibitor III, and Dinaciclib, at varying doses (detailed in
“Methods”). D, E The average cell size for a given drug correlated with its PC1 value calculated on the reporters’ activity for data from Kaufman et al. (D)
and Liu at al. (E). F Average growth rate vs. division rate for A375 cells in Signalome screen. Each circle represents one screened condition (drug
treatment). The circle’s color indicates the value of PC1 in that condition. Contour lines show the average value of PC1 as a function of growth rate and
division rate. G The average level of p38 (top) and p53 (bottom) activity as a function of growth rate and cell cycle length. H A model proposing how drugs
which affect cell division activate the p53-signaling state while drugs that affect cell growth activate the p38-signaling state. Each state in return actives a
compensation mechanism resulting in a new equilibrium. Source data are provided with this paper.
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differentiate between events that occur in the same cell or in
different cells. For example, if following a perturbation a subset of
the cells of two clones that report on two signaling pathways show
inhibition of the activity in these pathways, follow-up experi-
ments will need to be carried out to find out if inhibition of both
pathways always accrue together in the same cells or maybe in
different cells. In addition, as our signalome clones were fre-
quently expanded from single cells, it is important to validate that
the main findings also apply to the whole population and do not
reflect a cell-specific phenotype. One way to overcome this lim-
itation is that each signalome reporter cell line will originate from
multiple cells rather than from a single one. It remains to be seen
what effect of such an approach will have on the recall and
precision rates of the visual barcodes.

To better understand the interdependencies of signaling
pathways, we treated the A375 and PC9 signalome cell lines with
hundreds of characterized chemical perturbants. Altogether, our
results suggest an explanation as to how a chemically diverse
collection of drugs converged onto a much smaller number of
signaling states. Growth and division are fundamental processes
that are subject to multiple mechanisms of homeostasis. While
different drugs affect different intracellular mechanisms, an
influence on growth or division is a common denominator of
many different drug targets. According to this model, the ques-
tion of whether a drug promotes the p38- or p53-signaling states
is not answered by the affected drug targets but rather, by how
that drug targets relates to growth and division, i.e., to cell size
(Fig. 6H).

The association of p38 with changes in cell size is consistent
with previous reports25,41 whereby p38 MAPK was shown to
selectively activate cells that are smaller than their target size.
With the present study, we not only confirm the selective asso-
ciation of p38 activity with decreased cell size but further
demonstrate that this small-cell-size-dependent signaling is not
exclusive to p38 MAPK, as it is also observed with ERK, JNK,
AKT, and PKA which together constitute the “p38-signaling
state”. In addition, our findings also suggest large-cell-size-
dependent signaling by members of the p53-signaling cluster. In
the context of cell-size regulation, these findings on p53 may
prove pivotal. While literature on cell-size checkpoints address
mechanisms that are activated in inappropriately small cells, lit-
erature on mechanisms that are activated in cells that are larger
than appropriate are sparse. Our findings on large-cell-size-
dependent p53 activity was confirmed in both cancer cell lines as
well as non-cancer cell lines. Both the association of p53 with cell-
size homeostasis and the negative correlation of p53 and p38
activity are consistent with previous literature. In previous stu-
dies, a negative feedback circuitry linking p38 and p53 has been
characterized42,43. Specifically, these studies have shown that
while p38 promotes the activation of p53, active p53 subsequently
responds in negative feedback to inhibit p38, bringing about the
resumption of homeostasis42,43. Our findings on the cell-size-
dependent p53/p38 dichotomy is interestingly consistent with the
roles of these proteins in cell growth. While the small-cell-size-
dependent activation of p38 is consistent with the mTORC1-
activation44,45 and growth-promoting influence of p38, the large-
cell-size-dependent activation of p53 is consistent with the
mTORC1-inhibiting and growth-inhibiting influence of p5346,47.

While previous studies have established a p38-dependent cell-
size checkpoint in mammalian cells25, these studies did not focus
on the critical need to monitor cell size in continuously pro-
liferating populations. The present work links size sensing in
proliferating cells with an adaptation to homeostasis of growth
and cell division. It is also interesting to note that, while both p38
and p53 are well-established stress proteins, their physiological
response to stress conditions is very distinct. Stress conditions

that activate p38 typically promote inflammatory programs which
promote growth and suppress apoptosis48. By contrast, the acti-
vation of p53 is both pro-apoptotic and functions to suppress
mTORC1-mediated biosynthesis49.

Overall, the visual barcodes are an easy-to-implement system
that can help researchers to multiplex cells for a very wide variety
of applications. The system is highly modular and can serve to
generate Signalome cell lines with different reporters and thus
may be useful in the research of a very wide variety of biological
fields.

Methods
Cell lines and reagents. Experiments were performed using the BRAF-mutated
melanoma A375 (ATCC CRL-1619) and SK-Mel-5 (ATCC HTB-70) cell lines and
the non-small-cell lung cancer EGFR-mutated PC9 cell lines. PC9 was a gift from
Dr. Channing Yu of the Broad Institute of Harvard and MIT. Additional experi-
ments were performed using HeLa (ATCC, CCL-2) and the retinal pigmented
epithelial (RPE1, ATCC, CRL-4000) cell lines. All cell lines were grown in Dul-
becco’s Modified Eagle’s Medium (DMEM) (Invitrogen, #10569-010). Growing
media were supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin–streptomycin, pyruvate, and glutamine (Invitrogen, #15140-122).

PCR for detection of mycoplasma. The protocol is based on the Takara Kit
(#6601). The buffer used, deoxynucleotide triphosphates (dNTPs) and Taq poly-
merase were obtained from the Takara Ex Taq kit (#RR001A). The following
forward and reverse Mycoplasma-specific primers were used for PCR: 5′-ACACC
ATGGGAGCTGGTAAT-3′, 5′-CTTCWATCGACTTYCAGACCCAAGGCAT-3′.
PCR reactions contained 13.9 μl of Invitrogen UltraPure DDW (10977-015), 2 μl of
buffer, 1.6 μl of dNTPs, 0.1 μl of TaKaRa Ex Taq™, 0.5 μl of both forward and
reverse primers (final concentration of 20 μM), and 2 μl of genomic DNA or 2 μl of
CM. CM was collected after an incubation time of three days on cells, at which
point the cells had reached at least 80% confluence. Reactions were held at 94 °C for
30 s to denature the DNA, with amplification proceeding for 40 cycles at 94 °C for
30 s, 55 °C for 2 min, and 72 °C for 1 min.

Visual barcodes and signalome plasmids construction. All of the plasmids
described in this paper to generate nuclear marker, visual barcodes, and live
reporters have been submitted to Addgene and are available. We have also sub-
mitted the backbones used to create the visual barcodes and reporters to assist the
generation of additional visual barcodes or reporter cell lines. The complete list of
the plasmids that we have submitted is shown in Table 1.

To generate the plasmids for the visual barcode clones, we used a CMV-
Puromycin-F2A construct on the backbone of pLKO.1 containing a multiple
cloning site following the F2A. First, the plasmid was linearized using NheI and
MluI right after the F2A sequence. Next, we used Gibson assembly (New England
Biolabs, Inc. #E2611) to add the fluorescent protein and localization peptide right
after the F2A sequence. All plasmid sequences were verified by sanger sequencing.

To generate the transcription response element (TRE) type of reporter plasmids
as well as the AKT reporter plasmid, we first created a promoterless-mStrawberry
plasmid (TRE backbone plasmid on backbone of pLKO.1) with a SanDI
recognition site before the mStrawberry. First, the plasmid was linearized using
SanDI. Next, PCR products containing the promoter region of the plasmids from
Supplementary Fig. 2a were fused by Gibson assembly into the TRE backbone
plasmid to generate the mStrawberry reporter plasmids.

To generate the translocation reporters, we used the KTR reporters created by
Regot et al.4. Using Gibson assembly, we introduced these reporters to our TRE
backbone plasmid by adding CMV promoter driving the expression of the KTRs
fused to mStrawberry. GEMININ reporter was constructed in an identical fashion
to the KTR reporters.

Generating visual barcode reporter clones. We constructed our visual barcode
signalome reporter clones in three steps: (1) for visual demarcation of the nuclear
region we infected the cancer cell lines with lentiviruses containing an iRFP-H2A
plasmid that we generated. We then generated a single-cell-derived parent clone
(see below); (2) we infected the parent clone with a lentivirus containing the visual
barcode plasmids and selected for positive cells using puromycin; (3) the pur-
omycin positive cells were then infected with a lentiviruses containing a mStraw-
berry Signalome reporter and positive cells were selected using blasticidin. Next, we
derived single-cell clones from the puromycin-blasticidin positive cells and tested
the clones for their visual barcode and reporter activity using known activator/
inhibitors of the signaling pathway (Supplementary Fig. 2f).

For generating the lentiviruses, plasmids were transfected into the HEK293T
(ATCC, CRL-3216) cells-2nd generation lentivirus system using jetPEI (Polyplus
transfection) according to the manufacturer’s protocol. 12 h post transfection the
293T cells media was replaced with a fresh media containing 30% FBS to increase
the 293T cells population doubling. Twenty-four hours later, lentivirus containing
supernatant was collected from the 293T cells growing plates and filtered through a
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0.45 µM filter. Next, we removed the target cells (A375, PC9, SK-Mel-5) media and
replaced it with the virus-containing filtered media for a period of 24 h. Finally, the
virus-containing media was washed and the cells were subjected to positive
selection as detailed above.

Generation of single-cell-derived clones. Cells (0.5 cells/well in 150 μl) were
seeded on a Corning 96-well plate (Cat. Number 3595). After 6–8 h, wells were
manually screened for the existence of a single cell in each well. Wells with more
than one cell were excluded from further handling. After 2–3 weeks, clones were
propagated to bigger wells to generate cell lines that were validated for their
reporter activity as indicated in Supplementary Fig. 2f.

Mice experiments using visual barcodes. Nine subclones (BFF, CFP, and GFP in
WC, NES, and peroxisome) were mixed in equal proportions and injected (2.5
million cells in total) into the flanks of female nude mice (Harlan, Israel). Following
4 weeks of the growth, the mice were sacrificed and the tumors were extracted.

The extracted tumors were broken down into a single-cell suspension using the
cold protease method described by Adam et al.50 (PMID: 28851704). In short:
Tumors were incubated at 6 °C for 7 min in a dissociation buffer containing
Bacillus Licheniformis protease (10 mg/ml final concentration), PBS and
DNaseI(125U/ml). Next, the tumors were transferred to GentleMACS C-tubes
(miltenyibiotec) and placed in the gentleMACS Dissociator (brain_03 program,
miltenyibiotec). Following dissociation, the cells were sequentially filtered on 70-
and 40-µm strainers and spun down at 500xg for 5 min at 4 °C and resuspended in
50 µL cold PBS.

Mice studies were approved by the institutional animal care and use committee
of the Weizmann Institute (00400120-3).

ImageStream analysis. Cells were imaged by an Imaging Flow Cytometer (Ima-
geStreamX Mark II, AMNIS corp. - part of Luminex, TX, USA). Data were
acquired using a ×60 lens, and lasers used were 405 nm (30 mW), 488 nm
(30 mW), 561 nm (200 mW), 642 mW (150), and 785 nm (5 mW). Data were
analyzed using the manufacturer’s software IDEAS 6.2 (AMNIS corp.). Images

Table 1 Complete list of plasmids described in this paper to generate nuclear marker, visual barcodes, and live reporters.

Addgene ID Plasmid Purpose

158665 Barcode backbone This plasmid serves as the backbone for the visual barcodes described in our paper. It has a CMV-
Puro-F2A backbone to which we insert a fluorescent protein cellular localization combination

158666 mTAGBFP2 WC visual barcode Tagging clonal populations with whole-cell mTAGBFP2 fluorescent protein
158667 mTAGBFP2 NES visual barcode Tagging clonal populations with NES mTAGBFP2 fluorescent protein. Adding NES to

mTAGBFP2 WC
158668 mTAGBFP2 Peroxisome visual

barcode
Tagging clonal populations with Peroxisomal mTAGBFP2 fluorescent protein. Adding Peroxisome
localization signal to mTAGBFP2 WC

158669 mTurquoise2 WC visual barcode Tagging clonal populations with whole-cell mTurquoise2 fluorescent protein
158670 mTurquoise2 NES visual barcode Tagging clonal populations with NES mTurquoise2 fluorescent protein.
158671 mTurquoise2 Peroxisome visual

barcode
Tagging clonal populations with Peroxisomal mTurquoise2 fluorescent protein.

158672 acGFP WC visual barcode Tagging clonal populations with whole-cell acGFP fluorescent protein
158673 acGFP NES visual barcode Tagging clonal populations with NES acGFP fluorescent protein. Adding NES to acGFP WC
158674 acGFP Peroxisome visual barcode Tagging clonal populations with Peroxisomal acGFP fluorescent protein. Adding Peroxisome

localization signal to acGFP WC
158675 EYFP WC visual barcode Tagging clonal populations with whole-cell EYFP fluorescent protein
158676 EYFP NES visual barcode Tagging clonal populations with NES EYFP fluorescent protein. Adding NES to EYFP WC
158677 EYFP Peroxisome visual barcode Tagging clonal populations with Peroxisomal EYFP fluorescent protein. Adding Peroxisome

localization signal to EYFP WC
158678 TRE reporter backbone This plasmid serves as the backbone for the TRE reporters described in our paper. It’s a

promoterless-mStrawberry-pGK-BSD backbone to which we insert a pathway-specific promoter
before the mStrawberry

158679 WNT-TRE-mStrawberry reporter This plasmid is a WNT pathway reporter. It has a 7xTcf promoter driving the expression of
mStrawberry-pGK-BSD

158680 NFKB-TRE-mStrawberry reporter This plasmid is a NFKB pathway reporter. It has a 3X-KB-L promoter driving the expression of
mStrawberry-pGK-BSD

158681 HIF-TRE-mStrawberry reporter This plasmid is a HIF1A pathway reporter. It has a 6x HIF binding element promoter driving the
expression of mStrawberry-pGK-BSD

158682 YAP/TAZ-TRE-mStrawberry
reporter

This plasmid is a YAP/TAZ pathway reporter. It has a YAP/TAZ-responsive synthetic promoter
driving the expression of mStrawberry-pGK-BSD

158683 RAR-TRE-mStrawberry reporter This plasmid is a RAR pathway reporter. It has a Retinoic Acid Receptor Response Element
promoter driving the expression of mStrawberry-pGK-BSD

158684 p53-TRE-mStrawberry reporter This plasmid is a p53 pathway reporter. It has two copies of wild-type p53 binding sites promoter
driving the expression of mStrawberry-pGK-BSD

158685 AKT-translocation-mStrawberry
reporter

This plasmid is an AKT pathway reporter. It has 1EF1a promoter driving the expression of truncated
FoxO1 fused to mStrawberry-pGK-BSD

158686 ERK-KTR-mStrawberry reporter This plasmid is a ERK pathway reporter. It has CMV promoter driving the expression of ERK-KTR
fused to mStrawberry-pGK-BSD

158687 p38-KTR-mStrawberry reporter This plasmid is a p38 pathway reporter. It has CMV promoter driving the expression of p38-KTR
fused to mStrawberry-pGK-BSD

158688 PKA-KTR-mStrawberry reporter This plasmid is a PKA pathway reporter. It has CMV promoter driving the expression of PKA-KTR
fused to mStrawberry-pGK-BSD

158689 JNK-KTR-mStrawberry reporter This plasmid is a JNK pathway reporter. It has CMV promoter driving the expression of JNK-KTR
fused to mStrawberry-pGK-BSD

158690 Geminin-mStrawberry reporter This plasmid is a Geminin cell cycle reporter. It has CMV promoter driving the expression of
Geminin fused to mStrawberry-pGK-BSD

158691 iRFP-H2A This plasmid encodes an iRFP fused to H2A histone nuclear marker. It has a CMV promoter driving
the expression of iRFP fused to H2A. It has no selection markers

All plasmids listed have been submitted to Addgene.
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were compensated for spectral overlap using single stained controls. Cells were first
gated according to their area (in µm2) and aspect ratio (the Minor Axis divided by
the Major Axis of the best-fit ellipse) of the iRFP staining. Cells were further gated
for focus using the Gradient RMS and contrast features (measures the sharpness
quality of an image by detecting large changes of pixel values in the image).
Cropped cells were eliminated using the bright-field Area and Centroid X (the
number of pixels in the horizontal axis from the upper, left corner of the image to
the center of the mask) features. Cells were divided to CFP+, BFP+ and GFP+
according to their corresponding intensities. To identify the three cell morpholo-
gies, two features were calculated for each of the FPs used: area of the highest
intensity pixels using the Threshold mask, and the similarity feature (a measure of
the degree to which two images are linearly correlated, calculated as log-
transformed Pearson’s Correlation Coefficient) calculated between each staining
and the iRFP signal. Plotting these features on a bi-variate plot gave a clear dis-
tinction of the three morphologies.

Drug libraries. Three drug libraries were used in the screen. The first and second
libraries contained 75 and 247 drugs respectively (Supplementary Data 1) that were
selected from the Selleck chemicals bioactive screening libraries and purchased
from the G-INCPM at the Weizmann Institute (https://g-incpm.weizmann.ac.il/
units/WohlDrugDiscovery/chemical-libraries). The third library was a gift from
Pfizer and contained 175 drugs (Supplementary Data 2). All libraries were screened
at a final concentration of 0.5 µM.

Screening and imaging. For screens, clones were grown in 15-cm culture plates
(Thermo Scientific, #168381) overnight in DMEM supplemented as above. Before
seeding, cells were detached by trypsin (Trypsin EDTA Solution A (0.25%), EDTA
(0.02%), 03–050–1B, Biological Industries) and resuspended in imaging media
(DMEM without phenol red (01–053–1A, Biological Industries), supplemented as
above). The number of cells/ml was counted by Vi-cell XR (Beckman Coulter) and
all clones were brought to the same cellular concentration. Clones were then mixed
in equal proportions and seeded using EL406 washer dispenser (BioTek) at 5000 or
2500 cells/well onto clear bottom 96 or 384-well plates, respectively (Greiner,
product #60–655090, Greiner, product #781-091). Cells were seeded in 135 µl/well
in 96-well plates or in 45 µl/well in 384-well plates. We also seeded each of the
clones in a separate well to allow training of the CellProfiler analyst software to
identify the different clones (see below). Note that in the screen that included 247
drugs the clone that contained the reporter for geminin was not included in the
mix as for a technical mistake and consequently data from this clone was not
generated in this screen. Plates were then cultured for 24 h at 37 °C, 5% CO2, and
100% humidity. After 24 h, cells were imaged with the Operetta CLSTM High
Content Imaging System (Perkin Elmer) using 10x high NA objective before
treating with 15/5 µl of 10× drugs for 96/384-well plates using the CyBi-Well Vario
96/250 Simultaneous Pipettor (CyBio). Next, the cells were imaged in 12-h inter-
vals for a period of 48–72 h. Temperature (37 °C) and CO2 (3%) were held constant
during the imaging. All images were acquired with the same contrast and
brightness parameters controlled by the Harmony software (Perkin Elmer). In all,
4–9 fields were acquired from each well in a 384-well plate using a ×10 objective in
both digital phase-contrast (DPC) as well as in each of the six FP-specific
wavelengths.

Image analysis and feature extraction workflow. We first used CellProfiler
(Version 2.2.0) to detect nuclei (iRFP), segment cells (DPC), identify tertiary
objects (cytoplasm, perinuclear, cell-specific background), and detect and quantify
fluorescent proteins of visual barcodes (BFP, CFP, GFP, YFP) and reporters
(mStrawberry) in all cellular compartments from all images. The resulting data,
termed cytological profiles, consist of more than 200 features that describe the
characteristics of each cell such as its size, shape, and the intensity and texture of all
FPs expressed. Results of this pipeline were exported both to the spreadsheet and
sql-lite database.

Barcode-deconvolution workflow. To determine the visual barcode identity of
each cell, we used CellProfiler Analyst (Version 2.0) classifier supervised machine
learning software. We first trained the software with images from our control wells
that were plated with only one subclone type per well (one visual barcode). We
made sure that for each clone we trained on at least 200 cells, representing all time
points in the experiment. We instructed the CellProfiler to use 50 rules in order to
differentiate between the clones. This type of training was done for each of our
experiments as we noticed that using the same set of rules between experiments
reduces the overall accuracy of barcode calling. Note that a feature could be used
more than once in the classifier. Finally, we applied the rules to all cells in the
experiment in order to determine the barcode of each cell.

Data analysis. Data analysis and statistical tests were performed using R (R ver-
sion 3.6.0) and RStudio (Version 1.2.5033). Briefly, a metadata file containing each
well treatment is joined to the experiment raw data (per cell table with cell features
and predicted barcode and reporter). Next, for each cell, we calculated the
mStrawberry (the FP used for our reporters) cytoplasmic to nuclei ratio and the
mean intensity of the nuclei after subtracting the cell-specific background intensity.

Next, the combined data frame is grouped by time-point, treatment and reporter
and Kolmogorov–Smirnov (KS) test is being performed on these two new calcu-
lated features. For the translocation reporters the test is being calculated on the
treatment’s cytoplasm to nucleus ratio density plot and for the transcription
reporters, the test is being calculated on the nuclei after subtracting the cell-specific
background. The result is an activity score for each reporter at a given treatment
and time-point (the score was not calculated in cases where the group contained
less than 30 cells). These activity scores were used to perform Hierarchical clus-
tering (distance= Euclidean, agglomeration method=Ward.D2) on the data using
the pheatmap package (version 1.0.12). Plotting the activity score was done using
the ggplot2 package (version 3.3.0). KS as well as other statistical tests were per-
formed using the stats package (version 3.6.0).

Reporter activity score. To measure the effectiveness of treatments, we used a
modified KS test, comparing the treated population’s intensity distributions with
respect to the control (Supplementary Fig. 2d). The test, which measures the
biggest difference between the two CDFs (Cumulative Distribution Function)
allows us to identify almost every significant effect the treatments had on the
reporters’ activity. However, since the KS statistic is the absolute value of the
maximum difference in CDFs, we assigned a sign to the statistic based on the
location of both populations’ median values. Thus, our score is ranged between −1
for maximum inactivation, as shown for ERK translocation reporter treated with
trametinib (Supplementary Fig. 2d) to 1, maximum activation. In general, we
noticed a high correlation between the KS score and the effect of drugs on the
distribution mean (data not shown).

Western blot. A375 cells were plated a day before treatment on a 10-cm plate at a
1.5 × 106 cells/well, and were treated by either DMSO or with the following drugs:
1 µM vemurafenib, 5 µM Nutlin 3a, 0.5 µM GSK-269962A, and 0.5 µM
GSK2334470, for 48 h. Cells were then lysed with 100 µl of ice-cold RIPA buffer
(Thermo Scientific, Piece #89901) on ice. Samples were mixed with 4× protein
sample loading buffer (Li-Cor #928–40004) and 10x sample reducing agent (Li-Cor
#B0009) and run on a 4–12% Bis-Tris gel at 120 V. Transfer to membranes (Sigma
Aldrich Cat# 10401380) was done using Program 2 on the Pierce G2 Fast Blotter
(Thermo Fisher Scientific). 1st Antibodies were used to perform immunoblotting,
according to antibody manufacturer specifications. Near-infrared (NIR) fluores-
cence was detected with the Odyssey CLx Infrared Imaging System (Li-Cor bios-
ciences), and signal intensity was quantified with ImageStudioLite software (Li-Cor
biosciences). Proteins of interest were normalized to DMSO controls and the
GAPDH loading control. Anti-mouse secondary Ab and anti-rabbit secondary Ab
were purchased from Li-Cor (#926–32211, #926–68070). The antibodies used in
our work are summarized in Table 2.

RAR/RXR pathway activity. Three cohorts of melanoma patients that contain
expression data were downloaded from the TCGA and the gene expression
omnibus (GEO, GSE65904, GSE59455). To calculate pathway activity metrics, we
used the PathOlogist tool, which uses gene expression levels and prior knowledge
about the interactions within a pathway (as explained by Ben-Hamo et al.18).

Cancer proteome comparisons. To quantify signaling activities in clinical tumor
cell data, we relied on the Cancer Proteome Atlas (https://tcpaportal.org/tcpa/
download.html) to retrieve quantitative protein expression data collected from
8167 human tumors that span 32 different types of cancer from the TCGA (https://
www.cancer.gov/tcga). To compare signalome reporters with protein expression
data from the TCGA, we assembled a list of eight proteins or phosphoproteins that
are known to correlate with the activity of pathways included in the signalome
(AKTpS473, MAPKpT202Y204, JNKpT183Y185, p38pT180Y182, PKCAL-
PHApS657, NFKBP65pS536, p53, YAP). TCGA protein-level data were correlated
to generate the full pairwise-correlation matrix for each type of cancer. Cancers

Table 2 List of primary antibodies used.

Antibody Company Catalogue

pp65 Cell Signaling #3033
YAP/TAZ Cell Signaling #8418
p-YAP/TAZ Cell Signaling #4911
AKT Cell Signaling #2920
pAKT Cell Signaling #4060
p53 Cell Signaling #48818
JNK Cell Signaling #9251
p-JNK Cell Signaling #3708
pERK1/2 Cell Signaling #4370
ERK1/2 Cell Signaling #9107
p-CREB Cell Signaling #9198
GAPDH Cell Signaling #2118
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with over 30 samples were further analyzed for the similarity of their pattern of
correlations between protein levels and the corresponding pattern of correlations
observed in the signalome. To do this, the correlation matrices were edited to
remove the diagonal elements (as these are trivial). Then, each row of the cancer’s
correlation matrix was again correlated with the corresponding row of the signa-
lome correlation matrix. This gave a similarity score for each pathway in each
cancer. This data was grouped to find how similar the cancers were overall to the
signalome in terms of correlations between pathways. Analysis was done with the
pandas (version 1.01), numpy (version 1.18.1), matplotlib (version 3.1.3), and
seaborn (0.10.0) libraries through the Anaconda Python distribution, and with
ggplot (version 3.3.0) through R (version 3.6.2) for visualization.

Measurements of cell growth. To measure the average cellular growth rate
(protein accumulation rate) in each condition, we used a previously described
method for quantification of total macromolecular protein mass in individual
cells28–30. At intervals during drug treatment, samples were fixed and permeabi-
lized, and cells were reacted with a succinimidyl ester that is covalently bound to a
fluorescent dye (SE-A647). SE-A647 covalently binds to fixed proteins to produce a
fluorescent signal that is proportional to cell mass as shown in Supplementary
Fig. 5A and B. After fixation and staining with SE-A647 (protein) and DAPI
(DNA), widefield fluorescence images were collected. The bulk protein content
(total SE-A647 intensity of sample) and the number of cells were measured in each
sample. From these measurements, we calculated the average growth rate and cell
cycle length of cells in each condition, by fitting all data points (from two replicates
of each condition) to an exponential growth model. Prior to fixation, throughout
the course of drug treatment, proliferation was independently monitored by per-
iodic imaging of live cells via differential phase-contrast imaging. These mea-
surements were used to estimate the average cell cycle length in each condition by
fitting data to an exponential proliferation model.

Cells were imaged using a Perkin Elmer Operetta high-content microscope,
controlled by Harmony software, with an incubated chamber kept at 37 °C and 5%
CO2 during live-cell imaging. A Xenon lamp was used for fluorescence
illumination, and a 740 nm LED light source was used for transmitted light.
Differential phase-contrast images were collected using a 10 × 0.4 NA objective
lens. Widefield fluorescence images were collected with a 20 × 0.75 NA
objective lens.

To slow growth rate the following drug treatments were used: cycloheximide (1,
0.6, and 0.06 µM, Sigma C4859), Torin-2 (10, 5, and 2.5 nM, Tocris 4248),
rapamycin (7, 0.7, and 0.07 µM, CalBiochem 553211). To slow the cell cycle, the
following drug treatments were used: BN82002 (25, 12.5, 6.2, 3.1, 1.6, and 0.78 µM,
Calbiochem 217691), SNS-032 (39 and 9.8 nM, Selleckchem S1145), PHA848125
(175 nM, Selleckchem S2751), Cdk2 Inhibitor III (5, 1.5, 0.75, and 0.38 µM,
Calbiochem 238803), Dinaciclib (10, 5, and 2.5 nM, Selleckchem S2768).

Metric to quantify PCA pre- and post drug treatment. We developed a metric
that quantifies how well measurements of cells that were not exposed to any drug
treatment can predict the correlated signaling activities that we observed post drug
treatment. As shown in Fig. 4, correlated activities in untreated cells seem absent
when calculated by pairwise correlations, but are identified by PCA with sig-
nificance (Fig. 5). The reason for this discrepancy is that pairwise correlations fall
short of representing multivariate dependencies. By examining the dataset as
separate pairs of pathways, piecemeal comparisons of pairwise correlations reduces
the statistical power of any data analysis. On the other hand, performing inde-
pendent PCA on treated versus untreated also falls short of answering our question.
While PCA identified multivariate trends in measurements on both drug-treated
and untreated cells, it is hard to say whether such independently identified
dependencies are similar.

To circumvent this challenge, we quantified the persistence of the correlations
with a different approach. In simple terms, we asked how well principal
components calculated from measurements on untreated cells can explain trends
that emerge post drug treatment. Intuitively, principal component analysis (PCA)
is a method that calculates a new coordinate system that is optimally aligned with
linear trends within the measured data (Supplementary Fig. 5B). In the present
study, any given drug is scored by measuring its influence on 12 branches of
signaling (Supplementary Fig. 5A). In Supplementary Fig. 5A, for example, drugs
are represented as points on a 2D coordinate system, where the “coordinates”
represent the drug’s influence on the measured pathways. In such a case, PCA
constructs a new (orthogonal) coordinate system (Supplementary Fig. 5B) that is
optimally aligned with linear dependencies in the raw data. Further, the new
coordinates calculated by PCA are hierarchically ordered such that the first
coordinate (the first principle component) is aligned in a direction that captures the
highest variance in the dataset and so on.

To test whether measurements on untreated cells can predict the drug-induced
multivariate correlations, we performed a PCA from measurements on cells that
were not exposed to drug treatments. This resulted in a coordinate system that we
call Ψ0, that has 12 axes in the Ψ0;n directions. Since Ψ0 results from performing
PCA on untreated cells, these axes (coordinates) are trivially aligned with
correlated signaling pre-drug treatment. What is not clear is whether Ψ0 would also
align with the correlations that are promoted by drugs. To test this, we compared
the product of the variances of the original measurements to the product of the

variance after measurements are projected onto Ψ0.
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2
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2
p
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As is illustrated by Supplementary Fig. 5, the product in the variances describes a
region that encloses the data points (in a given coordinate system). When two
pathways (here we use the example of p38 and ERK) have activity that’s correlated,
the region enclosing the data will be smaller in a coordinate system that is aligned
with those correlations. A useful aspect of ϕ is that it is naturally normalized to the
range of (0,1). To begin, if measured activities are not correlated, the volume that
encloses the data should not change no matter what coordinate system it is
projected onto and the value of ϕ will be near one in all coordinates. By contrast, if
we imagine perfectly correlated data, ϕ would tend to zero (e.g., a line has no
volume).

In our work, this was used to see whether the linear combinations of pathway
activity seen in unperturbed cells reflect correlations in drug-treated cells better
than the pathway activities themselves: low values of ϕ indicate that these
combined signaling groups do not reflect the coordination of signaling changes in
response to drugs, while higher values indicate that they do.

Qualify drugs conformity to p38- or p53-signaling state. To score the extent to
which a given compound promotes the p38-signaling vs p53-signaling states, we
used Eq. 2.

ψ ¼ PC1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑12

i¼1PC
2
i

q ð2Þ

Here, the value PCi is the numerical value of the drug’s effect in the ith axis of the
principal coordinate system. Intuitively, the extent by which a drug conforms with
the p38- and p53-signaling clusters is represented by the extent to which its
influence on the 12 pathways is aligned with the first principal component: the
magnitude of which is PC1. Equation 2 is the ratio of a drug’s influence on PC1 as
compared to the size of the effect vector. This quantifies how closely aligned the
drug’s effect is with p38–p53 signaling.

Linear deconvolution of drug screen. To estimate the quantitative effect of each
drug target, we fit a Ridge regression model, optimizing the following loss function:

∑n
i¼1 yi �∑p

j¼1xijβj

� �2
þ λ∑p

j¼1vjβ
2
j ð3Þ

Where y is the vector of responses, x is the compound target matrix, λ is our overall
regularization term, and vj is additional regularization applied only to interaction
terms i.e., if a target is not an interaction term vi ¼ 1 otherwise vj>1. In this paper
we are interested in the estimated individual effect for each target, so we only
looked at the individual effect estimates after fitting.

We used fivefold cross-validation to select both λ and v. We searched a grid
space of possible λ value combinations with v, choosing the set with the smallest
MSE of all combinations tried. Starting with vj ¼ 1 and doubling it’s value each
iteration we tried searching up till vj ¼ 230 where if the model had not found a
local minimum by that point we would not include the interaction terms in the
model since the smallest error continued to be the model that removed the
interaction terms as much as possible, this was the case in our analysis of cell size.
The λ values were the default selection using library glmnet in R.

Adherence to PC1 and drug strength. While hierarchical clustering assigned each
drug with a one of three clusters, the extent to which individual compounds
conform with their assigned cluster differs from one drug to another. To score the
association of individual drugs with clusters A–C, we relied on the scores retrieved
from the principal component analysis (PCA). Drugs that promote the p38- or
p53-signaling states are scored with positive or negative scores in PC1 (respec-
tively). We therefore calculated two separate metrics. The first,

Adherence to PC1 ¼
PC1

�
�

�
�

∑i PCi

� �2 ð4Þ

is a measure of the extent to which the influence of a given drug is explained by
PC1 alone. The second metric,

Drug Strength ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑i PCi

� �2
q

ð5Þ

is a measure of the total sum of the influence that the compound had on the
12 signalome reports.

Enrichment strength. To identify functional associations that characterize the
p38- and p53-signaling states, we relied on the STRING database. As seeds for the
analysis, we relied on the two lists of drug targets; (1) drug targets that—when
inhibited—result in the activation of the p38 signaling state and (2) drug targets
that—when inhibited—result in the activation of the p53-signaling state. The third
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signaling state (Cluster C) had too few unique targets for statistically significant
enrichment.

These two lists of drug targets were used as seeds for the STRING database.
STRING is a widely used, constantly updated, and expanding database of PPIs51,
used for the examination of verified, or potential interactions among proteins of
interest. These networks are rich in information on protein clusters and functions
based on various sources including KEGG52 and uniprot53. The analysis provided
by STRING is characterized by two stages of analysis: (1) construction of a genetic
association network (B) functional enrichment. To enable functional enrichment
scores, STRING links to annotation databases including KEGG and uniprot
annotated keywords. For both the p38- and the p53-drug target lists, we performed
functional enrichment with both KEGG and uniprot. To score for the different
function enrichment categories, we used the statistical strength score provided by
STRING, a statistic describing how large the enrichment effect is. Basically, the
enrichment strength is the log ratio (The statistical strength is calculated as the log-
ratio log10[observed/expected]) whereby, expected is the number of proteins in the
p38- or p53-subnetworks that are annotated with a given term and expected is the
number of proteins that are annotated with this term in a random network of the
same size.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article and
its supplementary information files. The different datasets that were used for RAR//RXR
patient stratification are publicly available as follows: (a) Cirenajwis et al. dataset is
available in GEO under the accession number: GSE6590; (b) Budden et al. dataset is
available in GEO under the accession number: GSE59455; (c) Human melanoma tumors
from TCGA were downloaded from the GDC data portal https://portal.gdc.cancer.gov/.
All the data relating to the TCGA protein analysis was downloaded from https://
tcpaportal.org/. For the Protein–protein interactions network analyzed, we used https://
string-db.org/. Source data are provided with this paper.

Code availability
The code and example datasets are available as supplementary information files.
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