Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrasensitive barocaloric material for room-temperature solid-state refrigeration

Abstract

One of the greatest obstacles to the real application of solid-state refrigeration is the huge driving fields. Here, we report a giant barocaloric effect in inorganic NH4I with reversible entropy changes of \(\Delta {S}_{{P}_{0}\to P}^{{{\max }}}\) 71 J K−1 kg−1 around room temperature, associated with a structural phase transition. The phase transition temperature, Tt, varies dramatically with pressure at a rate of dTt/dP 0.79 K MPa−1, which leads to a very small saturation driving pressure of ΔP 40 MPa, an extremely large barocaloric strength of \(\left|\Delta {S}_{{P}_{0}\to P}^{{{\max }}}/\Delta P\right|\) 1.78 J K−1 kg−1 MPa−1, as well as a broad temperature span of 41 K under 80 MPa. Comprehensive characterizations of the crystal structures and atomic dynamics by neutron scattering reveal that a strong reorientation-vibration coupling is responsible for the large pressure sensitivity of Tt. This work is expected to advance the practical application of barocaloric refrigeration.

Introduction

To tackle climate change and realize the United Nations’ Sustainable Development Goals, the first priority should be given to the decarbonization of heating and cooling sectors1. Nowadays, vapor-compression technology is extensively employed for civil and industry refrigeration, which leads to two serious environmental concerns. On the one hand, billions of running fridges, air conditioning, and heat pump units are swallowing 25–30% of the electricity, and this demand is expected to continuously grow by several times in the upcoming decades2,3. On the other hand, currently used refrigerants have a thousand-time stronger global warming potential compared to CO24. For example, the global warming potential of the popular R134a is about 1300 times higher than that of CO2. Given that such refrigerants with good performance but low global warming potential are very limited4, it is urgent to establish a low-carbon refrigeration solution.

Within such a context, solid-state refrigeration technology based on caloric effects becomes a promising alternative. Caloric effects usually include magnetocaloric5, electrocaloric6, elastocaloric7, and barocaloric effects8, which characterize the thermal effects during a solid-state phase transition induced by a specific external field, such as magnetic field, electric field, stress, and pressure, respectively. In the entire refrigeration process, the working material stays solid and thus this technology is emission-free and compact9,10,11. As far as the energy efficiency is concerned, cooling systems working with caloric materials are considerably competitive as expected to reach 60–70% of the Carnot limit or even be 150% more efficient than the vapor-compression refrigeration from the aspect of thermodynamic coefficient of performance12,13.

However, one of the greatest obstacles to the large-scale application of caloric cooling technology is the difficulty that large caloric effects can be only achieved under huge driving fields in current leading materials. For instance, the magnetic fields used to stimulate metamagnetic or magneto-structural transitions in magnetocaloric materials are generally larger than 2 T, which requires heavy and expensive rare-earth-based permanent magnets or superconducting magnets14. With respect to the electrocaloric materials, the electric fields are in the magnitude of kV m−1 or even MV m−1, which might create breakdown phenomena and hence influence the operation reliability and cycling lifetime15. In the case of leading elastocaloric materials, the typical driving stress is as large as 700 MPa to obtain good refrigeration performances16. As for barocaloric materials, the required pressure is usually above 200 MPa for most intermetallics17,18 and it is reduced down to about 100 MPa in the recently discovered plastic crystals8. Nonetheless, the development of excellent caloric materials with a smaller driving field remains highly challenging.

In this paper, we report a giant barocaloric effect around room temperature in a commercially available ammonium iodide (NH4I) compound. The phase transition temperature in NH4I displays high sensitivity to driving pressure, which renders a very small saturation driving pressure and makes NH4I one of the most efficient and cost-effective caloric materials as estimated by barocaloric strength (maximum isothermal entropy change normalized by driving force). In addition, thorough studies on crystal structures and atomic dynamics using neutron scattering techniques demonstrate that the excellent barocaloric effect is mainly attributed to the configuration entropy changes of [NH4]+ tetrahedra in the frameworks formed by I ions as well as the large sensitivity of phase transition temperature to external pressure due to the strong coupling between molecular reorientations and lattice vibrations.

Results

Barocaloric effect in NH4I

The barocaloric effect in NH4I is studied utilizing differential scanning calorimetry measurements over the temperature range of 230–340 K, under several constant external pressures (Methods and Supplementary Fig. 2). Following the heat flow data (Supplementary Fig. 2a), a phase diagram is established. As shown in Fig. 1a, a phase transition is observed at 243 K on cooling or 268 K on heating under ambient pressure, close to 257 K obtained by heat capacity measurement19. A large thermal hysteresis of \(\Delta {T}_{{{{{{\rm{hys}}}}}}}\) 25 K indicates the first-order nature of this phase transition. This phase transition takes place between the intermediate-T β-phase (space group \({Pm}\bar{3}m\)) and the high-T α-phase (\({Fm}\bar{3}m\))20. It is found that the phase transition temperature varies strongly with external pressure. Quantitatively, the steep phase boundary is defined by \({{{{{\rm{d}}}}}}{T}_{{{{{{\rm{t}}}}}}}/{{{{{\rm{d}}}}}}P\) 0.81 K MPa−1 on cooling while 0.79 K MPa−1 on heating. Although this value is larger than 0.43 K MPa−1 obtained with nuclear magnetic resonance measurement21,22, it is consistent with other thermodynamic and lattice data in this work (next section). It is worth noting that the \({{{{{\rm{d}}}}}}{T}_{{{{{{\rm{t}}}}}}}/{{{{{\rm{d}}}}}}P\) are much larger than those of other leading barocaloric materials as summarized in Fig. 1c8,17,18,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39.

Fig. 1: Barocaloric effects of NH4I.
figure 1

a Phase diagram of NH4I as functions of temperature and pressure. The cooling (down-triangle) and heating transition (up-triangle) temperatures are derived from calorimetric data in Supplementary Fig. 2a. b Pressure-induced isothermal entropy change, \(\Delta {S}_{{P}_{0}\to P}\), for the cooling and heating processes. c Much larger pressure-dependent transition temperature variation \(\left|{{{{{\rm{d}}}}}}{T}_{{{{{{\rm{t}}}}}}}/{{{{{\rm{d}}}}}}P\right|\) and smaller saturation driving pressure compared with other giant barocaloric materials8,17,18,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39. d High barocaloric strength as estimated through \(\left|\Delta {S}_{{P}_{0}\to P}^{{{\max }}}/\triangle P\right|\)34. The data for the samples marked by ‘*’ represents the reversible values with the influence of thermal hysteresis excluded. Details are summarized in Supplementary Table 1.

Based on the heat flow data, we obtained the isobaric entropy changes ∆St at the phase transition shown in Supplementary Fig. 2b as well as the pressure-induced entropy changes \(\Delta {S}_{{P}_{0}\to P}\) shown in Fig. 1b. Here, P0 is the ambient pressure while P is the applied pressure, as described in the previous report8. The maximum (or saturated) value of \(\Delta {S}_{{P}_{0}\to P}\left(T,P\right)\) on heating is 71 J K−1 kg−1, which could be realized by a small driving pressure of 40 MPa as shown in Supplementary Fig. 3. This value of \(\left|\Delta {S}_{{P}_{0}\to P}^{{{\max }}}\right|\) is comparable to those of other state-of-the-art barocaloric materials (Supplementary Fig. 4a)8,17,18,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39. The entropy changes in the unit of J K−1 cm−3 are also plotted in Supplementary Fig. 4b. The value of 0.21 J K−1 cm−3 for NH4I is also among the largest in inorganic materials. Moreover, the giant \({{{{{\rm{d}}}}}}{T}_{{{{{{\rm{t}}}}}}}/{{{{{\rm{d}}}}}}P\) value also opens a wide reversible working temperature window of 41 K under 80 MPa (Supplementary Fig. 3). The pressure sensitivity also gives rise to a giant barocaloric strength, defined by the maximum entropy changes normalized by the saturation pressure, \(\left|\Delta {S}_{{P}_{0}\to P}^{{{\max }}}/\triangle P\right|\), which is 1.78 J K−1 kg−1 MPa−1. As summarized in Fig. 1d, the barocaloric strength of NH4I is much larger than most other barocaloric materials, especially compared with the inorganics. Based on the entropy changes and specific heat capacity40, we also estimate the adiabatic temperature via the formula \(\Delta {T}_{{{{{{\rm{ad}}}}}}}=\left|T\Delta {S}_{{P}_{0}\to P}/{C}_{P}\right|\)41, which is 34 K. This is almost ranked as the biggest among the state-of-the-art barocaloric materials as summarized in Supplementary Fig. 4c and Table 1.

In addition to the isobaric measurements, the direct measurements of pressure-induced heat flow were also carried out at 298 K, as shown in Supplementary Fig. 5. Obvious exothermic and endothermic peaks are observed within pressurization (50 → 90 MPa) and depressurization (50 → 7.5 MPa) processes, respectively. The pressure-induced entropy changes are estimated as 62.7 and 65.6 J K−1 kg−1 for the pressurization and depressurization processes, respectively. These values are in good agreement with the value of 71 J K−1 kg−1 from heat flow measurements under constant pressures shown in Fig. 1.

Phase transitions as a function of temperature

As the origin of the observed barocaloric effect, the phase transition is considered in aspects of crystal structures, reorientation dynamics, and lattice dynamics. According to previous reports, NH4I undergoes successive phase transitions from low-T tetragonal γ-phase (\(P4/{nmm}\)) to intermediate-T cubic β-phase (\({Pm}\bar{3}m\)), and then to another cubic α-phase (\({Fm}\bar{3}m\)) (schematic crystal structures are shown in Supplementary Fig. 6)20,42. Our temperature-variable X-ray diffraction (XRD) measurements confirm a first-order phase transition on heating (Supplementary Fig. 7a). The diffraction patterns can be indexed with the β-phase below Tt and α-phase above Tt, respectively. The temperature dependences of lattice parameters are shown in Supplementary Fig. 7b, c. The slope of the temperature dependence of unit cell volume, \({\left(\partial V/\partial T\right)}_{{P}_{0}}\), is determined to be 3.3 × 10−8 and 4.23 × 10−8 m3 kg−1 K−1 for β and α phases, respectively. As a result, the lattice contractions under pressure have a marginal contribution to the total entropy changes for both phases, less than 0.4 J kg−1 K−1. In addition, the volume change across the βα phase transition under ambient pressure is determined to be ∆Vt 5.87 × 10−5 m3 kg−1 or 16.95%, which is in good agreement with the value of 16.96% in the literature43. Following the Clausius-Clapeyron equation \(\triangle {S}_{{{{{{\rm{t}}}}}}}=\triangle {V}_{{{{{{\rm{t}}}}}}}/\left(\frac{d{T}_{{{{{{\rm{t}}}}}}}}{{dP}}\right)\), this change corresponds to an entropy change of 74.3 J kg−1 K−1, which also agrees well with the experimentally determined value of 71 J kg−1 K−1 in Supplementary Fig. 2.

For atomic dynamics, the dynamic structure factor \(S(Q,\omega )\) is obtained using inelastic neutron scattering (INS) measurements as a function of energy transfer (ω) and momentum transfer (Q) with the Time-of-Flight Spectrometer, PELICAN, at the Australian Centre for Neutron Scattering (see Methods)44. Figure 2a illustrates three typical INS spectra, \(S(Q,\omega )\), collected at 160, 260, and 300 K, which correspond to the three phases, respectively. These spectra exhibit different features. At first, the elastic component S(Q) is extracted by integrating \(S(Q,\omega )\) over [−0.3, 0.3] meV. The results are shown in Fig. 2b, c. An obvious phase transition can be found at 275 K, corresponding to the transition from the intermediate-T β-phase to the high-T α-phase20,42. However, it is quite difficult to identify another phase transition between the low-T γ-phase and the intermediate-T β-phase, as the γ-phase is derived from the β-phase with a tiny distortion20,45.

Fig. 2: Phase transitions as a function of temperature in NH4I.
figure 2

a The contour plots of dynamic structure factor, S(Q,ω), for NH4I at 160, 260, and 300 K measured at PELICAN with Ei = 3.72 meV. b The contour plot of elastic structure factor S(Q) as a function of temperature. c Comparison of S(Q) at 160, 260, and 300 K. The Bragg peaks for the high-T α-phase and the intermediate-T β-phase are marked with subscripted ‘α’ and ‘β’, respectively. d Experimental mean-squared displacement, <u2>, determined from the fitting of S(Q) to S(Q) exp(−Q2u2〉/3) (see Supplementary Fig. 8). e Sliced S(Q,ω) over the Q range of [1.55, 1.65] Å−1 as a function of energy transfer.

To accurately track the phase transition, the atomic mean-squared-displacement (MSD) is analyzed with the Debye-Waller factor fitting of the elastic structure factor, S(Q) (see Supplementary Fig. 8)46. The obtained MSD as a function of temperature is shown in Fig. 2d. The MSD across the transition of βα exhibits an abrupt jump. In addition, it is noted that the temperature dependences of MSD present a crossover at 193 K, which corresponds to the phase transition of γβ. Given that the cross-section of H (80.26 barn) is much larger than those of I (0.31 barn) or N (0.5 barn), the obtained MSD in Fig. 2d mainly reflects the thermal fluctuation behaviors of hydrogen atoms. In fact, the sliced S(Q,ω) curves over the Q range of [1.55, 1.65] Å−1 also show strong broadening above 193 K, and this broadening develops continuously with increasing temperature until 280 K as shown in Fig. 2e. These two temperature points correspond exactly to the phase transition temperatures of γβ and βα.

Order-to-disorder transition and reorientation dynamics

The broad peaks centered around 0 meV as observed in Fig. 2a, e are signals of quasi-elastic neutron scattering (QENS). QENS is widely used to study the dynamics of molecular reorientations of hydrogen-contained materials47. S(Q,ω) over the Q range of [1.55, 1.65] Å−1 below 190 K could be fitted with a delta function convoluted with the instrumental resolution function plus a linear background (Fig. 3a). This implies that hydrogen atoms in [NH4]+ tetrahedra stay in the lattice of the low-T γ-phase, without a jump or rotation in the given energy window, which is in agreement with the crystallographic analysis based on diffraction data20. In contrast, a good fitting for the spectra above 190 K needs one more Lorentzian component as depicted in Fig. 3b, c, which is indicative of the activated motions of hydrogen atoms in the β- and α-phases.

Fig. 3: Reorientation dynamics of ammonia molecule.
figure 3

ac Spectral fitting of the sliced S(Q,ω) over the Q range of [1.55, 1.65] Å−1 at (a) 160, (b) 260, and (c) 300 K, respectively. One constant background (BKG) plus a delta function convoluted with the resolution function could make a good fitting for the spectrum at 160 K, while one more Lorentzian profile is needed at 260 and 300 K. d Temperature dependence of the full width at half maximum, Γ, of the Lorentzian components for the intermediate-T β-phase and the high-T α-phase, which are fitted to the Arrhenius equation, \(\varGamma \propto {{\exp }}\left(-\frac{{E}_{a}}{{k}_{{{{{{\rm{B}}}}}}}T}\right)\), where Ea is the activation energy for the motions and kB is the Boltzmann constant. Inset shows Q dependences of the Γ. e, f Experimental EISF compared with different reorientation models at 260 and 300 K, respectively. Insets show the schematic diagrams of the coordinations between I and [NH4]+ ions in the β- and α-phases, respectively. Following the symmetric operations, the hydrogen atoms could dwell on any of the diagonal lines in the β-phases, while the hydrogen atoms residing along the [100] direction would give a sixfold steric distribution in the α-phase (single-approach model, see Supplementary Fig. 6).

The relaxation time, τ, of the reorientation modes is estimated by the full width at half maximum (Γ) of the Lorentzian profile with the formula of \(\tau =2{{\hslash }}/\varGamma\)48. As shown in the inset of Fig. 3d, the average Γ at 300 K is 4.09 meV (τ 0.32 ps), which is 25 times smaller than the value of 0.16 meV (τ 8.2 ps) for the 260 K spectrum. Therefore, the reorientation mode in the high-T α-phase is 25 times faster than that in the intermediate-T β-phase, in agreement with the previous reports49. It is also noted that Γ for both 260 K and 300 K spectra are almost independent of Q, suggesting a localized nature of the reorientation modes similar to perovskite CH3NH3PbI3 and nano-NaAlH448,50. In addition, the activation energies of the reorientation modes are examined by fitting the temperature-dependent Γ(T) to the Arrhenius relation. The activation energy of the reorientation modes in the intermediate-T β-phase is 126(5) meV, much larger than 25(1) meV for the high-T α-phase (Fig. 3d).

The ratio between the elastic intensity (integrated area below the delta function) and the total intensity (elastic intensity plus the QENS intensity below the Lorentzian profile) gives rise to the elastic incoherent structure factor (EISF), whose Q dependence reflects the reorientation geometry. Here, several models are employed to reproduce the experimental EISF, including twofold (C2) and/or three-fold (C3) jumps, cubic tumbling as well as isotropic rotational diffusion (see Methods for details). As shown in Fig. 3e, f, the C2 and/or C3 model can be easily ruled out for EISF at both 260 (β-phase) and 300 K (α-phase). However, the EISF can be well reproduced with the cubic tumbling and isotropic rotational diffusion models. It cannot make a clear distinction between these two models due to the limited Q range of the current data.

The reorientations of [NH4]+ tetrahedra are restricted by their molecular symmetry as well as the local crystal environment. Therefore, symmetry analysis is also employed for further discussion about the reorientation modes in NH4I. In the intermediate-T β-phase, the [NH4]+ tetrahedron resides in a cube cage formed by eight I ions as illustrated in the inset of Fig. 3e. In this geometry, each N–H bond (three-fold axis) of the [NH4]+ tetrahedron is aligned with the three-fold axis of the cube cages, so that four N–H···I hydrogen bonds could be built and then lead to an energy minimum. This set leads to a Td configuration, and the [NH4]+ tetrahedra have two orientational freedoms, which match the cubic tumbling model as shown in Fig. 3e45,51. In the high-T α-phase, the reorientation dynamics become more intricate. Each [NH4]+ ion is surrounded by six I ions, which form an octahedral cage. A lot of models have been proposed in early literatures20,52,53,54, such as single-approach, double-approach, and triple-approach models52 or isotropic model54, although no exclusive decision can be made. One common feature of these models lies in that the four tetrahedrally arranged hydrogen atoms cannot achieve a close approach to the octahedrally distributed I ions simultaneously52. In this work, the single approach is considered, where only one linear N–H···I hydrogen bond is formed (see inset of Fig. 3f or Supplementary Fig. 6c, d). In this configuration, the [NH4]+ tetrahedron has six orientational freedoms45,51. This leads to a configuration entropy change of 63 J K−1 kg−1 across the βα transition (see Methods), close to the entropy change of 71 J K−1 kg−1 in Fig. 1b.

Strong reorientation-vibration coupling

The neutron-weighted phonon density of states (DOSs) was measured on the NH4I powder sample at PELICAN (Methods), and the results are shown in Fig. 4. The phonon DOS profile at 160 K contains six well-defined peaks up to 80 meV. According to the previous INS studies, the 4.8 and 7 meV peaks are related to the acoustic (marked as ‘A’) phonon bands, and the 18 meV peak is associated with the optical (marked as ‘O’) phonon band55,56, while the other three optical phonon bands at higher energy range have not yet been reported. However, the corresponding counterparts have been observed in NH4Br57, although the peak positions exhibit some differences because of the different molecular masses or chemical bonding strengths in NH4I and NH4Br. Thus, these three high-energy optical phonon bands would be attributed to the libration motions of the hydrogen atoms in [NH4]+ tetrahedra.

Fig. 4: Variation of lattice dynamics with temperature.
figure 4

a Contour plot of neutron-weighted phonon density of states (DOSs) as a function of temperature. b The profiles at 160, 260, and 300 K, respectively. The dashed lines are used for guiding eyes to track the variation of the phonon bands with temperature. ‘A’ and ‘O’ denote the acoustic and optical phonons, respectively.

One obvious phenomenon about the phonon DOSs is the significant broadening at the transition temperature of 275 K, above which the profiles become featureless. In addition, it is observed that the optical phonon bands, especially the OII, OIII, and OIV ones, show dramatic softening with increasing temperature as delineated by the dashed lines in Fig. 4. These two features of the phonon DOSs imply that the lattice vibration potentials of NH4I are very shallow and anharmonic. In combination with the fact that the hydrogen atoms in [NH4]+ tetrahedra exhibit different reorientation dynamics with the development of phonon anharmonicity (Fig. 3), it can be concluded that NH4I compound has a strong coupling between molecular reorientations and lattice vibrations, perhaps through the hydrogen bonds between the [NH4]+ tetrahedra and their I coordination environments. This phase transition dominated by reorientation-vibration coupling in NH4I can also be understood from the viewpoint of thermodynamics. With increasing temperature, the rising configurational entropy of [NH4]+ tetrahedra tends to stabilize the high-T phases, similar to the entropy-driven structural transition in formamidinium lead iodide perovskite58.

Responses of dynamic behaviors to external pressure

The responses of the phase transition to external pressure are also studied using INS under different pressures. Shown in Fig. 5a, b are contour plots of S(Q,ω) under 0.1 and 300 MPa at room temperature, respectively. This comparison becomes clearer in the sliced curves over the Q range of [1.55, 1.65] Å−1 as shown in Fig. 5c. The faster (larger Γ) reorientation mode is suppressed to be the slower (smaller Γ) mode. In addition, with the suppression of the faster reorientation mode, two peaks emerge at 19 and 34 meV from the featureless phonon DOS of the high-T α-phase, corresponding to the OI and OII bands in the intermediate-T β-phase as shown in Fig. 5d. It can be seen that the application of external pressure certainly induces changes in both the reorientation and lattice dynamics. These microscopic dynamic responses to pressure provide a solid standing point for understanding the giant barocaloric effect in NH4I.

Fig. 5: Responses of dynamic behaviors to external pressure.
figure 5

a, b The dynamic structure factor, S(Q,ω), for NH4I at 300 K under external pressure of a 0.1 MPa (ambient condition) and b 300 MPa, respectively. c, d Comparison of c the S(Q,ω) sliced over Q = [1.55, 1.65] Å−1 and d phonon DOSs between the high-T phase (red) and intermediate-T phase (blue) in responses to external pressure.

Finally, we would like to emphasize the decisive role of reorientation-vibration coupling in the giant barocaloric effect in NH4I. Such a coupling is reflected in the simultaneous variations of crystallographic symmetries, anion coordination, mean-squared displacement, lattice dynamics as well as reorientation dynamics, where the N–H···I hydrogen bonds between [NH4]+ and I play the key roles, as suggested in literatures59,60. More straightforward, the pronounced optical phonon softening (reduced phonon frequencies) as observed in Fig. 4 is linked to the weakening of the N–H···I hydrogen bonds with increasing temperature. Considering the pressure effect, phonons become hardened due to the compressed lattice volume, which is readily understood even in the quasi-harmonic approximation. At the same time, the reorganized hydrogen bonds with greater strength might suppress molecular reorientations, which gives rise to large entropy changes. The coordination environments are subsequently changed from the six-octahedron configuration to the eight-cube configuration (Supplementary Fig. 6). Consequently, the intermediate-T β-phase is induced. The energy scales are manifested as the large increase of the reorientation activation energy from 25(1) meV in the high-T α-phase to 126(5) meV in the intermediate-T β-phase (see Fig. 3d). Hence, it is plausible that the giant entropy changes mainly originate from the configurational contribution, and the small saturation driving pressure is rooted in the strong reorientation-vibration coupling.

Discussion

To summarize, we present a thorough study on the inorganic NH4I compound which exhibits a giant barocaloric effect over a broad temperature range around room temperature. One of the most noticeable features of NH4I is the giant pressure sensitivity of the phase transition temperature. Although larger entropy change requires smaller \({{{{{\rm{d}}}}}}{T}_{{{{{{\rm{t}}}}}}}/{{{{{\rm{d}}}}}}P\) as suggested by the Clausius-Clapeyron equation33, a larger \({{{{{\rm{d}}}}}}{T}_{{{{{{\rm{t}}}}}}}/{{{{{\rm{d}}}}}}P\) value is also desirable in practice for smaller driving pressures as demonstrated in NH4I. The great pressure sensitivity of the phase transition temperature stems from the strong coupling between molecular reorientations and lattice vibrations, while the giant entropy change is largely contributed by the orientational disorder of [NH4]+ tetrahedra. This work is expected to inspire the discovery of giant barocaloric materials with high pressure-sensitive phase transition, and hence push a big step forward towards the realization of efficient and affordable barocaloric refrigeration.

Methods

Sample preparation and characterization

The NH4I powder sample with 99.999% purity was purchased from Aladdin. The XRD measurement was carried out on a powder sample at a Rigaku Miniflex-600 diffractometer with Cu-Kα radiation over 10°–90° with a constant step of 0.02°at room temperature (see Supplementary Fig. 1). Temperature-variable XRD patterns were collected on a Rigaku Smartlab diffractometer with Cu-Kα radiation. A polycrystalline sample was cooled down to 175 K, where it was kept for 30 min. Then, the measurements were performed over 175–375 K for every 10 K. All patterns were analyzed with Rietveld refinement method using the FullProf suites61.

Barocaloric measurements

The heat flow measurements were performed using a high-pressure differential scanning calorimeter, µDSC, Setaram8,62,63. For the constant-pressure measurements as a function of temperature, a powder sample weighted 20 mg was sealed into a high-pressure vessel made of Hastelloy, while an empty vessel was also used as a reference. Desirable hydrostatic pressures were generated and maintained by controlling argon gas pressure through the high-pressure gas panel. The data were collected in the temperature range from 230 to 340 K under the constant pressure of 0.1, 10, 20, 30, 40, 50, 60, 70, and 80 MPa, respectively. A ramping rate of 1 K min−1 was used for both the cooling and heating processes. For variable-pressure measurements at room temperature, a powder sample weighted 42 mg was sealed into the Hastelloy vessel. The heat flow variations with time were recorded for the pressurization (50–90 MPa) and depressurization (50–7.5 MPa) processes, as drawn in Supplementary Fig. 5. The background was determined by avoiding phase transitions, which was guaranteed by the thermal hysteresis.

INS/QENS measurements

The INS and/or QENS experiments were conducted using the cold-neutron time-of-flight spectrometer, PELICAN, at the Australian Centre for Neutron Scattering, ANSTO44. The instrument was configured with an incident neutron wavelength of 4.69 Å, affording incident energy of 3.72 meV with an energy resolution of 0.135 meV at the elastic line. A powder sample was sealed into an annular aluminum can. The measurements were carried out from 100 to 390 K to cover the two-phase transitions. The empty can was measured in the same conditions for background subtraction. In addition, a standard vanadium sample was also measured for detector normalization and determination of the energy resolution function. The high-pressure neutron scattering measurements were performed with the same configuration at 0.1 and 300 MPa at 300 K. A bespoke high-pressure cell made of Be-Cu alloys was used, and a KBr powder sample was employed to calibrate the actual pressures. The data reduction, including background subtraction and detector normalization, was performed using the Large Array Manipulation Program (LAMP)64, while the sliced QENS spectra were analyzed in the Pan module built-in the Data Analysis and Visualization Environment (DAVE)65.

Analysis of the reorientation dynamics

In the INS spectrum, the broadening underneath the elastic peak is the signal of QENS, which is associated with diffusive and/or reorientation motions. Assuming one single reorientation mode, the QENS dynamics structural factor \(S\left(Q,\omega \right)\) can be described as66:

$$S\left(Q,\omega \right)=f\times \left[{A}_{{{{{{\rm{E}}}}}}}\left(Q\right)\delta \left(\omega \right)+\sum {A}_{{{{{{\rm{QE}}}}}},i}\left(Q\right){L}_{i}\left(Q,\omega \right)\right]\otimes R\left(Q,\omega \right)+b\left(Q,\omega \right)$$
(1)

where \(\delta \left(\omega \right)\) is a delta function representing the elastic peak, \({A}_{{{{{{\rm{E}}}}}}}\left(Q\right)\) and \({A}_{{{{{{\rm{QE}}}}}}}\left(Q\right)\) are the weights of the elastic and quasi-elastic scattering, f is a scaling factor, \(R\left(Q,\omega \right)\) is experimentally determined resolution function, and \(b\left(Q,\omega \right)\) is a linear background. The symbol describes numerical convolution between the elastic/quasi-elastic components and instrumental resolution. The quasielastically broadened energy distribution could be well depicted by a Lorentzian function:

$$L\left(Q,\omega \right)=\frac{1}{\pi }\frac{\frac{1}{2}\varGamma \left(Q\right)}{{\left({{\hslash }}\omega \right)}^{2}+{\left(\frac{1}{2}\varGamma \left(Q\right)\right)}^{2}}$$
(2)

where Γ(Q) is the full width at half maximum, corresponding to the frequency of a motion.

To analyze the reorientation geometry of the [NH4]+ tetrahedra, EISF was extracted from spectral fitting:

$${{{{{\rm{EISF}}}}}}=\frac{{A}_{{{{{{\rm{E}}}}}}}\left(Q\right)}{{A}_{{{{{{\rm{E}}}}}}}\left(Q\right)+{A}_{{{{{{\rm{QE}}}}}}}\left(Q\right)}$$
(3)

Three models were considered to reproduce the experimentally determined EISF67:

C2 and/or C3 jumps:

$${{{{{\rm{EISF}}}}}}=\frac{1}{2}\left[1+{j}_{0}\left(Qd\right)\right]$$
(4)

Cubic tumbling:

$${{{{{\rm{EISF}}}}}}=\frac{1}{8}\left[1+3{j}_{0}\left({Qd}/\sqrt{2}\right)+3{j}_{0}\left({Qd}\right)+{j}_{0}\left({Qd}\sqrt{3/2}\right)\right]$$
(5)

Isotropic rotational diffusion:

$${{{{{\rm{EISF}}}}}}={j}_{0}^{2}\left({Qr}\right)$$
(6)

where d is the jump distance, r is the rotational radius, and \({j}_{0}\left(x\right)=\frac{{\sin }\left(x\right)}{x}\) is the spherical Bessel function of the zeroth order67. In the case of NH4I, d is close to the H–H distance in the [NH4]+ tetrahedra (1.67 Å), whereas r is the same as the N–H bond length or \(r=d\times \sqrt{3/8}\) (1.02 Å)68.

When the possible orientational geometries at a phase transition are determined, the configurational entropies across this phase transition can be estimated by the formula as follows:

$$\triangle {S}_{{{{{{\rm{conf}}}}}}}=R{{{{{\rm{ln}}}}}}\frac{{N}_{2}}{{N}_{1}}$$
(7)

where R is the gas constant, N1 and N2 are the numbers of possible orientational configurations below and above a phase transition temperature.

Analysis of the lattice dynamics

The measured dynamic structure factor with powder sample correlates to the phonon DOS, g(E)69:

$$g\left(E\right)=A\times \left\langle 4M\frac{{{\exp }}\left(2W\right)}{{{{\hslash }}}^{2}{Q}^{2}}\frac{E}{n\left(E,T\right)+\frac{1}{2}\pm \frac{1}{2}}S\left(Q,\omega \right)\right\rangle$$
(8)

where A is a scaling factor, M, and \({{\exp }}\left(-2W\right)\) are the atomic mass and Debye-Waller factor, respectively, while the ‘+’ and ‘–‘ signs denote energy loss or energy gain of neutrons, respectively. \(n\left(E,T\right)\) is the Bose-Einstein occupation factor, defined as \(n\left(E,T\right)={\left[{{\exp }}\left(E/{k}_{B}T\right)-1\right]}^{-1}\), where kB is the Boltzmann constant. The brackets 〈〉 represent the average operator over all Q ranges at a given energy. In a polyatomic material, the experimental determined phonon DOSs are neutron-weighted as70,

$${g}_{{{{{{\rm{NW}}}}}}}\left(E\right)=\mathop{\sum}\limits_{i}{f}_{i}\frac{{\sigma }_{i}}{{M}_{i}}{g}_{i}\left(E\right){{\exp }}\left(-2{W}_{i}\right)$$
(9)

here i represents different elements, fi is the atomic concentration, \({g}_{i}\left(E\right)\) is the real partial phonon DOS of the element i. In this work, due to the limited maximum value (3.72 meV) on the energy loss side, only the energy gain side of the \(S\left(Q,\omega \right)\) up to 80 meV was used to extract the \({g}_{{{{{{\rm{NW}}}}}}}\left(E\right)\). In addition, it is noted that the values of \(\sigma /M\) for N, H, and I are 0.82, 82.02, and 0.03 barn/amu, respectively. Therefore, the obtained \({g}_{{{{{{\rm{NW}}}}}}}\left(E\right)\) mainly reflects the vibrational information of hydrogen atoms.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. The Royal Society. Climate change: science and solutions. https://royalsociety.org/topics-policy/projects/climate-change-science-solutions/ (2021).

  2. United Nations Environmental Programme. The Importance of Energy Efficiency in the Refrigeration, Air-conditioning and Heat Pump Sectors. https://ozone.unep.org/sites/default/files/2019-08/briefingnote-a_importance-of-energy-efficiency-in-the-refrigeration-air-conditioning-and-heat-pump-sectors.pdf (2018).

  3. Peters, T. A. Cool World: Defining the energy conundrum of cooling for all. Technical Report. Birmingham Energy Institute, The Institute for Global Innovation, https://www.birmingham.ac.uk/Documents/college-eps/energy/Publications/2018-clean-cold-report.pdf (2018).

  4. McLinden, M. O. et al. Limited options for low-global-warming-potential refrigerants. Nat. Commun. 8, 14476 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Brown, G. V. Magnetic heat pumping near room temperature. J. Appl. Phys. 47, 3673–3680 (1976).

    ADS  CAS  Article  Google Scholar 

  6. Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  7. Nikitin, S. A. et al. Giant elastocaloric effect in FeRh alloy. Phys. Lett. A 171, 234–236 (1992).

    ADS  CAS  Article  Google Scholar 

  8. Li, B. et al. Colossal barocaloric effects in plastic crystals. Nature 567, 506–510 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  9. Hou, H., Qian, S. & Takeuchi, I. Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. https://doi.org/10.1038/s41578-022-00428-x (2022).

  10. Chen, Y. et al. A compact elastocaloric refrigerator. Innovation 3, 100205 (2022).

    Google Scholar 

  11. Aprea, C. et al. Is barocaloric an eco-friendly technology? A TEWI comparison with vapor compression under different operation modes. Climate 7, 115 (2019).

    Article  Google Scholar 

  12. Maier, L. M. et al. Active magnetocaloric heat pipes provide enhanced specific power of caloric refrigeration. Commun. Phys. 3, 186 (2020).

    CAS  Article  Google Scholar 

  13. Aprea, C. et al. The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler. Energy 190, 116404 (2020).

    CAS  Article  Google Scholar 

  14. Kitanovski, A. Energy applications of magnetocaloric materials. Adv. Energy Mater. 10, 1903741 (2020).

    CAS  Article  Google Scholar 

  15. Shi, J. et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule 3, 1200–1225 (2019).

    Article  Google Scholar 

  16. Cong, D. et al. Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys. Phys. Rev. Lett. 122, 255703 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  17. Manosa, L. et al. Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nat. Commun. 2, 595 (2011).

    ADS  PubMed  Article  CAS  Google Scholar 

  18. Manosa, L. et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  19. Stephenson, C. C., Landers, L. A. & Cole, A. G. Rotation of the ammonium ion in the high temperature phase of ammonium iodide. J. Chem. Phys. 20, 1044–1045 (1952).

    ADS  CAS  Article  Google Scholar 

  20. Levy, H. A. & Peterson, S. W. Neutron diffraction determination of the crystal structure of ammonium bromide in four phases1. J. Am. Chem. Soc. 75, 1536–1542 (1953).

    CAS  Article  Google Scholar 

  21. Andersson, P. & Ross, R. G. The phase diagram of ammonium iodide (NH4I) under pressure, and a comparison with NH4Cl and NH4Br. J. Phys. C Solid State Phys. 20, 4737–4743 (1987).

    ADS  CAS  Article  Google Scholar 

  22. Kozlenko, D. P. et al. Ammonium ion dynamics in NH4I at high pressure. Mol. Phys. 99, 427–433 (2001).

    ADS  CAS  Article  Google Scholar 

  23. Stern-Taulats, E. et al. Inverse barocaloric effects in ferroelectric BaTiO3 ceramics. APL Mater. 4, 091102 (2016).

    ADS  Article  CAS  Google Scholar 

  24. Yuce, S. et al. Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Appl. Phys. Lett. 101, 071906 (2012).

    ADS  Article  CAS  Google Scholar 

  25. Stern-Taulats, E. et al. Barocaloric and magnetocaloric effects in Fe49Rh51. Phys. Rev. B 89, 214105 (2014).

    ADS  Article  CAS  Google Scholar 

  26. Matsunami, D. et al. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat. Mater. 14, 73–78 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  27. Aznar, A. et al. Giant and reversible inverse barocaloric effects near room temperature in ferromagnetic MnCoGeB0.03. Adv. Mater. 31, e1903577 (2019).

    PubMed  Article  CAS  Google Scholar 

  28. Lin, J. et al. Giant room-temperature barocaloric effect at the electronic phase transition in Ni1−xFexS. Mater. Horiz. 7, 2690–2695 (2020).

    CAS  Article  Google Scholar 

  29. Samanta, T. et al. Barocaloric and magnetocaloric effects in (MnNiSi)1−x(FeCoGe)x. Appl. Phys. Lett. 112, 021907 (2018).

    ADS  Article  CAS  Google Scholar 

  30. Aznar, A. et al. Giant barocaloric effect in all-d-metal Heusler shape memory alloys. Phys. Rev. Mater. 3, 044406 (2019).

    CAS  Article  Google Scholar 

  31. Bermudez-Garcia, J. M. et al. Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nat. Commun. 8, 15715 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Li, J. et al. Reversible barocaloric effects over a large temperature span in fullerite C60. J. Mater. Chem. A 8, 20354–20362 (2020).

    CAS  Article  Google Scholar 

  33. Vallone, S. P. et al. Giant barocaloric effect at the spin crossover transition of a molecular crystal. Adv. Mater. 31, e1807334 (2019).

    PubMed  Article  CAS  Google Scholar 

  34. Lloveras, P. et al. Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat. Commun. 6, 8801 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  35. Flerov, I. N. et al. Thermal, structural, optical, dielectric and barocaloric properties at ferroelastic phase transition in trigonal (NH4)2SnF6: A new look at the old compound. J. Fluor. Chem. 183, 1–9 (2016).

    CAS  Article  Google Scholar 

  36. Aznar, A. et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nat. Commun. 8, 1851 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Romanini, M. et al. Giant and reversible barocaloric effect in trinuclear spin-crossover complex Fe3(bntrz)6(tcnset)6. Adv. Mater. 33, 2008076 (2021).

    CAS  Article  Google Scholar 

  38. Aznar, A. et al. Reversible and irreversible colossal barocaloric effects in plastic crystals. J. Mater. Chem. A 8, 639–647 (2020).

    CAS  Article  Google Scholar 

  39. Kosugi, Y. et al. Colossal barocaloric effect by large latent heat produced by first-order intersite-charge-transfer transition. Adv. Funct. Mater. 31, 2009476 (2021).

    CAS  Article  Google Scholar 

  40. Chase, M. W. Jr NIST-JANAF thermochemical tables. J. Phys. Chem. Ref. Data, Monogr. 9, 1–1951 (1998).

    Google Scholar 

  41. Földeàki, M., Chahine, R. & Bose, T. K. Magnetic measurements: a powerful tool in magnetic refrigerator design. J. Appl. Phys. 77, 3528–3537 (1995).

    ADS  Article  Google Scholar 

  42. Durig, J. R. & Antion, D. J. Low‐frequency vibrations in ammonium iodide and ammonium bromide. J. Chem. Phys. 51, 3639–3647 (1969).

    ADS  CAS  Article  Google Scholar 

  43. Rao, C. N. R. & Natarajan, M. Crystal structure transformations in binary halides. (US National Bureau of Standards, 1972).

  44. Yu, D. et al. Pelican—a time of flight cold neutron polarization analysis spectrometer at OPAL. J. Phys. Soc. Jpn. 82, SA027 (2013).

    Article  Google Scholar 

  45. Goyal, P. S. & Dasannacharya, B. A. Neutron scattering from ammonium salts. I. Coexisting phases in NH4I and NH4+ dynamics in phase I and II. J. Phys. C Solid State Phys. 12, 209–217 (1979).

    ADS  CAS  Article  Google Scholar 

  46. Telling, M. T. F. et al. Anharmonic behavior in the multisubunit protein apoferritin as revealed by quasi-elastic neutron scattering. J. Phys. Chem. B 112, 10873–10878 (2008).

    CAS  PubMed  Article  Google Scholar 

  47. Berrod, Q. et al. Inelastic and quasi-elastic neutron scattering. Application to soft-matter. EPJ Web Conf. 188, 05001 (2018).

    Article  CAS  Google Scholar 

  48. Li, B. et al. Polar rotor scattering as atomic-level origin of low mobility and thermal conductivity of perovskite CH3NH3PbI3. Nat. Commun. 8, 16086 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Goyal, P. S. & Dasannacharya, B. A. Neutron scattering from ammonium salts. II. Reorientational motion of ammonium ions in octahedral environments. J. Phys. C Solid State Phys. 12, 219–234 (1979).

    ADS  CAS  Article  Google Scholar 

  50. NaraseGowda, S. et al. Quasi-elastic neutron scattering studies of hydrogen dynamics for nanoconfined NaAlH4. J. Phys. Chem. C. 120, 14863–14873 (2016).

    CAS  Article  Google Scholar 

  51. Guthrie, G. B. & McCullough, J. P. Some observations on phase transformations in molecular crystals. J. Phys. Chem. Solids 18, 53–61 (1961).

    ADS  CAS  Article  Google Scholar 

  52. Levy, H. A. & Peterson, S. W. Neutron diffraction study of the NaCl-type modification of ND4Br and ND4I. J. Chem. Phys. 21, 366–366 (1953).

    ADS  CAS  Article  Google Scholar 

  53. Seymour, R. S. & Pryor, A. W. Neutron diffraction study of NH4Br and NH4I. Acta Crystallogr. B26, 1487–1491 (1970).

    Article  Google Scholar 

  54. Sharp, A. R. & Pintar, M. M. Nuclear magnetic relaxation study of the establishment of order in the ammonium halides. Chem. Phys. 15, 431–444 (1976).

    CAS  Article  Google Scholar 

  55. Vagelatos, N., Rowe, J. M. & Rush, J. J. Lattice dynamics of ND4I in the NaCl phase (I) at 296°K. Phys. Rev. B 12, 4522–4529 (1975).

    ADS  CAS  Article  Google Scholar 

  56. Goel, C. M., Sharma, T. P. & Dayal, B. Lattice dynamics of ND4I and NH4I crystals. J. Phys. Chem. Solids 38, 1285–1288 (1977).

    ADS  CAS  Article  Google Scholar 

  57. Goyal, P. S., Penfold, J. & Tomkinson, J. Observation by neutron incoherent inelastic spectroscopy of split higher harmonics of the ammonium ion librational mode in the cubic phase of NH4Br. Chem. Phys. Lett. 127, 483–486 (1986).

    ADS  CAS  Article  Google Scholar 

  58. Chen, T. et al. Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite. Sci. Adv. 2, e1601650 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. Heyns, A. M., Hirsch, K. R. & Holzapfel, W. B. The effect of pressure on the Raman spectrum of NH4I. J. Chem. Phys. 73, 105–119 (1980).

    ADS  CAS  Article  Google Scholar 

  60. Huang, Y. et al. Structural properties of ammonium iodide under high pressure. RSC Adv. 5, 40336–40340 (2015).

    ADS  CAS  Article  Google Scholar 

  61. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    ADS  Article  Google Scholar 

  62. Zhang, K. et al. Colossal barocaloric effect in carboranes as a performance tradeoff. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202112622 (2022).

  63. Zhang, Z. et al. Barocaloric thermal batteries. Preprint at https://doi.org/10.48550/arXiv.42103.04348 (2021).

  64. Richard, D., Ferrand, M. & Kearley, G. J. Analysis and visualisation of neutron-scattering data. J. Neutron Res. 4, 33–39 (1996).

    Article  Google Scholar 

  65. Azuah, R. T. et al. DAVE: A comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl Inst. Stand. Technol. 114, 341–358 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Jalarvo, N. et al. Structure and dynamics of octamethyl-POSS nanoparticles. J. Phys. Chem. C. 118, 5579–5592 (2014).

    CAS  Article  Google Scholar 

  67. Verdal, N. et al. Quasielastic neutron scattering study of tetrahydroborate anion dynamical perturbations in sodium borohydride due to partial halide anion substitution. J. Alloy. Compd. 645, S513–S517 (2015).

    CAS  Article  Google Scholar 

  68. Andersson, M. S. et al. Interplay of NH4+ and BH4 reorientational dynamics in NH4BH4. Phys. Rev. Mater. 4, 085002 (2020).

    CAS  Article  Google Scholar 

  69. Mittal, R. et al. Effects of magnetic doping and temperature dependence of phonon dynamics in CaFe1−xCoxAsF compounds (x = 0, 0.06, and 0.12). Phys. Rev. B 79, 214514 (2009).

    ADS  Article  CAS  Google Scholar 

  70. Ren, Q. et al. Establishing the carrier scattering phase diagram for ZrNiSn-based half-Heusler thermoelectric materials. Nat. Commun. 11, 3142 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

X.T. and B.L. acknowledge the support by the National Key Research and Development Program of China (Grant No. 2020YFA040600). B.L. also thanks fundings from the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC002), CSNS Consortium on High-performance Materials of Chinese Academy of Sciences, the International Partner Program of Chinese Academy of Sciences (Grant No. 174321KYSB20200008), the Liaoning Revitalization Talents Program (Grant No. XLYC1807122), the Young Innovation Talent Program of Shenyang (Grant no. RC210435) and National Natural Science Foundation of China (Grant No. 11804346). X.T. also acknowledges the financial supports from National Natural Science Foundation of China (Grant No. 11875265), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (3He based neutron polarization devices), Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2019B1515120079), R&D projects in key areas of Guangdong Province (Grant No. 2019B010941002), and Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents (Grant No. 20191122). Q.Y.R. thanks the project from National Natural Science Foundation of China (Grant No. 52101236), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515140014), the Institute of High Energy Physics, Chinese Academy of Science (Grant No. E15154U110), and Open project of Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education) (Grant No. 2021-05). All authors acknowledge the beam time granted by ANSTO (Proposal Nos. 8268 and 8318).

Author information

Authors and Affiliations

Authors

Contributions

B.L. proposed the project. J.Q., Z.Z., R.S., W.J.R., Z.D.Z., and B.L. carried out in-house structural and thermal characterizations. J.Q. was co-supervised by B.L. and Z.D.Z. Neutron scattering measurements were performed by D.H.Y., Q.Y.R., J.Q., W.L.S., and B.L. The high-pressure cells were prepared by B.Y., Q.Y.R., and X.T. Neutron scattering spectra were analyzed by Q.Y.R. with the help from J.Q., W.L.S., T.H.W., Z.Z., X.T., and B.L. Q.Y.R. drafted the manuscript. All authors edited and finalized the manuscript.

Corresponding authors

Correspondence to Xin Tong or Bing Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, Q., Qi, J., Yu, D. et al. Ultrasensitive barocaloric material for room-temperature solid-state refrigeration. Nat Commun 13, 2293 (2022). https://doi.org/10.1038/s41467-022-29997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-022-29997-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing