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EPicker is an exemplar-based continual learning
approach for knowledge accumulation in cryoEM
particle picking
Xinyu Zhang1,2,9, Tianfang Zhao1,2,9, Jiansheng Chen 3✉, Yuan Shen 1,2✉ & Xueming Li 4,5,6,7,8✉

Deep learning is a popular method for facilitating particle picking in single-particle cryo-

electron microscopy (cryo-EM), which is essential for developing automated processing

pipelines. Most existing deep learning algorithms for particle picking rely on supervised

learning where the features to be identified must be provided through a training procedure.

However, the generalization performance of these algorithms on unseen datasets with dif-

ferent features is often unpredictable. In addition, while they perform well on the latest

training datasets, these algorithms often fail to maintain the knowledge of old particles. Here,

we report an exemplar-based continual learning approach, which can accumulate knowledge

from the new dataset into the model by training an existing model on only a few new samples

without catastrophic forgetting of old knowledge, implemented in a program called EPicker.

Therefore, the ability of EPicker to identify bio-macromolecules can be expanded by con-

tinuously learning new knowledge during routine particle picking applications. Powered by the

improved training strategy, EPicker is designed to pick not only protein particles but also

general biological objects such as vesicles and fibers.

https://doi.org/10.1038/s41467-022-29994-y OPEN

1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China. 2 Beijing National Research Center for Information Science and
Technology, Tsinghua University, Beijing 100084, China. 3 School of Computer and Communication Engineering, University of Science and Technology
Beijing, Beijing 100083, China. 4 School of Life Sciences, Tsinghua University, Beijing 100084, China. 5 Tsinghua-Peking Joint Center for Life Sciences, Beijing
100084, China. 6 Beijing Frontier Research Center for Biological Structure, Beijing 100084, China. 7 Advanced Innovation Center for Structural Biology, Beijing
100084, China. 8 Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China. 9These
authors contributed equally: Xinyu Zhang, Tianfang Zhao. ✉email: jschen@ustb.edu.cn; shenyuan_ee@tsinghua.edu.cn; lixueming@tsinghua.edu.cn

NATURE COMMUNICATIONS |         (2022) 13:2468 | https://doi.org/10.1038/s41467-022-29994-y | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29994-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29994-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29994-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29994-y&domain=pdf
http://orcid.org/0000-0002-2040-7938
http://orcid.org/0000-0002-2040-7938
http://orcid.org/0000-0002-2040-7938
http://orcid.org/0000-0002-2040-7938
http://orcid.org/0000-0002-2040-7938
http://orcid.org/0000-0002-9396-1964
http://orcid.org/0000-0002-9396-1964
http://orcid.org/0000-0002-9396-1964
http://orcid.org/0000-0002-9396-1964
http://orcid.org/0000-0002-9396-1964
http://orcid.org/0000-0002-8451-9947
http://orcid.org/0000-0002-8451-9947
http://orcid.org/0000-0002-8451-9947
http://orcid.org/0000-0002-8451-9947
http://orcid.org/0000-0002-8451-9947
mailto:jschen@ustb.edu.cn
mailto:shenyuan_ee@tsinghua.edu.cn
mailto:lixueming@tsinghua.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


S ingle-particle cryo-electron microscopy (cryo-EM) is now a
powerful tool for determining the atomic structure of bio-
macromolecules in the solution. Single-particle cryo-EM

processing involves a multistep workflow to obtain the structure
by 3D reconstruction. Particle picking is a key step at the
beginning of the workflow; it recognizes bio-macromolecular
particles embedded in vitreous ice and determines their locations
on micrographs. A cryoEM micrograph often contains multiple
views of the target bio-macromolecules, degraded proteins, pro-
tein impurities, and ice contaminations. Particle picking is
expected to precisely locate particles of protein complexes with a
homogenous conformation and those with conformational or
compositional heterogeneity. Owing to the requirement for effi-
ciency of the cryoEM workflow, particle picking is also expected
to be automated.

The basic concept of particle picking is to match given features
to target images, which includes two steps: feature extraction and
object detection. Traditional methods, such as FindEM1,
Signature2, DoGpicker3, gAutoMatch, and the picking sub-
routines in EMAN4 and RELION5, are based on matching given
templates or specific features. The user should explicitly prepare
and provide template images or specific feature descriptions of
the target samples. However, these methods suffer from the
dependency of template preparation, which often strongly
depends on the user’s experience and can easily cause bias. As an
alternative to template matching, several algorithms that do not
require the user to provide templates have been developed, such
as DeepCryoPicker6 and DRPNet7, which automatically obtain
features using clustering and unsupervised learning algorithms,
respectively. In recent years, deep-learning-based methods,
especially convolutional neural networks (CNNs), have shown
great potential for particle picking. CNNs are more adaptable and
automated than traditional methods. Rather than using intuitive
and visible features, deep learning algorithms can automatically
learn to extract abstract and hierarchical features from labeled
samples via a multi-layer neural network and generate a para-
metric model. This process is called training. Then, based on the
model, particle picking can be performed through the inference
process.

Wang et al. employed a CNN in DeepPicker8 for particle
picking. By joint training on several datasets of diversified protein
complexes, DeepPicker demonstrated the generalization cap-
ability of CNNs in the task of particle picking. Later, more par-
ticle picking approaches and programs, such as DeepEM9,
Warp10, Topaz11,12, and crYOLO13, used CNN or modified CNN.
In these methods, joint training is applied to multiple datasets.
For instance, crYOLO13 used 53 datasets; the developer of
Warp10 suggested a central repository of training data and peri-
odic training. Frequently adding new features is necessary to
broaden the applicable range of a general model. However, joint
training on an increasing number of datasets is computationally
intensive and requires a large storage space. Alternatively, fine-
tuning14 is used to quickly adapt to unseen features. However,
fine-tuning can only generate a specific feature model rather than
a general model, that is, the new model loses its ability to effec-
tively pick old particles, known as catastrophic forgetting15.

A low-cost alternative to joint training is continual (or incre-
mental) learning, which aims to adapt a new model for a new task
while maintaining performance for old tasks16–24. Knowledge
distillation25 is a widely used technique for incremental object
detection problems in natural images26–28, which transfers
knowledge between neural networks using loss functions that
minimize the difference between features extracted from the new
and old models for old datasets. Continual learning enables the
accumulation of knowledge in existing models. Hence, with an
increasing amount of incorporated data, continual learning

should be able to continuously enhance particle picking in a
cryoEM pipeline.

Here, we report an EPicker program with an exemplar-based
continual learning algorithm based on a CenterNet object
detector29 for particle picking in cryoEM. EPicker is shown to
enhance the performance of particle picking continuously with
more new knowledge of the features learned. EPicker also sup-
ports joint training and fine-tuning to meet the different
requirements of particle picking. The characteristics and possible
uses of different training modes are discussed. EPicker is designed
to pick general biological objects, including protein particles,
liposome vesicles, and fibers. All these features make EPicker
highly advantageous for both automated cryoEM pipelines and
single-user applications.

Results
Continual learning for accumulating knowledge of features. A
model for comprehending the features of bio-macromolecules
using a deep learning approach is the basis of cryoEM particle
picking and determines the particle picking performance. We
implemented an exemplar-based continual learning approach in
EPicker to enhance its ability to adapt to new features. Continual
learning refers to the gradual addition of new knowledge to an old
model through further training with new datasets. The exemplar
is used to guide continual learning to avoid forgetting old
knowledge when learning new knowledge (discussed later).
EPicker uses a CenterNet detector29 as the basic network. How-
ever, CenterNet alone does not support continual learning. We
designed a dual-path network for continual learning in EPicker
based on CenterNet. Theoretically, similar networks can also be
adopted in the dual-path architecture to enable continual
learning.

In the dual-path network of EPicker, the two paths have the
same network structures, referred to as branches A and B, as
shown in Fig. 1. Under the configuration of CenterNet, each
branch is composed of a feature extraction sub-network and an
object location sub-network. In the training process, both
branches are initialized using the same parameters as in the old
model. Branch A is fixed during training and is considered as a
reference for old features, which preserves the old knowledge.
Branch B is used to generate the new model by distilling the
knowledge from branch A to avoid catastrophic forgetting. Based
on this design, the parameters of the old model initially loaded
into branch B are iteratively updated on the exemplar dataset and
the new dataset. The exemplar dataset is a subset of the datasets
used for training the old model. Empirically, an exemplar dataset
contains approximately 200 labeled particles (distributed on one
or multiple micrographs) for each particle dataset. Random flip
and random cropping are used for data augmentation to improve
the generalization ability of the network. After the training
process, EPicker discards branch A and saves only the parameters
of branch B as the new model.

A loss function with three components was designed to
determine the update of branch B (see Methods). An exemplar
dataset of the old model was input into the two branches to
extract the features. A knowledge distillation loss function, LDistill ,
was used as a constraint to minimize the difference between the
extracted features and generated heatmaps from branches A and
B. Joint training on the exemplar dataset and the new dataset was
conducted with an object detection loss function, LOD, on branch
B. The purpose of using the exemplar dataset is to avoid the
gradient descent direction along the gradient of the new dataset
(red arrow in Fig. 1). The latter is the reason for catastrophic
forgetting. The joint training on the two datasets combined their
gradient descent directions by balancing the loss on both the new
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and old datasets. Third, to avoid over-fitting on the exemplar
dataset, a regularization loss function, LReg , is calculated as a
measure of the difference between the new and old models, which
penalizes significant changes between the parameters of the new
and old models. Finally, the total loss is calculated as follows:

LTotal ¼ LOD þ λd � LDistill þ λr � LReg ; ð1Þ

where λd and λr are hyper-parameters used to balance the
importance of the corresponding loss terms. In all our
experiments, we empirically set λd ¼ 0:1 and λr ¼ 0:01 (Supple-
mentary Table 1).

The impact of each component in the loss function was
evaluated (Supplementary Table 2), which demonstrated that a
combination of the three components is necessary. We also
compared the performance of the proposed method with that of
other widely used incremental learning methods (see Methods,
Supplementary Table 3). The exemplar-based method in EPicker
exhibited the best stability on the evaluation datasets. The
exemplar dataset and continual learning process of EPicker
mimic human behavior. If the old model is imagined as a
memory of the past, the exemplar dataset is a note and snapshot
of past events.

CenterNet detector in EPicker. CenterNet29 was used as the
basic network for particle picking in EPicker. CenterNet is an
one-stage anchor-free object detection network based on keypoint

detection, and has shown better performance than existing
anchor-based methods, such as YOLO30–32, RetinaNet33, and
Faster R-CNN34. The CenterNet detector can regress both the
position and size of the object and is thus suitable for particle
picking in cryoEM. Several feature extraction networks are
available for CenterNet, such as ResNet35 and DLA36. Compared
with ResNet, DLA improves the ability of feature representation
by adding more skip connections and exhibits better performance
for the particle picking task (see Methods, Supplementary
Table 4). Hence, EPicker chose a DLA network with 34 con-
volutional layers (DLA-34) as the feature extraction sub-network
(Fig. 2). The feature extraction network extracts feature maps
from the input micrographs using a series of convolution
operations and subsequent deconvolution operations. Then, the
object location network processes the feature maps to generate
heatmaps to predict the position and size of the particles. Each
branch of the dual-path network for continual learning takes the
same network configuration as described here.

Optimizations for the network settings. In addition to the
network structure optimization described earlier, several addi-
tional settings were used to improve the overall performance of
EPicker. Considering that particles of the same protein sample are
homogenous in size, EPicker turns off the prediction of particle
size, that is, it only regresses the particle position in the object
location sub-network, which helps to reduce computing com-
plexity and improve position estimation accuracy. For size-
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Fig. 1 Architecture of EPicker and schematic diagram of continual learning. The input data includes an exemplar dataset of datasets E1--Et and a new
dataset Dtþ1(highlighted by green boxes). A and B represent branches A and B of the dual path network, respectively. Each branch is composed of a feature
extraction sub-network (two trapezoids) and an object location sub-network (two rectangles). The gradient descent direction on the exemplar dataset θt,
the new dataset θ0tþ1, and the combination of the two datasets θtþ1 is indicated by blue, red, and purple arrows, respectively. The bottom panel shows the
magnified details of the network, in which branch B distills knowledge of features and heatmaps (yellow squares) from the corresponding network blocks
(cuboid) of branch A.
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sensitive cases, such as liposomes (discussed later), size estimation
can be turned on to output the particle radius together with
position (Supplementary Fig. 1). To accelerate the computation,
the input micrograph is down-sampled to a fixed width of 1024
pixels and a correspondingly scaled height to maintain the aspect
ratio. For a typical particle size of 10–30 nm, particle picking is
usually tolerant to a centering error of less than 1 nm, corre-
sponding to 4–5 times the pixel size of the micrographs. There-
fore, the reduced micrograph size does not have an obvious
influence on the position accuracy. The scaled micrograph is then
processed by histogram equalization and converted to an 8-bit
format with 256 gray levels. The reduced image size accelerates
the particle picking, typically, to less than 0.3 s for one micro-
graph (Supplementary Table 5).

Training by continuously adding new datasets. The continual
learning method implemented in EPicker supports the addition of
one or a group of datasets during the training, which allows for
the gradual enhancement of the automated pipeline system. We
evaluated the picking performance by incrementally adding
datasets to mimic the activities of a gradually enhanced system.
The performance of EPicker was evaluated using average preci-
sion (AP) and average recall (AR) under a given threshold 0.5 of
intersection over union (IoU, see Methods).

To demonstrate the reliability and robustness of continual
learning on datasets with different features, we included particles as
diverse as possible, considering the structural features, shape, and
size (Supplementary Table 7). For the experiments, a basic model
was first obtained by joint training on five datasets including 80S
ribosome (EMPIAR-10028), 20S proteasome (EMPIAR-10025),
apoferritin (EMPIAR-10146), TccA1 (EMPIAR-10089), and Noda-
virus (EMPIAR-10203). Five new datasets, β-galactosidase
(EMPIAR-10017), influenza hemagglutinin (EMPIAR-10097),
phage MS2 (EMPIAR-10075), CNG (EMPIAR-10081), and
phosphodiesterase (EMPIAR-10228) were used individually or in
groups (Table 1) for further training. From each dataset, we selected
15 micrographs, of which 10 were used as the training dataset and
five as the test dataset (Supplementary Table 6). All particles were
manually picked and used as ground truth.

Joint training was first conducted on all the aforementioned 10
training datasets. While these molecules have very different structural
features, sizes, and molecular weights from 100 kDa to several MDa,
the picking performance is maintained at a high level (Table 1),

which reflects the great generalization capability of the feature
extraction sub-network. Generalization is the basis for adding new
knowledge to an existing model. The picking results based on the
joint-training model are considered to be the upper bound of the
performance of the EPicker.

Continual learning was then performed based on the basic model
of five datasets. Adding new datasets in a continual manner caused a
1–3 % decrease in AP value and little influence on AR value
compared with the corresponding results of the joint-training model.
Adding a group of five new datasets together was also evaluated,
demonstrating nearly the same influence as adding the datasets
successively. The dissimilarity of features between the old and new
datasets may influence the effectiveness of merging different features,
which is indicated by forgetting some old features. To measure this
influence, we defined the complexity of a new dataset as how the
features in the new dataset match the features in the old datasets and
defined the forgetting rate as the reduction of AP and AR (see
Methods). We then evaluated the relationship between complexity
and forgetting rate (Supplementary Fig. 2). The experimental results
show that adding new datasets with different features does not cause
significant forgetting. Meanwhile, adding datasets with low complex-
ity can improve the model. Therefore, the picking performance of the
new model in picking old samples should be maintained and nearly
not influenced after learning more features.

Moreover, the continual learning ability of EPicker significantly
reduced both the time and storage costs of extending new features
(Supplementary Fig. 3). The time spent on a single joint training
with 5–10 datasets was 26–50min and increased linearly with more
datasets involved. For joint training, once a new dataset was added,
the training was performed repeatedly on all previously involved
datasets. All complete training datasets (10 micrographs per dataset
for the current experiments) should be stored for future training. In
contrast, for the continual learning process, the time to add a new
dataset is usually significantly less than joint training and increases
slightly with the accumulation of more features. In the situation of
gradually adding new datasets, the joint training on adding the 10th

dataset costs 50min, while continual learning takes only 20min.
What’s more, only a small number of samples (typically 1–2
micrographs) in each dataset need to be stored in the exemplar
dataset for future continual learning.

Catastrophic forgetting in fine-tuning. In EPicker, the fine-
tuning and joint training modes adopt the same training method
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… …
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Fig. 2 Architecture of CenterNet detector in EPicker. The feature extraction sub-network is a cascade of a convolutional network (green) and a
deconvolutional network (red) to extract features. Both the convolutional and the deconvolutional networks are a combination of Convolution-Batch
Normalization46-ReLU(Rectified Linear Unit)47 blocks. The object location sub-network (blue) of the detector generates the heatmaps of particle center and
size. The heatmap regression network is a combination of Convolution-ReLU-Convolution blocks.
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and fine-tuning suffers from catastrophic forgetting problem. The
difference between fine-tuning and joint training lies in whether
to load a pre-trained model, that is, the former loads the para-
meters of an existing model and trains on one or multiple new
datasets, whereas the latter trains on a combination of datasets
from scratch. The network used for fine-tuning and joint training
uses a single-path network compared with the dual-path network
used for continual learning. The single-path network has the
same structure as one branch of the continual-learning dual-path
network and lacks a reference network for maintaining the old
knowledge. During the fine-tuning process, the parameters of all
network layers were greatly modified to ensure better perfor-
mance on the new datasets. The fine-tuning model cannot extract
and maintain old features from the old model.

Based on the basic model jointly trained on the five datasets
mentioned in the previous section, we compared the fine-tuning
mode with the continual learning mode on the β-galactosidase
(EMPIAR-10017) dataset. A joint training model trained on all
six datasets was also compared. Using the three new models, we
selected a typical micrograph with 118 particles in the 80S
ribosome dataset (EMPIAR-10028, considered as a dataset that
appeared in the previous training) (Fig. 3a). The picking using the
fine-tuning model missed 35% of the ground-truth particles
(Fig. 3d), demonstrating catastrophic forgetting. The continual-
learning and joint-training models pick 96–97% of the ground-
truth particles (Fig. 3b, c). The fine-tuning model only achieved
high performance on the new β-galactosidase dataset, and the
other two models worked well on all six datasets (3rd–5th rows in
Table 1). Therefore, fine-tuning generates a specific model and
forgets some old knowledge.

Biased and unbiased picking. Both continual learning and joint
training based on a large number of datasets are unbiased to
particles with different features and tend to generate a general
model for extracting various features. In contrast, fine-tuning
generates a model that is specific or biased to the features of the
latest training datasets. Unbiased picking is often important,
especially at the beginning of a new project, to find as many
particles with unknown conformations or compositions as pos-
sible. Sometimes biased picking is also necessary, mostly to
quickly find particles with specific features in order to improve
the resolution of 3D reconstruction. EPicker supports three
training modes to satisfy the requirements for different picking
specifications.

We used micrographs of the 26S proteasome with mixed
assembly states to test the picking specificity of the models from
different training modes. The 26S proteasome (26S) is composed
of a 20S core particle (CP) and two 19S regulatory particles (RP)
that bind to CP. Because RP can disassemble from 26S, different
complexes are often observed, including stand-alone CP, CP with
two RPs (CP2RP), and CP with one RP (CP1RP). The diversity of
the complexes provides an opportunity to test picking specificity.
In the experiment, we regarded the side-view CP2RP as the
positive sample; accordingly, all other impurities and complexes
in different assembly states (CP and CP1RP) were considered as
unknown or junk particles.

Before working on 26S, we assumed that 26S was unknown,
and our general model was trained on 46 datasets without any
26S or its components. First, particles were picked from 200
micrographs in a dataset with a high-purity side-view 26S
(EMPIAR-10090) using the general model. As expected, only a
small number of CP2RP particles were picked because the general
model has never seen 26S. Then, by performing a 2D
classification on the poorly picked 26S particles (Supplementary
Fig. 4), some side-view CP2RP particles were selected and used toT
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train a general model in continual learning mode, a specific
model in fine-tuning mode, and a model from scratch in joint
training mode (simply called scratch model).

To compare the specificity of picking, the three models were
applied to another 26S dataset (EMPIAR-10401) with many
disassembled particles and much lower contrast. The continual
learning model picked nearly all particles on the micrographs, as
expected (Fig. 4a), including the circular top-view particles of 26S
and the side-view particles of CP2RP, CP1RP, and CP. The

picking by the fine-tuning model and the scratch model are more
specific, mostly focused on the side-view CP2RP particles and a
small number of side-view CP1RP particles (Fig. 4a). Further 2D
classification analysis (Fig. 4b) showed that the three models
picked nearly the same number of CP2RP particles (Fig. 4c),
whereas the fine-tuning model was the most accurate for picking
the specific CP2RP particles (Fig. 4b). The fine-tuning and scratch
model missed many CP1RP particles and nearly all stand-alone
CP particles (Fig. 4c).

The aforementioned comparison provides a detailed insight
into the different training modes and their behaviors on unseen
particles. The general model is powerful in picking unseen
particles and can be efficiently enhanced by incorporating more
knowledge through continual learning.

General object picking for cryoEM. Benefiting from the cap-
ability of continual learning, EPicker has the potential to pick
more general objects by accumulating more knowledge during
long-term applications. Currently, EPicker supports picking for
three types of objects with different features, not only the afore-
mentioned particles but also fibers and vesicles. The fibers were
processed as a series of discrete points in EPicker. The picking
and training algorithm for the fibers was the same as that for the
particles. An internal algorithm (see Methods) was developed to
link the picked points as lines tracing the fibers. EPicker can deal
with both curved and straight fibers (Fig. 5a, Supplementary
Fig. 5b). Vesicles are usually liposomes that have recently become
popular in the study of membrane proteins37. Considering that
some membrane proteins are sensitive to the curvature of
membrane bilayers, that is, the radius of the liposome, EPicker
predicts the size of vesicles (Supplementary Fig. 1). Tests on
liposomes showed that EPicker can accurately estimate both the
center coordinate and size of each vesicle, even for overlapped
vesicles (Fig. 5b).

EPicker is suitable for cryo-EM pipelines with continuous data
input (Fig. 5c). Particle coordinates from 2D/3D classification of
single-particle analysis and manual picking, which can be sparse
(see Methods), are available for training. Pre-trained general
models are available together with EPicker through the website
http://thuem.net.

Discussion
Particle picking is an important step in identifying bio-
macromolecules preceding 3D reconstruction in the cryoEM
processing workflow. Any particles missed during particle picking
are excluded in the final 3D reconstruction, which affects the
reconstruction of molecules with unknown features. The level of
matching between the knowledge accumulated in a network
model and the features of known or unseen protein particles are
vital for particle picking. While a general model can be used to
pick unseen particles, as in the cases of the EMPIAR-10090

Ground truth Joint training Continual learning

a b c

Fine-tuning

d

100 nm 100 nm 100 nm 100 nm

Fig. 3 Illustration of the catastrophic forgetting. The picked particles of 80S ribosome (EMPIAR-10028) are annotated by square boxes. The red, blue,
and yellow boxes indicate the particles were correctly picked, wrongly picked, and missed, respectively. a The ground truth. b The results of the joint
training model. c The results of the continual learning model. d The results of the fine-tuning model.

Fig. 4 Comparison of biased and unbiased picking on a 26S proteasome
dataset. a The particle picking results (red boxes) of the three models. To
improve the visualization, a small region of a typical micrograph is shown.
The continual-learning model results in the picking of nearly all particles
appearing on the micrograph. The results using the fine-tuning and scratch
models are more specific on the side-view of CP2RP (a core particle with
two regulatory particles) particles and ignore other particles. b Part of the
2D (two-dimensional) class averages with the highest occupancy, which
are sorted in descending order of the occupancy. Different border colors
specify CP2RP (blue), CP1RP (a core particle with one regulatory particles,
orange), and CP (core particle, yellow) particles, respectively. In the results
of the fine-tuning model, the CP2RP classes have higher occupancy than
other particles. c Plot of the total number of particles picked with different
models. The three models picked nearly the same number of CP2RP
particles (blue bars). The fine-tuning and scratch model missed many
CP1RP particles (orange bars) and nearly all CP particles (yellow bars),
indicating biased picking.
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dataset (Supplementary Fig. 4a) and the Fab dataset (the antigen
binding fragment, ~60 kDa, Supplementary Fig. 6a), its perfor-
mance is often not guaranteed.

We implemented a continual learning algorithm in EPicker to
enhance the ability of feature extraction and generalization on
more different particles, which is an efficient and convenient way
to accumulate knowledge into an existing model. EPicker adopted
a dual-path network to support knowledge distillation, used an
exemplar dataset, and a specially designed loss function to avoid
catastrophic forgetting.

Through experiments that mimicked real-world applications
by gradually adding new datasets, the continual learning algo-
rithm in EPicker successfully accumulated knowledge into an
existing model, regardless of the complexity of the dataset;
meanwhile, no obvious catastrophic forgetting was observed. We
further compared the influence of several training modes for
particle picking, including continual learning, joint training, and
fine-tuning. The fine-tuning model was specific and biased to
given features and suffered from catastrophic forgetting. The
continual learning model achieved a performance similar to that
of the joint training model. Furthermore, the continual learning
strategy disperses the computationally intensive training on a
large number of datasets into multiple training processes and thus
it is not necessary to finish the training at one time as required by
the joint training.

Enhanced by improving the capability to learn new features,
EPicker is designed to pick more general objects in cryo-EM
micrographs, including fibers and vesicles. To further improve the
convenience of training, EPicker only requires positive annota-
tions and supports sparse annotations by a specially designed loss
function, that is, only a small part of the particles in the micro-
graphs need to be annotated for training. Moreover, 5–10
micrographs from a dataset are usually sufficient for training.
Based on these features, a small number of manually picked
particles or particles selected by the 2D/3D classification can be
used to build the training datasets. Finally, all these features make
EPicker more reliable (Supplementary Fig. 6), easy to use, and
suitable for most of the current requirements of object detection
in single-particle cryoEM and automated workflow.

Methods
Continual learning algorithm. EPicker is an exemplar-based incremental particle
picking program. Guided by the exemplar dataset, EPicker can be trained on the
new dataset without forgetting old knowledge. EPicker uses CenterNet29 for object
detection and the object detection process can be seen as a function, denoted by
FOD. The CenterNet detector in EPicker (Fig. 2) consists of two components: a
feature extraction sub-network, Fextract , which extracts the features of the input
image, and an object location sub-network, Floc, which regresses the center, local
offset, and size of each particle. Let ðD1 ¼DtÞ denote a set of old datasets
sequentially added until time t. From each old dataset Di we randomly choose 200
continuous annotations on one or multiple downsampled micrographs Ei 2 Di . All
of these micrographs comprise an exemplar dataset ðE1 ¼ EtÞ. Assuming that at
time t, the object detector Ft

OD is parameterized by θt , EPicker incrementally adapts
the parameter θt toward θtþ1 by training on a new dataset Dtþ1 with the guidance
of the exemplar dataset ðE1 ¼ EtÞ.

Figure 1 represents the involvement of exemplar in the training process. We use
Losst to represent the loss function of the network trained on old datasets
ðD1 ¼DtÞ and Losstþ1 to represent the loss function of the network trained on the
new datasets Dtþ1. When the network is trained on ðD1 ¼DtÞ, the gradient descent
will be along the direction where the loss function decreases fastest for the old
datasets (indicated by the blue arrow in Fig. 1). When the network is trained on
Dtþ1, the gradient descent follows the optimal direction for the new dataset
(indicated by the red arrow in Fig. 1). Without the use of the exemplar, the optimal
parameters of the network trained on Dtþ1 are θ

0
tþ1, which often incurs a large loss

on the old datasets, thus leading to catastrophic forgetting on the old datasets.
To mitigate the problem of forgetting, the exemplar ðE1 ¼ EtÞ that contains a

set of images from each old dataset is introduced to the network; thus, EPicker can
integrate the gradient information of the old datasets into the new model. When
the model is training on the new dataset Dtþ1, the instructive exemplar influences
the gradient descent direction. Then, the final average gradient descent direction
can be adjusted to a more appropriate direction (indicated by the purple arrow in
Fig. 1), and the parameters of the model reach θtþ1, which balances the
performance on all datasets. The exemplar dataset is advantageous in retaining
knowledge from the old model to the new one. EPicker adopts the knowledge
distillation method25 to constrain the parameters of the new model by maintaining
a certain similarity to the old model, and also finds the optimal parameters for the
new datasets. In contrast to regularization methods16,17,21 that penalize the change
of important parameters of the old model, EPicker treats each parameter equally
and only constrains the discrepancy between the output feature maps of the new
and the old models, which reduces the probability of having conflicting parameters
between different tasks.

The corresponding loss functions used in the above process are discussed in the
following two sections in detail.

CenterNet detector and object detection loss function. EPicker uses a
CenterNet29 detector as the basic object detection framework to predict the central
coordinate and particle size. There are many choices for the feature extraction

Fig. 5 Picking of general biological objects and a workflow with continual learning. a Picking curved fibers. The picked fibers are labeled as lines tracing
the fibers. b Picking liposomes with estimation of radius (indicated by size of the red box). Several overlapped vesicles (indicated by yellow arrows) are well
identified. c A cryoEM processing workflow with continual learning. Particle annotations can be obtained from manual picking, sparse picking, and 2D/3D
(two-dimensional/three dimensional) classification, which can be further used to train the model in a continual manner.
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network in CenterNet, such as ResNet35 and DLA36. ResNet introduces a residual
block to stabilize the training process and extract hierarchical features. The DLA
network aggregates feature representations and fuses information across different
layers by adding hierarchical and iterative skip connections. The DLA-based fea-
ture extraction network achieved better object detection accuracy than ResNet in
our particle picking tests (Supplementary Table 4). We chose a fully convolutional
upsampling version of DLA-3436 as the feature extraction network of CenterNet in
EPicker and followed by an object location sub-nextwork29 to predict the center Ŷ ,
local offset Ô, and size Ŝ. The final particle position is the sum of the center and
offset. The object location network is composed of three convolution networks that
generate downsampled heatmaps for the center, the local offset, and the size of each
particle. Then, particle centers are predicted from a heatmap matrix, Ŷ 2 ½0; 1�WR ´ H

R ,
where W and H represent the width and height of the input image, respectively,
and R is the output stride after a series of convolution operations and is set to 4 in
EPicker. Each cell of the heatmap Ŷ records a score between [0, 1] to present the
detection confidence, which is known as the confidence score. A higher confidence
score indicates a higher probability of a particle being in the current cell. The peaks
in the heatmap were predicted as particle centers ðx̂; ŷÞ. The offset prediction,
Ô ¼ ðδx̂; δŷÞ, and the size prediction, Ŝ ¼ ðŵ; ĥÞ, together with the predicted par-
ticle centers, determine the bounding box of a particle represented as

x̂ þ δx̂; ŷ þ δŷ; ŵ2 ;
ĥ
2

� �
:

The loss function of the object detector29 without continual learning strategies
is defined as

LOD ¼ Lk þ λoff � Loff þ λsize � Lsize; ð2Þ
where λoff and λsize are weighting factors, and λoff ¼ 1, λsize ¼ 0:1 are used in
EPicker (Supplementary Table 8). The definitions of the three components are as
follows.

● Lk is a pixel-wise focal loss33 that reduces the error between the predicted
particle center, Ŷxy , and the ground truth particle center, Yxy ; Lk is
defined as

Lk ¼ � 1
N
∑
xy

ð1� ŶxyÞ
α
logðŶxyÞ if Yxy ¼ 1

ð1� YxyÞβðŶxyÞ
α
logð1� ŶxyÞ otherwise

(
; ð3Þ

where N is the number of particle in the input image, α and β are
two hyperparameters, and α ¼ 2 and β ¼ 4 are used in EPicker.

● Loff is the loss of the local offset for each particle center caused by the
output stride and is defined as

Loff ¼
1
N
∑
p
Ô~p �

p
R
� ~p

� ����
���; ð4Þ

where R represents the output stride, Ô~p represents the predicted offset at

the low-resolution center point ~p, and ðpR � ~pÞ represents the ground truth
center offset.

● Lsize is the loss of the particle size, which is optional in EPicker, and is
defined as

Lsize ¼
1
N

∑
N

k¼1
jŜpk � skj; ð5Þ

where Ŝpk represents the predicted particle size at the center point
pk, and sk represents the ground truth size of particle k.

Loss functions used in different training modes. EPicker supports three training
modes: joint training, fine-tuning, and continual learning. The loss functions of
joint training and fine-tuning are the same and consist of only one object detection
loss term, given by

LTotal ¼ LOD: ð6Þ
The loss function of continual learning consists of three loss terms, given by

LTotal ¼ LOD þ λd � LDistillþλr � LReg ; ð7Þ
where λd and λr are hyperparameters. EPicker empirically sets λd ¼ 0:1 and λr ¼
0:01 in all experiments (Supplementary Table 1). The details of each loss term are
discussed below.

● The object-detection loss LOD , defined in Eq. 2 minimizes the particle
center location error, offset regression error, and size regression error based
on the ground truth and the prediction from the object location network,
Floc .

● The knowledge distillation loss, LDistill , distills features generated by the
feature extraction network, and the particle position heatmaps predicted by
the object location network from the old model. For continual learning on
model t þ 1, EPicker only distills knowledge on the exemplar ðE1 ¼ EtÞ
and does not involve that on the new dataset Dtþ1. We use L2 loss for

knowledge distillation, which is formulated as follows:

LDistill ¼
1
Mf

∑kf tþ1 � f tk22 þ
1
My

∑kytþ1 � ytk22 þ
1
Mo

∑kotþ1 � otk22;

ð8Þ

where f tþ1 and f t are the feature maps generated from the new feature
extraction network Ftþ1

extract and the old frozen network Ft
extract , respectively;

(ytþ1, yt) and (otþ1, ot) are the center and offset heatmaps predicted by the
object location networks Ftþ1

loc and Ft
loc for new and old datasets,

respectively; and (Mf , My , Mo) refers to the number of activation values
in the feature map and prediction outputs.

● The regularization loss, LReg , is adopted in EPicker to avoid overfitting to
the old datasets ðD1 ¼DtÞ in the process of repeatedly minimizing the
object detection loss on the exemplar ðE1 ¼ EtÞ. The regularization loss
term is formulated as follows:

LReg ¼ ∑kθtþ1 � θtk22; ð9Þ

where θt represents the frozen parameters of the old model t, and
θtþ1 represents the parameters of the new model t þ 1.
Overtraining on the exemplar is avoided by penalizing significant
changes in the parameters between the new and old models, and
the general knowledge from the old task is remembered.

Sparse annotation in EPicker. Sparse annotation means that only a small number
of particles are required to pick for building the training dataset, that is, many positive
particles are unlabeled, which can significantly reduce the difficulty and workload of
labeling. As in some challenging datasets with extremely small particles, there are
often more than 1000 particles on one micrograph, which makes it difficult or
impossible to annotate all the positive particles, either by manual picking or 2D
classification. However, the unlabeled positive particles can mislead the training
process and restrain the detection of good particles, which finally results in the
absence of some positive particles. To address the problem of sparse annotation,
Topaz11 proposed the GE-binomial algorithm, which is based on the generalized
expectation (GE) criteria. However, Topaz tended to pick a large number of particles,
many of which were located on contamination (Supplementary Fig. 6). Some previous
works dealing with sparse annotation in natural images solved this problem by
reweighting the importance of region proposals generated by the two-stage object
detector Faster RCNN38,39 or recalibrating the loss of the anchors used by the one-
stage object detector YOLO40. To solve the problem of sparse annotation in EPicker,
we need to reduce the penalty on the loss function of these potentially positive
unlabeled particles and try to generate more positive labels to enhance the prediction
ability of the detector. On the one hand, we followed the concept of GHM loss41 and
ignored some hard examples that can be seen as outliers. These hard examples are
negative samples, however, with high confidence scores in the prediction results of the
detector. Ignoring them can reduce the possibility of mistaking unlabeled positive
particles as negative particles. On the other hand, we obtained some pseudo labels
from the prediction results of the detector with very high confidence scores. Particles
with very high confidence scores in the prediction were likely to be unlabeled par-
ticles. EPicker automatically generates pseudo labels for these particles and treats them
as positive samples. Finally, the final prediction loss of the particle center in the object
detection loss of the EPicker is defined as

Lk ¼ � 1
N
∑
xy

ð1� ŶxyÞ
α
logðŶxyÞ if Yxy ¼ 1 or Ŷxy> τ1

ð1� YxyÞβðŶxyÞ
α
logð1� ŶxyÞ if Yxy ¼ 0 and Ŷxy< τ2

(
; ð10Þ

where τ1 is the threshold for controlling the confidence of the detector to reverse
negative particles with high confidence scores into unlabeled positive particles, and τ2
is the threshold for controlling the confidence of the detector to reduce the substantial
penalty on the loss function for the potential unlabeled positive particles, which
reduces the detection of particles with high confidence scores as negative samples or
background in the training process. EPicker empirically sets τ1 ¼ 0:7 and τ2 ¼ 0:5 in
the experiments.

Evaluation of particle picking. EPicker uses average precision (AP) and average
recall (AR) to evaluate the performance of particle picking, which has been widely
adopted in the field of object detection42. A brief introduction and the settings used in
the present work are as follows.

EPicker generates a score for each picked particle to present confidence. When
the confidence score was greater than a given threshold, the picked particle was
considered correct. Precision and recall were used to evaluate picking. Precision is
defined as the ratio of the number of correctly picked particles to the number of all
picked particles,

precision ¼ TP
TP þ FP

: ð11Þ
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Recall is defined as the ratio of the number of correctly picked particles to the
number of all correct particles,

recall ¼ TP
TP þ FN

: ð12Þ
Here, true positive (TP) denotes the correctly picked particles, false positive

(FP) denotes the incorrectly picked particles, and false negative (FN) denotes the
correct particles that are not picked. The intersection over union (IoU) is a measure
of the overlapped area between the detected particle and the ground truth,

IoU ¼ area PD \ PG

� �
area PD ∪ PG

� � ; ð13Þ

where PD represents the detected particles, and PG represents the ground truth. In
all our tests, we used an IoU threshold of 0.5, which means that the detected
particles with IoU less than 0.5, are incorrect. When the prediction of particle size
was turned off, we assigned a constant particle size for each sample.

Based on the definitions above, precision and recall vary with the setting of the
score threshold. To avoid the influence of the threshold setting, AP is calculated as
the average precision of all recall values:

AP ¼
Z 1

0
P Rð ÞdR; ð14Þ

where precision, P, is considered a function of recall R. The final AP is the average
of the AP values for all the testing micrographs. AR is the average of the recall
values for all the testing micrographs.

When EPicker is trained in a continual manner, adding more training datasets
means merging more features into an old model. The dissimilarity of features
between the old and new datasets may influence the effectiveness of merging
different features, which is indicated by forgetting some old features. To evaluate
this influence, we defined the complexity of a new dataset as how the features in the
new dataset match the features in the old datasets. The higher the complexity, the
greater the differences. We then tested the relationship between complexity and
forgetting rate.

To assess the complexity of a new dataset, we used an old general model to pick
new particles. The complexity of the new dataset is inversely proportional to the
picking accuracy and is empirically defined as:

C ¼ 100

10 APþARð Þ ; ð15Þ

where C 2 ½1; 100� is the complexity of the new dataset, and AP and AR refer to the
average precision and average recall when directly using the old general model to
pick new particles. When the features of new particles are significantly different
from those in the old datasets, the picking may fail and lead to low AP and AR, and
consequently, a high complexity.

The reduction in AP and AR indicates forgetting. We defined the forgetting rate
for AP and AR, respectively, as the average reduction in AP and AR of all old
datasets before and after training on a new dataset.

Comparison with other continual learning algorithms. We compared the con-
tinual learning method in EPicker with other widely used continual learning
methods.

The method in EPicker was compared with memory-aware synapses (MAS)21,
which is a regularization method that computes the importance of the parameters
of a neural network and constrains the changes in important weights. We adapted
MAS to EPicker, and the importance weight Ωij for parameter θij is defined as:

Ωij ¼
1
N

∑
N

k¼1
kgijðxkÞk ¼ 1

N
∑
N

k¼1

∂kFðxk; θÞk22
∂θij

�����
�����; ð16Þ

where x is the input image, N is the total number of input images, θ is the
parameter of the current model, and F xk; θ

� �
represents the multi-dimensional

output function defined in MAS21. We evaluated the experimental results by
considering the function of the feature extraction network Fextract ðθÞ and the
function of the whole object detection network FODðθÞ as the output function FðθÞ.

Additionally, the method was compared with Faster ILOD28, which uses Faster
R-CNN34 as the base object detector. Peng et al. used Faster ILOD28 and proposed
an adaptive distillation method to properly train previous knowledge. Because the
framework of our network is completely different from that of Faster ILOD, we
only adopted the idea of the multi-network adaptive distillation (AD) proposed by
Peng et al28.

As shown in Supplementary Table 3, our method performed better than MAS and
Faster ILOD. For MAS, the introduction of important weights led to serious conflicts
between the parameters of the old and new models. For Faster ILOD, which dealt
with class-incremental learning problems in natural images, the adaptive knowledge
distillation method was used on all datasets. Because the particles in a new dataset are
often significantly dissimilar to those in old datasets, constraining the new and old
models to extract similar features on the new datasets is problematic.

Fiber picking and tracing algorithm. EPicker also supports the picking of fibers.
For an input micrograph with fibers, EPicker first picks fibers as normal particles, and

then places the coordinates of the picked particles into a point set. We developed a
line tracing algorithm (LTA) to link the discrete points of the fibers as lines (Sup-
plementary Fig. 5). The fiber bending angle parameter, ang, was used to set an
acceptable maximum curvature.

A particle is first randomly selected as the starting point, and then LTA identifies
the closest point and connects the two points into a line segment. LTA sets the second
point as the starting point, ignores any selected points, and places all the points whose
distance from the new starting point is less than a radius, r, into a candidate point set.
EPicker empirically sets r ¼ 100 at a reduced micrograph with a width of 1024 pixels.
Then, LTA finds the closest point in the candidate point set and connects it to the new
starting point. If the angle between the current line segment and the previous line
segment is larger than the angle threshold, the current candidate point is removed
from the candidate point set, and the next candidate point is identified and tested.
This procedure is repeated until a candidate point satisfying the angle constriction is
obtained. If the angle calculated at all candidate points is larger than the angle
threshold, a new fiber is initiated. LTA is repeated until no eligible points are in the
point set.

The tracing result of the fibers is further smoothed by removing some points on
the lines when the angle between the adjacent line segments is less than a certain
threshold and is set to 0.1 rad in EPicker.

Image processing and 2D classification. The datasets downloaded from EMPIAR
were processed using MotionCor243 to generate single-frame micrographs, if
applicable. The defocus of the micrographs was determined using the CTFFind444. All
2D classifications were performed using the THUNDER45.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Datasets used for the continual learning study are from EMPIAR with entry codes:
EMPIAR-10017, EMPIAR-10025, EMPIAR-10028, EMPIAR-10075, EMPIAR-10081,
EMPIAR-10089, EMPIAR-10097, EMPIAR-10146, EMPIAR-10203, EMPIAR-10228.
The according annotations used for the continual learning is deposited in a public
database https://dataverse.harvard.edu/dataverse/EPicker. Dataset used to test biased and
unbiased picking are from EMPIAR with entry codes: EMPIAR-10401, EMPIAR-10090.
The Fab and liposome dataset is available for downloaded from https://doi.org/10.7910/
DVN/I92FFJ and https://doi.org/10.7910/DVN/ZMN57Q, respectively. The remaining
datasets used in this study are from EMPIAR with entry codes: EMPIAR-10004,
EMPIAR-10033, EMPIAR-10057, EMPIAR-10058, EMPIAR-10093, EMPIAR-10096,
EMPIAR-10122, EMPIAR-10168, EMPIAR-10175, EMPIAR-10190, EMPIAR-10192,
EMPIAR-10197, EMPIAR-10202, EMPIAR-10205, EMPIAR-10216, EMPIAR-10590,
EMPIAR-10406, EMPIAR-10470, EMPIAR-10429, EMPIAR-10241, EMPIAR-10270,
EMPIAR-10420, EMPIAR-10407, EMPIAR-10059, EMPIAR-10402, EMPIAR-10399,
EMPIAR-10454, EMPIAR-10443, EMPIAR-10379, EMPIAR-10456, EMPIAR-10350,
EMPIAR-10335, EMPIAR-10217, EMPIAR-10291, EMPIAR-10290, EMPIAR-10289.

Code availability
The program code is available for downloading from our project website http://thuem.
net and the Github repository https://github.com/thuem/EPicker. Detailed information
about software installation and usage can be found at: http://thuem.net.
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