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Childhood body size directly increases type 1
diabetes risk based on a lifecourse Mendelian
randomization approach
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The rising prevalence of childhood obesity has been postulated as an explanation for the

increasing rate of individuals diagnosed with type 1 diabetes (T1D). In this study, we use

Mendelian randomization (MR) to provide evidence that childhood body size has an effect on

T1D risk (OR= 2.05 per change in body size category, 95% CI= 1.20 to 3.50, P= 0.008),

which remains after accounting for body size at birth and during adulthood using multi-

variable MR (OR= 2.32, 95% CI= 1.21 to 4.42, P= 0.013). We validate this direct effect of

childhood body size using data from a large-scale T1D meta-analysis based on n= 15,573

cases and n= 158,408 controls (OR= 1.94, 95% CI= 1.21 to 3.12, P= 0.006). We also

provide evidence that childhood body size influences risk of asthma, eczema and hypo-

thyroidism, although multivariable MR suggested that these effects are mediated by body

size in later life. Our findings support a causal role for higher childhood body size on risk of

being diagnosed with T1D, whereas its influence on the other immune-associated diseases

is likely explained by a long-term effect of remaining overweight for many years over

the lifecourse.
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The incidence of type 1 diabetes (T1D) has doubled in the
last 20 years. Possible explanations for this increasing T1D
burden include secular changes to gut microbiota linked to

the hygiene hypothesis in which increased sanitation1, urban
living and other factors contribute to increases in not only T1D
but in a number of other immune system-related diseases, such as
multiple sclerosis and asthma2. Additional explanations for this
increasing burden include the association of virus infection with
T1D3 and decreasing levels of vitamin D in the population4. One
hypothesis, supported by some observational studies5,6, is that the
rising prevalence of childhood obesity in an increasingly obeso-
genic environment7–9, including poor diets with high fat, salt and
carbohydrate, may contribute towards early life β-cell fragility
and increased susceptibility to T1D10. Developing insight into the
contribution of childhood body size to T1D risk is extremely
challenging, however, particularly in terms of separating its effect
from early life confounding factors such as birthweight11.

In contrast to T1D, there is irrefutable evidence that children who
are overweight are more likely to develop type 2 diabetes (T2D) and
that weight loss can lead to its sustained remission12. We recently
used human genetic data to infer that this relationship is likely to be
causal rather than due to confounding factors, using sets of genetic
variants which robustly associate with childhood and adulthood
body size13. This was achieved using Mendelian randomisation
(MR), which can be implemented through instrumental variable
analysis, exploiting the quasi-random assortment of genetic alleles at
birth to infer causality between lifestyle exposures and disease
outcomes14–16.

We showed previously that childhood body size increases T2D
risk when analysed in a univariable setting (Odds Ratio (OR)=
2.32, 95% confidence interval (CI)= 1.76 to 3.05, P=
3.83 × 10−9)13. This approach to estimating the total effect of
childhood body size on the risk of disease is presented in Fig. 1A.
However, by simultaneously estimating the genetically predicted
effects of childhood body size and adulthood body size as separate
exposures to T2D risk using a multivariable model, the childhood
estimates attenuated to include the null (OR= 1.16, 95% CI=
0.74 to 1.82, P= 0.52). As such, there is considerably weaker
evidence that childhood body size has a ‘direct effect’ on T2D
risk, as compared to it having an ‘indirect effect’ mediated via
adult body size. Diagrams illustrating how multivariable MR can
be applied to estimate direct and indirect effects can be found in
Fig. 1B, C respectively. These results, therefore, suggest that the
univariable estimates for childhood body size can be explained by
long term, persistent effects of adiposity due to individuals typi-
cally remaining overweight into adulthood.

Although childhood body size has been previously implicated in
T1D risk using MR17,18, these findings were based on effect estimates
derived using a small number of instruments (n= 23). Furthermore,
multivariable analyses in this study did not investigate the direct and
indirect effects of potential confounding factors which may be
pleiotropically influenced by genetic instruments for the exposure of
interest. This is particularly important, as exemplified by the case of
high density lipoprotein cholesterol onto coronary heart disease risk,
which appears to have a protective effect in a univariable setting
(OR= 0.80, 95% CI= 0.75 to 0.86, P= 1.66 × 10−10), but not when
assessing its direct effect after taking into account atherogenic lipo-
protein lipid traits (OR= 0.91, 95% CI= 0.74 to 1.12, P= 0.36)19.
Lastly, it has not yet been investigated whether the effect of childhood
body size on T1D risk represents a more generalisable effect on the
immune system which may additionally impact other types of
immune-associated or autoinflammatory diseases. If there is a T1D-
specific effect, this would suggest early life β-cell fragility stemming
from diet-induced metabolic stress is likely to be a causal pathway
through which childhood body size leads to increased T1D risk.

Consequently, in the present study we had four aims:

1. Investigate evidence of a direct effect of childhood body size
on T1D risk by conducting univariable and multivariable

Fig. 1 Directed acyclic graphs depicting the effects of childhood body size
on disease risk. Schematic representation of the analysis undertaken in this
study using Mendelian randomisation (MR). A Using univariable MR to
estimate the total effect of genetically predicted childhood body size on
type 1 diabetes (T1D) risk without accounting for adulthood body size.
B Applying multivariable MR to estimate the direct effect of genetically
predicted childhood body size on T1D risk whilst accounting for the effect of
adult body size and C using the same approach to estimate the indirect
effect of childhood body size of T1D (via adult body size). The highlighted
red lines indicate the causal pathway being evaluated in MR to estimate the
A total, B direct, and C indirect effects of childhood body size on T1D risk.
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MR analyses using our previously developed framework
(with n= 280 genetic instruments).

2. Determine whether these childhood estimates based on age
10 years body size remain robust after accounting for very
early life body size as proxied by genetically predicted
birthweight.

3. Evaluate the converse relationships using MR i.e. whether
T1D genetic liability influences body size in childhood or
adulthood.

4. Investigate whether childhood body size has direct and
indirect effects on seven other types of immune-associated
or autoinflammatory diseases.

Results
Estimating the total effect of childhood body size on type 1
diabetes risk. An overview of the exposure and outcome datasets
used in the study can be found in Supplementary Data 1. Uni-
variable MR analyses using the inverse variance weighted (IVW)
method provided evidence that both childhood body size (Odds
Ratio (OR)= 2.05 per change in body size category, 95% con-
fidence interval (CI)= 1.20 to 3.50, P= 0.008) and adult body
size (OR= 1.60, 95% CI= 1.05 to 2.45, P= 0.03) increase risk of
T1D. The total effect of childhood body size was additionally
supported by the MR-Egger method (OR= 5.06, 95% CI= 1.52
to 16.81, P= 0.009), suggesting that this result is robust to hor-
izontal pleiotropy. In contrast, we obtained no convincing sup-
port that adult body size influences T1D based on the MR-Egger
method (OR= 2.55, 95% CI= 0.72 to 9.00, P= 0.145) (Supple-
mentary Data 2).

Repeating our univariable IVW analysis using genetic
instruments for childhood and adult height provided no
support of effects on T1D (childhood height: OR= 1.16,
95% CI= 0.94 to 1.44, P= 0.174, adult height: OR= 1.08,
95% CI= 0.85 to 1.36, P= 0.532) (Supplementary Data 3).
These findings suggest that our estimates for childhood body
size on T1D are capturing adiposity driven effect as opposed to
a general body size effect. Furthermore, evidence of a total
effect between childhood body size on T1D risk was validated
using data from the largest available T1D meta-analysis to date
(IVW: OR= 1.84, 95% CI= 1.19 to 2.83, P= 0.006, MR-Egger:
OR= 3.28, 95%= 1.24 to 8.67, P= 0.017) (Supplementary
Data 4). Age at diagnosis information for T1D from cohorts
contributing to this meta-analysis can be found in Supple-
mentary Data 5.

We also identified limited evidence of a reverse direction of
effect between T1D genetic liability and childhood body size
(Beta= 0.002 per 1-SD change in T1D liability, 95% CI=−0.001
to 0.005, P= 0.236), meaning that the effect of childhood body
size on T1D is unlikely to be explained by reverse causality.
Genetic instruments for T1D liability are reported in Supple-
mentary Data 6. There was also little evidence to suggest that T1D
genetic liability has an effect on BMI in adulthood (Beta=
−0.002, 95% CI=−0.005 to 0.001, P= 0.266) (Supplementary
Data 7). Conducting this reverse MR analysis using data from the
Avon Longitudinal Study of Parents and Children (ALSPAC)
supported these findings using measured childhood BMI at a
mean age of 9.9 years in the life course (Beta= 0.033 per 1-SD
change in T1D GRS, 95% CI=−0.040 to 0.106, P= 0.382).
Investigating how our childhood and adult body size instruments
relate to measured BMI in the ALSPAC cohort found that the
childhood body size score associates more strongly with BMI,
although not just using data measured from the mean age 9.9
years clinic but at 11 other earlier time points during childhood
(Supplementary Fig. 2 and Supplementary Data 8).

Evaluating the direct and indirect effects of childhood body
size on type 1 diabetes risk. Multivariable MR provided evidence
that childhood body size has a direct effect on T1D risk (OR=
2.27, 95% CI= 1.24 to 4.17, P= 0.008), whereas adult estimates
identified in this analysis included the null (OR= 0.92, 95%
CI= 0.54 to 1.57, P= 0.760) (Fig. 2 and Supplementary Data 9).
Using the multivariable MR-Egger method supported evidence of
a direct effect for childhood body size on T1D risk (OR= 2.20,
95% CI= 1.20 to 4.05, P= 0.011) (Supplementary Data 10).

Repeating our multivariable MR analyses on T1D risk with the
addition of genetically predicted birthweight in the model found
that the childhood body size estimates were maintained (OR=
2.32, 95% CI= 1.21 to 4.42, P= 0.013) (Supplementary Data 11).
Additionally, higher genetically predicted birthweight provided
evidence of a protective direct effect on T1D risk (OR= 0.58, 95%
CI= 0.41 to 0.82, P= 0.002) independent of childhood and adult
body size. These results suggest that body size at birth is unlikely
to be responsible for the effect of childhood body size on T1D in
our model. Furthermore, univariable estimates for birthweight on
T1D risk were not robust to horizontal pleiotropy based on
estimates from the MR-Egger method (OR= 0.44, 95% CI= 0.16
to 1.24, P= 0.124) (Supplementary Data 12). Multivariable MR
estimates for adult body size on T1D, accounting for genetically

Fig. 2 Forest plots illustrating the total and direct effects of childhood body size on type 1 and type 2 diabetes risk. A The univariable Mendelian
randomisation (MR) estimates between childhood (yellow) and adult (blue) body size (n= 453,169) on risk of type 1 (using estimates from both discovery
(n= 14,741) and replication analysis (n= 173,981)) and type 2 diabetes (n= 159,208) and B their corresponding multivariable MR estimates. Odds ratios
are per change in body size category. 95% CI 95% confidence interval. Central estimates are illustrated as circles which were filled when confidence
intervals did not overlap with the null. The data underlying these figures can be found in Supplementary Data 9, 13 and 16.
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predicted birthweight, did not support a role of obesity later in life
influencing T1D (OR= 0.77, 95% CI= 0.43 to 1.39, P= 0.390).

Evidence of a direct effect between childhood body size and
T1D risk was validated using data from the large meta-analysis of
T1D GWAS (OR= 1.94, 95% CI= 1.21 to 3.12, P= 0.006)
(Supplementary Data 13). Direct effect estimates derived from
each contributing dataset to the T1D meta-analysis were typically
consistent with the exception of the cohort from Sardinia (Fig. 3,
Supplementary Figs. 3, 4 and Supplementary Data 14). Assuming
that our OR estimates are approximately equal to relative risks
(RRs), and assuming a T1D prevalence of 0.5%, we used our
direct childhood body size MR-Egger OR estimate from the meta-
analysis (OR= 2.64) to build a table of proportions for T1D
affected and unaffected individuals lying in each body size
category. Mimicking an intervention and assuming a constant
RR, we reduced the proportion of individuals who are ‘plumper
than average’ from 0.159 (i.e. the proportion within our data) to
0.059, and increased the proportion in the ‘slimmer than average’
category from 0.33 to 0.43. This was to reflect a simplified but
realistic scenario in which 10% of individuals move from the high
weight to the average weight category, and the same number of
average weight individuals move into the low weight category.
Our intervention model produced a fall in T1D prevalence to
0.39% (a 22% reduction) (Supplementary Data 15).

We also repeated our multivariable MR analysis of childhood
and adult body size with T2D as an outcome to generate revised
estimates compared to our previous work13. In contrast to our
results for T1D, these estimates suggest that childhood body size
has an indirect on T2D as our univariable childhood estimates
(OR= 2.18, 95% CI= 1.80 to 2.63, P= 8.91 × 10−16) were

reduced and included the null when accounting for adult body
size (OR= 0.90, 95% CI= 0.69 to 1.19, P= 0.465) (Supplemen-
tary Data 16).

Investigating whether childhood body size directly influences
other types of immune disease. We applied univariable and
multivariable MR analyses to investigate the total, direct and
indirect effects of childhood body size on seven other immune-
associated diseases in turn: asthma, atopic dermatitis and eczema,
hypothyroidism, rheumatoid arthritis, inflammatory bowel dis-
ease and its two subtypes (Crohn’s disease and ulcerative colitis)
(Supplementary Data 1). Using univariable MR, 9 of the 14
analyses undertaken provided evidence that body size in either
childhood or adulthood influenced chronic immune disease risk
based on FDR <5% (Supplementary Data 17). For childhood body
size, this included evidence of increased asthma risk (OR= 1.31,
95% CI= 1.08 to 1.60, P= 0.007), dermatitis and eczema
(OR= 1.25, 95% CI= 1.03 to 1.51, P= 0.024) and hypothyr-
oidism (OR= 1.42, 95% CI= 1.12 to 1.80, P= 0.004). Adult body
size provided evidence of influencing risk on outcomes including
Crohn’s disease (OR= 1.37, 95% CI= 1.10 to 1.70, P= 0.005)
and rheumatoid arthritis (OR= 1.42, 95% CI= 1.05 to 1.93,
P= 0.022).

Using multivariable MR, the direct effect estimates for
childhood body size on all immune-associated outcomes which
provided evidence of an effect in a univariable setting included
the null when accounting for the effect of adult body size
(Supplementary Data 17). There was stronger evidence however
that childhood body size indirectly influences disease risk via
adult body size on; asthma risk (OR= 1.30, 95% CI= 1.04 to
1.63, P= 0.022), dermatitis and eczema (OR= 1.30, 95% CI=
1.03 to 1.64, P= 0.026) and hypothyroidism (OR= 1.94,
95% CI= 1.45 to 2.61, P= 9.64 × 10−6). After correcting multi-
variable analyses for false discovery rates (FDR), only the effect
on hypothyroidism remained robust (FDR= 1.35 × 10−4). All
univariable and multivariable MR estimates derived in these
analyses have been illustrated using forest plots in Fig. 4.

Discussion
We present evidence suggesting that body size in childhood
increases the risk of T1D based on the age-at-diagnosis of the
participants analysed in this study (mean age= 16.57 years).
These findings support previous results from observational stu-
dies suggesting that the increasing prevalence of childhood obe-
sity is a causal factor in the rising numbers of T1D diagnoses.
Systematically applying our MR framework to seven other
immune-associated diseases suggested, initially, that childhood
body size also increases the risk of asthma, eczema and hypo-
thyroidism. However, these effect estimates attenuated once
accounting for adulthood body size, suggesting that they can be
explained due to the sustained impact of adiposity among chil-
dren who are overweight and thus tend to remain so into
adulthood.

The effect of genetically predicted childhood body size on T1D
risk could have various explanations. For instance, this evidence
may support findings from the literature suggesting that excess fat
tissue has a deleterious influence on the body’s immune system,
potentially with secreted adipokines playing a mediatory role20.
As outlined by the ‘accelerator hypothesis’21, increased stress on
insulin demands in children with obesity may contribute to
earlier β-cell failure and subsequently an earlier diagnosis of
T1D22. Evidence from a mouse model of non-immune diabetes
induced by a high-fat diet indicated that diabetes can result from
β-cell fragility23, including genetically lower expression of the
transcription factor gene, GLIS3, which is known to be associated

Fig. 3 A forest plot depicting multivariable Mendelian randomisation
estimates of childhood body size on type 1 diabetes risk for each study
contributing to the meta-analysis. Multivariable Mendelian randomisation
analyses of childhood (yellow) and adult (blue) body size (n= 453,169) on
type 1 diabetes risk were undertaken in each contributing study to the large-
scale meta-analysis used in this work (n= 173,981). Odds ratios are per
change in body size category. 95% CI 95% confidence interval. Central
estimates are illustrated as circles which were filled when confidence
intervals did not overlap with the null. T1DGC Type 1 Diabetes Genetics
Consortium. The data underlying this figure can be found in Supplementary
Data 14.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29932-y

4 NATURE COMMUNICATIONS |         (2022) 13:2337 | https://doi.org/10.1038/s41467-022-29932-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


with susceptibility to both T1D and T2D24. High fat and carbo-
hydrate diets with low fibre in early life, resulting in childhood
obesity, could compromise the metabolic and immune functions
of the gut microbiome, where microbiota dysbiosis has been
associated with both T2D25 and T1D26. Regardless of the
underlying mechanisms, our findings suggest that a critical win-
dow exists in childhood to mitigate the influence of adiposity on
the escalating numbers of T1D diagnoses and that an ~22%
reduction in the number of T1D cases is plausible if the pro-
portion of children within the highest obesity category were to be
reduced by 10%, from 15.9 to 5.9%.

As expected given the average age-at-diagnosis of T1D, the
effect of childhood body size remained robust after accounting for
adult body size using a much larger number of genetic instru-
ments than previously used (n= 280 in this study versus n= 23
previously17). Furthermore, our childhood estimates remained
strong even after accounting for birthweight. However, estimates
derived using the MR-Egger method only supported the child-
hood body size effect (OR= 5.06, 95% CI= 1.52 to 16.81,
P= 0.009), whereas confidence intervals for both birthweight and
adult body size overlapped with the null meaning that they were
not as strongly supported by this approach of having a genetically
predicted effect on T1D risk.

In particular, the multivariable MR estimates for adult body
size illustrate the importance of using our approach to separate
the effects of body size at separate stages in the life course. This is
because the univariable MR estimates for adult body size on their
own could conceivably be interpreted as evidence that it influ-
ences T1D risk, which is unlikely given the age of onset for this
disease in the study sample analysed. However, taken together
with the MR-Egger estimates, our multivariable analysis sug-
gested that adult body size does not influence T1D risk after
accounting for the effect of childhood body size. Further work is
required to investigate late-onset T1D using age-at-diagnosis data

once it becomes available in large sample sizes, particularly given
the challenges of T1D diagnosis in adulthood27. This would be
valuable as it would facilitate investigation into whether adiposity
in adulthood increases the risk of late-onset T1D, which our study
may be underpowered to detect due to the large majority of
individuals in our T1D sample being diagnosed during childhood.

We incorporated birthweight as an additional exposure in our
multivariable model to assess whether it may help explain the
effect of childhood body size on T1D. As our estimates remained
robust, these findings do not seem to suggest that variation in
birthweight is responsible for the effect of genetically predicted
childhood body size on T1D risk identified in our analysis.
However, a more appropriate evaluation of the influence of
birthweight on T1D risk requires in-depth evaluation using both
maternal and foetal genetic effects, as undertaken previously, once
sample sizes of both maternal and offspring T1D cases are
sufficient28,29. Amongst other sources of bias, future endeavours
applying this study design will be able to investigate whether our
results may be underestimating the genetically predicted effect of
birthweight on T1D risk.

Our MR analysis on other types of immune-associated disease
suggested that the childhood body size effect on T1D is not
generalisable to other chronic immune outcomes. Amongst this
finding was evidence of a total effect of childhood body size on
later life asthma risk which corroborated recent MR results sug-
gesting that increased asthma risk is likely explained by indivi-
duals remaining overweight into adulthood30. However, our
univariable results provide stronger evidence than previously
reported that the effect of adiposity on asthma risk begins in
childhood, which may potentially be explained by the influence of
excess abdominal fat driving systemic inflammation31. In parti-
cular, our findings suggest that adiposity begins to exert its effect
on the risk of eczema and hypothyroidism in childhood, which
has previously been reported in the literature by non-genetic

Fig. 4 Forest plots comparing the univariable and multivariable Mendelian randomisation estimates of childhood body size on type 1 diabetes risk and
seven chronic immune disease outcomes. A The univariable Mendelian randomisation (MR) estimates between childhood (yellow) and adult (blue) body
size (n= 453,169) on the risk of chronic immune disease outcomes (see Supplementary Data 1 for sample sizes) and B their corresponding multivariable
MR estimates. The type 1 diabetes estimates were based on the analysis using data from Crouch et al. (2021) (n= 173,981). Odds ratios are per change in
body size category. 95% CI 95% confidence interval. Central estimates are illustrated as circles which were filled when confidence intervals did not overlap
with the null. The data underlying this figure can be found in Supplementary Data 13 and 17. Multiple testing comparisons for estimates in this figure were
accounted for by calculating false discovery rates as reported in Supplementary Data 17.
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studies32,33. The attenuation of the childhood estimates on these
outcomes in our multivariable model suggests that adiposity
influences their risk due to a sustained effect of remaining
overweight for many years across the life course (similar to our
findings for T2D34). Further research is therefore necessary to
verify whether lifestyle changes enforced post-childhood can
alleviate the detrimental effect of childhood body size on these
outcomes as with T2D12. Furthermore, if this is the case then
extensive research into the critical windows where this effect
begins to become immutable will be extremely important to
identify for disease prevention purposes.

There are various strengths and limitations of our study
which should be taken into account when interpreting its
findings. Firstly, the use of genetic variation in a two-sample
MR framework allowed us to analyse a large number of genetic
instruments from the UK Biobank sample for body size
(n= 454,023) with a meta-analysed sample of T1D cases (up to
n= 15,573), almost twice the number of cases used in a pre-
vious study17. As such our results are less prone to bias
attributed to reverse causation and confounding factors com-
pared to more traditional epidemiology approaches. Further-
more, this study design allowed us to investigate the direct and
indirect effects of childhood body size on T1D as well as seven
other chronic immune-associated diseases in turn, which
would be extremely challenging to undertake without the use of
human genetics. Conversely, one of the major limitations of
this work is that our 280 genetic instruments for childhood
body size were derived using recall data which may be more
prone to bias due to factors such as measurement error. That
said, previously conducted simulations and extensive valida-
tion studies in three separate populations13,35,36 support the
use of these instruments to separate the effect of childhood
body size using these instruments from that of adulthood body
size. A further limitation of our study is that childhood body
size was measured at age 10, while 47.9% of our T1D meta-
analysis cases were diagnosed before 10. Among this subset of
cases, we cannot eliminate the possibility that exposure to
obesity occurred after developing T1D, which would preclude a
causal relationship. However, we believe our study to have
good statistical power due to (a) 49.5% of cases having known
age-at-diagnosis older than 10 and (b) obesity at age 10 being
presumably correlated with obesity at earlier ages, providing
effective exposure prior to disease diagnosis for a larger subset
of T1D cases. FinnGen effect estimates were similar to most
other cohorts despite containing a far greater proportion of
cases diagnosed over age 20 (62%), supporting (b). Likewise,
evaluations of our genetic instrument for childhood body size
found that it is strongly associated with measured BMI in the
ALSPAC cohort throughout early life and not just at age 10 (as
depicted in Supplementary Fig. 2).

Additionally, although MR studies are typically considered to
be less prone to reverse causation than observational studies,
there are possible scenarios where this could still bias findings as
outlined in a recent review37. This is why in this study we
investigated the converse direction of effect for our primary
analysis using MR i.e. whether T1D genetic liability influences
childhood body size. As weak evidence of an effect was found in
this sensitivity analyses, our findings suggest that T1D resides
downstream of childhood BMI and also that a scenario involving
feedback mechanisms are unlikely. Accounting for birthweight in
our model also mitigates the likelihood that a cross-generational
effect is underlying the genetically predicted effect of childhood
body size on T1D risk found in our study.

In conclusion, our findings emphasise the importance of
implementing preventative policies to lower the prevalence of
childhood obesity and its subsequent influence on the rising

numbers of T1D cases. This will help ease healthcare burdens and
also potentially improve the quality of life for individuals living
with this lifelong disease.

Methods
Data resources. All individual participant data used from the UK Biobank (UKB)
study had ethical approval from the Research Ethics Committee (REC; approval
number: 11/NW/0382) and informed consent from all participants enroled in
UKB. Ethical approval for data obtained from the Avon Longitudinal Study of
Parents and Children (ALSPAC) was obtained from the ALSPAC Ethics and Law
Committee and the Local Research Ethics Committees.

Genetic instruments for childhood and adult body size. Genetic variants asso-
ciated with childhood and adult body size (based on P < 5 × 10−8) were identified
from a previously undertaken GWAS in the UKB study38,39. In these GWAS we
derived our childhood body size measure using recall questionnaire data asking
UKB participants if they were ‘thinner’, ‘plumper’ or ‘about average’ when they
were aged 10 years old compared to the average. Adult body size was derived using
clinically measured body mass index (BMI) data (mean age 56.5 years), which we
categorised into a three-tier variable using the same proportion as the early life
measure for comparative purposes.

GWAS were undertaken on 453,169 individuals who had both measures
available with adjustment for age, sex and genotyping chip. Our GWAS of
childhood body size was additionally adjusted for month of birth. We used a linear
mixed model to account for genetic relatedness and geographical structure in UKB
as undertaken with the BOLT-LMM software40. In the original study where these
instruments were derived we did not identify any evidence against a linear
relationship between our exposure variable in line with the assumptions of
multivariable MR13. To support the robustness of these instruments in terms of
their ability to separate the effects of childhood and adult body size, we have
previously undertaken validation analyses using measured BMI data from three
independent populations: the ALSPAC study13, the Young Finns Study41 and the
Trøndelag Health (HUNT) study36. Other validation analyses have also been
conducted previously, whereby GWAS results for the childhood measure had a
higher genetic correlation with measured childhood obesity from an independent
sample (rG= 0.85) compared to the adult measure (rG= 0.67). Conversely,
genome-wide estimates for the adult measure were more strongly correlated with
measured BMI in adulthood (rG= 0.96) compared to the childhood measure
(rG= 0.64)13. Furthermore, using these instruments previously for multivariable
MR provided F-statistics >10 suggesting that derived results are unlikely to be
prone to weak instrument bias13.

Genetic instruments for childhood height, adult height and birthweight. For
this study, we repeated the same protocol described above but for childhood and
adult height using data from the UKB study, to demonstrate that our body size was
likely capturing adiposity rather than being bigger at age 10. Participants were
asked “When you were 10 years old, compared to average would you describe
yourself as…”, and given the options of ‘shorter’, ‘about average’ or ‘taller’. GWAS
were undertaken as above on the childhood measure of height as well as a three-
tiered categorical variable for adult measured height based on the same propor-
tions. GWAS on childhood and adult height were undertaken on 454,023 indivi-
duals who had both measures available with adjustment for the same covariates as
before. The same analysis pipeline was applied to generate genetic instruments for
birthweight which was kept continuous due to only being available on a total of
261,932 UKB individuals. This trait was rank-based inverse normal transformed to
ensure normality and adjusted as before for age, sex and genotyping chip.

Genetic effects on T1D, T2D and other immune-associated diseases. Genetic
estimates for all outcomes analysed in this study were obtained from large-scale
GWAS studies and meta-analyses conducted by consortia. We first applied our
multivariable approach using a large number of childhood and adult body size
instruments to T1D data analysed previously in the study by Censin et al.
(n= 5913 cases diagnosed before the age of 17 years and n= 8828 controls).
Results from this analysis were then validated using a recent large-scale meta-
analysis of up to 15,573 cases and 158,408 controls42. Analyses were then repeated
separately in each contributing cohort from this meta-analysis: Illumina genotyped
UK samples (3983 cases and 3994 controls), Affymetrix genotyped UK samples
(1926 cases and 3342 controls), Sardinians (1558 cases and 2882 controls), Finnish
FinnGen samples (4933 cases and 148,190 controls) and the Type 1 Diabetes
Genetics Consortium (T1DGC) European-ancestry family sample (3173 affected-
offspring trios, analysed by the transmission disequilibrium test).

In terms of age-at-diagnosis, 7,453 T1D meta-analysis cases were diagnosed
before 10 years of age, 4368 between 10 and 20 years old, 3352 over 20 years old
and 400 with missing data) (see Supplementary Data 5 for a breakdown by cohort).
As such nearly half of the cases included in the meta-analysis had age-at-diagnosis
later than 10, the age at which our childhood body size instrument is based on.

We also obtained estimates using results from a GWAS of T2D, updated since
our previous study43, and seven of the most common immune-associated disease
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endpoints: asthma, atopic dermatitis and eczema, hypothyroidism, rheumatoid
arthritis, inflammatory bowel disease and it’s two subtypes (Crohn’s disease and
ulcerative colitis). An overview of these outcome datasets and all others analysed in
this study can be found in Supplementary Data 2.

Instrument identification and data harmonisation. We previously constructed a
reference panel-based using genotype data from 10,000 unrelated UK Biobank
participants of European descent to undertake linkage disequilibrium (LD)
clumping44. This allowed us to identify independent genetic variants for MR
analyses based on an LD cutoff of r2 < 0.00145, which was necessary to ensure MR
estimates were not biased by using correlated instruments. For multivariable MR,
we repeated LD clumping but used aggregated sets of genetic variants for all our
exposures to ensure they were also independent. Genetic estimates for our expo-
sures were harmonised with disease outcomes using the ‘TwoSampleMR’ R
package46. In total, there were 280 childhood body size and 515 adult body size
instruments available for analysis after harmonisation with T1D genetic estimates,
where 81 were subsequently removed prior to conducting multivariable MR ana-
lyses. Additionally, 629 childhood height and 907 adult height instruments and 161
birthweight instruments were identified for sensitivity analyses. The number of
instruments for all subsequent analyses varied depending on factors such as cov-
erage, population allele frequencies and the strand alignment of corresponding
GWAS results.

The Avon Longitudinal Study of Parents and Children. ALSPAC is a population-
based cohort investigating genetic and environmental factors that affect the health and
development of children. The study methods are described in detail elsewhere47,48. In
brief, 14,541 pregnant women residents in the former region of Avon, UK, with an
expected delivery date between April 1, 1991 and December 31, 1992, were eligible to
take part in ALSPAC. Detailed phenotypic information, biological samples and
genetic data which have been collected from the ALSPAC participants are available
through a searchable data dictionary and variable search tool (http://www.bris.ac.uk/
alspac/researchers/our-data/). Consent for biological samples has been collected in
accordance with the Human Tissue Act (2004). Written informed consent was
obtained for all study participants. Ethical approval for this study was obtained from
the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

In ALSPAC, height was measured to the nearest 0.1 cm with a Harpenden
stadiometer (Holtain Crosswell), and weight was measured to the nearest 0.1 kg on
Tanita electronic scales to derive measures of BMI (weight (kg)/height (m)2). BMI
measures were collected at multiple time points across childhood, including ten
measures from age 4 months old to 5 years old, as well as at the Focus at age 7
clinic (mean age= 7.5 years, range= 7.1 years to 8.8 years) and the Focus at age 9
clinic (mean age= 9.9 years, 8.9 years to 11.5 years). A summary of these measures
can be found in Supplementary Data 2.

Statistical analysis
Univariable Mendelian randomisation. We firstly undertook univariable MR
analyses to evaluate the total effect of genetically predicted childhood body size
on T1D risk. We applied the inverse variance weighted (IVW) method for initial
analyses, which takes the SNP-outcome estimates and regresses them on those
for the SNP-exposure associations49. The weighted median and MR-Egger
methods were subsequently applied as sensitivity analyses to evaluate the
robustness of IVW estimates to horizontal pleiotropy50,51. This is the phe-
nomenon whereby genetic variants influence exposure and outcome via two
separate biological pathways15.

Univariable analyses with T1D as an outcome were repeated separately for
adult body size and for birthweight. We included adult body size to demonstrate
the importance of using genetic scores to separate the effects of body size at
different stages in the life course when investigating either early or late-onset
disease outcomes. Additionally, we investigated the opposite direction of effect
using the same univariable methods mentioned above to assess whether genetic
liability towards T1D risk influences body size in both childhood and adulthood
in turn. In this analysis we used a set of 63 genetic instruments for T1D
identified from a recent meta-analysis (of up to 15,573 cases and 158,408
controls42) which had an F-statistic of 196 (Supplementary Data 6). Non-HLA
SNPs in this score were selected to be independent (pairwise r2 < 0.01), while the
5 HLA SNPs had pairwise r2 < 0.02 in European non-Finnish 1000 Genomes
samples (using the LDlink online tool, https://ldlink.nci.nih.gov/). Adult BMI
was analysed as a continuous trait to derive a per standard deviation effect
estimate. Additionally, we derived a genetic risk score (GRS) using data from the
ALSPAC cohort and investigated the effect of T1D genetic liability on measured
BMI data from the mean age of 9.9 years (range= 8.9 to 11.5 years old) clinic
adjusting for age and sex. We also used data from the ALSPAC cohort to
evaluate how our childhood and adult body size instruments relate to BMI at 12
time points in childhood prior to age 10.

Birthweight was analysed in this study to investigate whether an individual’s
body size in very early life (e.g. before age 5 years) may be responsible for the
effects identified using our childhood genetic score (Supplementary Fig. 1). These
analyses were not however intended as an exploration of the effects of parental
influences on T1D risk52, as birthweight variation is known to be influenced by a

combination of both foetal and parental genetic and non-genetic factors28. We also
repeated analyses on T1D using instruments for childhood and adult height to
demonstrate that our childhood body size measure was capturing childhood body
size (i.e. being ‘plumper’ as described in the questionnaire) rather than being taller
than the other 10-year olds.

Multivariable Mendelian randomisation. We next sought to estimate the direct and
indirect effect of childhood body size on T1D risk using multivariable IVW
MR53,54. This was firstly undertaken by accounting for adult body size as an
additional exposure in our model (i.e. alongside childhood body size), and sub-
sequently including birthweight as a third exposure. We also applied the multi-
variable MR-Egger method to evaluate horizontal pleiotropy for the direct and
indirect effects of childhood body size55. Furthermore, multivariable analyses were
repeated using data from the large-scale T1D meta-analysis42, as well as evaluating
evidence using data from each contributing cohort to this dataset in turn. Lastly, we
repeated our multivariable MR analysis with childhood and adult body size as
exposures to each of the seven different types of immune-associated/autoin-
flammatory disease in turn. To account for multiple testing in this analysis,
we applied the Benjamini-Hochberg false discovery rate (FDR) correction of
FDR <5%.

Forest plots in this paper were generated using the R package ‘ggplot2’56. All
analyses were undertaken using R (version 3.5.3).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All individual-level data analysed in this study can be accessed via an approved
application to ALSPAC (http://www.bristol.ac.uk/alspac/researchers/access/). Summary
statistics on type 1 and type 2 diabetes are publicly available from the studies as
referenced in Supplementary Data 2. All other summary statistics analysed in this study
can be accessed via the OpenGWAS (https://gwas.mrcieu.ac.uk/) and FinnGen (https://
www.finngen.fi/fi) resources.

Code availability
Univariable and multivariable MR analyses were conducted using the TwoSampleMR
package (version 0.5.5) in R (version 3.5.3).
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