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A cryptic pocket in Ebola VP35 allosterically
controls RNA binding
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Maxwell I. Zimmerman1, Justin R. Porter 1, Katelyn E. Moeder1, Gaya K. Amarasinghe 2 &

Gregory R. Bowman 1,3✉

Protein-protein and protein-nucleic acid interactions are often considered difficult drug tar-

gets because the surfaces involved lack obvious druggable pockets. Cryptic pockets could

present opportunities for targeting these interactions, but identifying and exploiting these

pockets remains challenging. Here, we apply a general pipeline for identifying cryptic pockets

to the interferon inhibitory domain (IID) of Ebola virus viral protein 35 (VP35). VP35 plays

multiple essential roles in Ebola’s replication cycle but lacks pockets that present obvious

utility for drug design. Using adaptive sampling simulations and machine learning algorithms,

we predict VP35 harbors a cryptic pocket that is allosterically coupled to a key dsRNA-

binding interface. Thiol labeling experiments corroborate the predicted pocket and mutating

the predicted allosteric network supports our model of allostery. Finally, covalent modifica-

tions that mimic drug binding allosterically disrupt dsRNA binding that is essential for

immune evasion. Based on these results, we expect this pipeline will be applicable to other

proteins.
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Examining structures available in the protein data bank
(PDB) suggests that many protein surfaces that engage in
protein–protein interactions (PPIs) and protein–nucleic

acid interactions (PNIs) lack druggable pockets1,2. As a result,
PPIs and PNIs are often considered intractable drug targets even
when there is strong evidence that disrupting these interactions
would be of great therapeutic value3.

Cryptic pockets present opportunities for designing drugs for
difficult targets like PPIs and PNIs but identifying and
exploiting these pockets remains challenging4–6. Cryptic pock-
ets are absent in available experimental structures but form in a
subset of excited states that arise due to protein dynamics. These
cryptic sites can serve as valuable drug targets if they coincide
with key functional sites, or if they are allosterically coupled to
distant functional sites7,8. Most known cryptic sites were only
identified after the serendipitous discovery of a small molecule
that binds and stabilizes the open form of the pocket8,9.
Unfortunately, we currently lack methodology that can decou-
ple pocket discovery from ligand discovery. To overcome this
limitation and to increase the number of druggable targets, we
have developed a suite of computational and experimental
methods for detecting cryptic pockets and allostery, in addition
to other available approaches8,10–23. We have successfully
applied subsets of this toolset to a number of enzymes that are
established drug targets12,24, suggesting that the same tools may
be ready for application to challenging targets like PPIs and
PNIs.

Here, we present the first integration of our entire pipeline of
tools to hunt for cryptic pockets in a difficult, non-enzymatic
target that engages in PPIs and PNIs: the interferon inhibitory
domain (IID) of Ebola viral protein 35 (VP35). Ebola virus causes
a hemorrhagic fever that is often lethal, with case fatality rates
approaching 90% in past outbreaks25,26. Initial promising results
with the antiviral, remdesivir fell short in a randomized con-
trolled trial so there remains no approved small-molecule drugs
for treating Ebola27. Small-molecule antivirals are needed despite
recent progress with antibodies27 because they offer many
advantages, including ease of delivery, lower cost, and longer shelf
life that are particularly relevant in rural and impoverished
regions. The ~120 residue IID of VP35 would be an appealing
drug target for combating Ebola and other viruses in the Filo-
viridae family apart from lacking obvious druggable sites that
could disrupt its PPI and PNIs. VP35 has a well-conserved
sequence and plays multiple essential roles in the viral replication
cycle28. One of its primary functions is to antagonize the host’s
innate immunity, particularly RIG-I-like receptor (RLR)-medi-
ated detection of viral nucleic acids, to prevent an interferon
(IFN) response and signaling of neighboring cells to heighten
their antiviral defenses 29–31.

Crystal structures have revealed that VP35’s IID binds both
the blunt ends and backbone of double-stranded RNA (dsRNA),
and that there is a PPI between these dsRNA-binding modes
(Fig. 1)32,33. Binding to dsRNA blunt ends plays a dominant role
in IFN suppression by Ebola34. Indeed, mutations that reduce the
IID’s affinity for dsRNA blunt ends are sufficient to mitigate IFN
antagonism, ultimately attenuating Ebola’s pathogenicity34–37.
Therefore, disrupting this single binding mode could dramati-
cally reduce the impact of an Ebola infection on the host and
potentially reduce deleterious effects, including lethality. How-
ever, both dsRNA-binding interfaces are large flat surfaces that
are difficult for small molecules to bind tightly (Fig. 1). As a
result, only a few studies have sought to find small molecules
targeting VP35, none of which has evolved into a full drug-
discovery campaign38–41. The discovery of cryptic pockets in
VP35 could provide new opportunities for drugging this essential
viral component.

Results
Adaptive sampling simulations reveal a potentially druggable
cryptic pocket. To discover structures with large pocket volumes
that may harbor cryptic pockets, we applied our previously
described fluctuation amplification of specific traits (FAST)
simulation algorithm42. FAST is a goal-oriented adaptive sam-
pling algorithm that exploits Markov state model (MSM) meth-
ods to explore regions of conformational space with user-
specified structural features. An MSM is a network model of a
protein’s energy landscape which consists of a set of structural
states the protein adopts and the rates of hopping between
them43,44. After running FAST, we gathered additional statistics
by running simulations from each state on the Folding@home
distributed computing environment, which brings together the
computing resources of hundreds of thousands of citizen scien-
tists who volunteer to run simulations on their personal com-
puters. Our final model has 4469 conformational states, providing
a detailed characterization of the different structures the IID
adopts, but making manual interpretation of the model difficult.

To identify cryptic pockets within the large ensemble captured
by our MSM, we searched for signatures of cryptic pockets such
as groups of residues with highly correlated changes in solvent
exposure, referred to as exposons12. Exposons are often associated
with cryptic sites because the opening/closing of such pockets

Fig. 1 VP35 dsRNA interactions occur primarily through flat interfaces.
A Crystal structure of two copies of VP35’s IID (dark gray and light blue)
bound to dsRNA (light gray) via two flat interfaces (PDB ID 3L25). Mutations
to residues highlighted in pink and yellow sticks eliminate dsRNA binding.
B Isolated chain B from the same view as panel A and after 90° rotation in the
Y axis now highlighting the dsRNA interacting VP35 surface in the blunt-end-
binding protomer. The blunt-end-binding interface (pink, 3L25 chain B) is
shown as spheres to highlight that VP35 lacks deep pockets amenable to
binding small molecules.
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gives rise to cooperative increases/decreases in the solvent
exposure of surrounding residues. Importantly, once an exposon
has been identified, our MSM framework provides a facile means
to identify the conformational changes that give rise to that
exposon.

Our simulations reveal two exposons in the VP35 IID, one of
which corresponds to a large cryptic pocket. The blue exposon
(Fig. 2A, B) which overlaps with the backbone-binding interface
in Fig. 1, consists of a set of strongly coupled residues in helix 5
and adjacent loops and secondary structure elements. Visualizing
the conformational change that gives rise to this cluster reveals a
substantial displacement of helix 5, creating a large cryptic pocket
between it and the helical domain (Fig. 2C and Supplementary
Movie 1). A number of residues that are displaced along with
helix 5 (i.e., A306, K309, and S310) make Van der Waals contacts

with the dsRNA backbone in the dsRNA-bound crystal
structure33, so targeting this cryptic pocket could directly disrupt
this binding mode.

Retrospective analysis of other validated drug targets suggests
cryptic sites created by the movement of secondary structure
elements, such as the displacement of helix 5, are often
druggable45. The potential druggability of this cryptic site is also
supported by the application of the Fpocket and FTMap
algorithms46,47. Fpocket predicts this cryptic site to have a high
druggability score (0.681) and FTMap highlights a number of
hotspots within the pocket where small molecules could form a
variety of energetically favorable interactions (Fig. 2E and
Supplementary Fig. 1). Unfortunately, disrupting backbone
binding is of less therapeutic utility than disrupting blunt-end
binding and it is unknown whether the contacts between A306,
K309, and S310 are essential for backbone binding. Therefore, it is
unclear from this analysis alone whether drugging this newly
discovered cryptic pocket would be useful.

The second exposon (orange in Fig. 2) encompasses portions of
both dsRNA-binding interfaces, but it does not correspond to a
cryptic pocket. This cluster includes residues that bind dsRNA’s
backbone (i.e., S272) and residues that interact with both the
blunt ends and backbone of dsRNA (i.e., F239, Q274, and I340)33.
Therefore, altering the conformational preferences of the second
exposon could potentially disrupt the blunt-end-binding mode
and its crucial role in Ebola virus’s ability to evade an immune
response. However, the largest conformational change involved in
the formation of this exposon is a displacement of the loop
between helices 3 and 4 (Fig. 2D and Supplementary Movie 2).
This rearrangement does not create a cryptic pocket that is large
enough to accommodate drug-like molecules, so it is not obvious
how to directly manipulate the orange exposon.

The cryptic pocket is allosterically coupled to the blunt-end-
binding interface. Even though the cryptic pocket does not
coincide with the interface of VP35’s IID that binds dsRNA blunt
ends, it could still serve as a cryptic allosteric site that allosteri-
cally controls dsRNA binding. Indeed, the physical proximity of
the two exposons and the coupling between them both hint at the
possibility for allosteric coupling. Furthermore, our exposons
analysis could easily underestimate this coupling given that it
focuses on correlated transitions of residues between solvent-
exposed and completely buried states, leaving it blind to more
subtle conformational fluctuations and allostery involving resi-
dues that are always buried (or always exposed).

Fig. 2 Exposons identify a large cryptic pocket and suggest potential
allosteric coupling. A Structure of VP35’s IID highlighting residues in two
exposons (blue and orange), the N-terminus (N-term), and C-terminus
(I340) (PDB ID 3FKE). B Network representation of the coupling between
the solvent exposure of residues in the two exposons. The edge width
between residues is proportional to the mutual information between them.
C Structure highlighting the opening of a cryptic pocket via the displacement
of helix 5 that gives rise to the blue exposon. D Structure highlighting the
conformational change that gives rise to the orange exposon overlaid on the
crystal structure (gray) to highlight that the rearrangements are subtler than
in the blue exposon. E FTMap results for the main cryptic pocket as shown
in (C) and hotspots where a variety of small organic probes (multicolored
sticks) form energetically favorable interactions. The probe molecules are
intended to capture different drug-like interactions (such as hydrogen
bonding and Van der Waals contacts) and include acetamide, acetonitrile,
acetone, acetaldehyde, methylamine, benzaldehyde, benzene, isobutanol,
cyclohexane, N,N-dimethylformamide, dimethyl ether, ethanol, ethane,
phenol, isopropanol, or urea47,68–70.
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To explore the potential for a broader allosteric network, we
quantified the allosteric coupling between every pair of residues
using our correlation of all rotameric and dynamical states
(CARDS) algorithm48. CARDS classifies each dihedral in each
snapshot of a simulation as being in one of three rotameric states
(gauche+, gauche-, or trans) and one of two dynamical states
(ordered or disordered). A mutual information metric is then

used to quantify the coupling between the structure and dynamics
of every pair of dihedral angles, which can then be coarse-grained
to the correlation between every pair of residues. Importantly,
CARDS accounts for the potential role of residues that are always
buried or always exposed to solvent and subtle conformational
changes that do not alter the solvent exposure of residues.

CARDS reveals a broader allosteric network than that
identified by our exposons analysis and suggests strong coupling
between the cryptic pocket and blunt-end-binding interface
(Fig. 3A, B). This network consists of five communities of
strongly coupled residues, four of which coincide with large
portions of the two dsRNA-binding interfaces. One of these
communities (orange) is a hub in the network, having significant
coupling to all the other communities. It encompasses part of the
orange exposon, particularly residues around the loop between
helices 3 and 4. The orange CARDS community and exposon
both capture Q274, which engages in both dsRNA-binding
interfaces, and S272, which contacts the backbone33. However,
the CARDS community includes many additional residues not
captured by exposons analysis. Examples include I278, which
engages in both dsRNA-binding interfaces, and D271, which is
part of the PPI between the two binding modes33. One of the
orange community’s strongest allosteric connections is to the
green community. This community encompasses the rest of the
residues in the orange exposon, including F239 and I340, which
are part of both dsRNA-binding interfaces33. The green
community also captures additional residues, reaching deep into
the helical domain. The orange community is also strongly
coupled to the blue community, which includes much of helix 5
and nearby residues that move to give rise to the cryptic pocket
that was captured by the blue exposon. Notably, the orange and
blue communities are both coupled to a cyan cluster that was not
hinted at by our exposons analysis because the residues involved
are always solvent-exposed. It includes R322, which is part of the
blunt-end-binding interface and the PPI between the two binding
modes, and K282, which also contacts dsRNA blunt ends33. In
addition, this community includes K339, which is an important
determinant of the electrostatic favorability of dsRNA binding33.
Together, these results suggest that opening of the cryptic pocket
could strongly impact residues involved in both dsRNA-binding
interfaces, as well as the PPI between the two binding modes.

Opening of the cryptic pocket alters the structural preferences
of the dsRNA-binding interface. To assess if pocket opening
impacts the blunt-end-binding interface, we compared the
ensembles of structures with the cryptic pocket open or closed.
We hypothesized that if pocket opening affects blunt-end bind-
ing, the dsRNA-binding residues in the ensembles of structures of
the open and closed states will have distinct structural features
other than pocket opening. To test this hypothesis, we applied our
previously described machine learning algorithm, DiffNets, which
is a supervised autoencoder architecture designed to identify the
key differences between two or more structural ensembles10. In
this case, we used DiffNets to compare the ensemble of structures
with an open cryptic pocket to those with a closed cryptic pocket
and assess if there are important differences between the struc-
tural preferences of the blunt-end-binding interface.

This analysis reveals significant coupling between the opening/
closing of the cryptic pocket and the structural preferences of a
key blunt-end-binding residue, F239. Specifically, we found that
the distance between F239 and helix 5 is strongly correlated with
the extent of the pocket opening. Further investigation revealed
that the distribution of χ1 angles for F239 when the pocket is
open differs substantially from the distribution when the pocket is
closed (Fig. 3D). The orientation of F239 observed in available

Fig. 3 Allosteric network revealed by the CARDS algorithm. A Structure
of VP35’s IID with residues in the allosteric network shown in sticks and
colored according to which of five communities they belong to. Substitution
of residues labeled in red with alanine disrupts binding to dsRNA blunt ends
and results in a dramatic reduction in immune suppression. B Network
representation of the coupling between communities of residues, colored as
in (A). Node size is proportional to the strength of coupling between
residues in the community, and edge widths are proportional to the
strength of coupling between the communities. C Representative states of
the correlated changes from the DiffNet. In gray is a structure with a closed
pocket and in blue is a structure from MD simulation with an open pocket.
F239 is shown in red sticks for orientation. D Distribution of F239 χ1 from
the MSM with respect to states wherein the pocket is open (blue) or closed
(black) for the three rotamers. The bar height is mean value from 25
bootstrapped MSMs (dots) of the sum of the population of all states in the
MSMs with the specified rotamer. Insets show the conformation of F239
with the highest probability within the region of a given peak in the
distribution as sampled in our MSM. The black dashed line at the Gauche
position corresponds to the calculated value of F239 χ1 from PDB 3L26.
Error bars are standard deviation from the mean of bootstrapped values
from recalculating the MSM twenty-five times (see “Methods”). Source
data are provided as a Source Data file.
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crystal structures is a well-populated when the cryptic pocket is
closed. Opening of the cryptic pocket is associated with a
reduction in the probability of this Gauche- dsRNA-binding
competent rotamer. Therefore, we propose that stabilizing the
closed pocket should enhance the affinity between VP35 and
dsRNA blunt ends, while stabilizing the open pocket (e.g., via
binding of a small molecule) should disrupt dsRNA binding.

Thiol labeling experiments corroborate the predicted cryptic
pocket. One way to experimentally test our prediction of a cryptic
pocket is to probe for solvent exposure of residues that are buried
in all the structures that are currently available in the protein data
bank (PDB) but become exposed to solvent upon pocket opening.
Cysteines are particularly appealing candidates for such experi-
ments because (1) they have a low abundance and (2) their thiol
groups are highly reactive, so it is straightforward to detect
exposed cysteines by introducing labeling reagents that covalently
bind accessible thiols. Fortuitously, VP35’s IID has two cysteines
(C307 and C326) that are buried in available crystal structures but
become exposed to solvent when the cryptic pocket opens
(Fig. 4B). There is also a cysteine (C275) that is on the surface of
the apo crystal structure32 and a fourth cysteine (C247) that is
buried in the helical bundle. C275 is typically solvent-exposed in
our simulations, as expected based on the crystallographic data.
Examining the solvent exposure of C247 revealed it is sometimes
exposed to solvent via an opening of helix 1 relative to the rest of
the helical bundle (Supplementary Fig. 2), but FTMap did not

identify any hotspots that are likely to bind drug-like molecules in
this region. Therefore, we expect to observe labeling of all four
cysteines on a timescale that is faster than global unfolding of the
protein.

To experimentally test our predicted pocket, we applied a thiol
labeling technique that probes the solvent exposure of cysteine
residues49. For these experiments, 5,5’-dithiobis-(2-nitrobenzoic
Acid) (also known as DTNB or Ellman’s reagent, Fig. 4A) is
added to a protein sample. Upon reaction with the thiol group of
an exposed cysteine, DTNB breaks into two TNB molecules, one
of which remains covalently bound to the cysteine while the other
is released into solution. The accumulation of free TNB can be
quantified based on the increased absorbance at 412 nm. We have
previously applied this technique to test predicted pockets in β-
lactamase enzymes12,50.

As expected from our computational model, the observed
signal from our thiol labeling experiments is consistent with
opening of the cryptic pocket (Fig. 4C). Absorbance curves are
best fit by four exponentials, each with an approximately
equivalent amplitude that is consistent with expectations based
on the extinction coefficient for DTNB (Supplementary Fig. 3).
To assign these labeling rates to individual cysteines, we
systematically mutated the cysteines to serines, performed thiol
labeling experiments, and assessed which rates disappeared and
which remained (Supplementary Fig. 4 and Table 1). For
example, labeling of the C275S variant lacks the very fastest rate
for wild-type, consistent with the intuition that a residue that is

D

Fig. 4 Thiol labeling supports the existence of the predicted cryptic pocket. A Structure of the DTNB-labeling reagent. B Structure of VP35’s IID
highlighting the locations of the four native cysteines (sticks). C307 and C326 are both buried and point into the predicted cryptic pocket. C Observed
labeling rates (circles) for WT VP35 at a range of DTNB concentrations. Fits to the Linderstrøm–Lang model are shown in dashed colored lines and the
expected labeling rate from the unfolded state is shown as black dotted lines. The mean and standard deviation from three replicates is shown but error
bars are generally smaller than the symbols. D Observed labeling rates (circles) for VP35 C247S/C275S. Fits to the Linderstrøm–Lang model are shown in
dashed colored lines, and the expected labeling rate from the unfolded state is shown as black dotted lines. The mean and standard deviation from three
replicates is shown but error bars are generally smaller than the symbols. Source data are provided as a Source Data file.
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surfaced exposed in the crystal structure (i.e., C275) should label
faster than residues that are generally buried. The consistency of
the labeling rates between variants also confirms none of the
observed labeling events are dependent on labeling of other
cysteine residues.

To test whether the observed labeling could be due to an
alternative process, such as global unfolding, we determined the
population of the unfolded state and unfolding rate of VP35’s IID
under native conditions (Supplementary Table 2) and the
intrinsic labeling rate for each cysteine (Supplementary Table 3).
As shown in Fig. 4C, the observed labeling rates are all
considerably faster than the expected labeling rate from the
unfolded state at a range of DTNB concentrations. This result
confirms that labeling of all four cysteines arises from fluctuations
within the native state, consistent with our computational
predictions.

That all four cysteines undergo labeling suggests that C247
undergoes local fluctuations that our exposons analysis does not
predict will form a pocket. To determine the importance of this
fluctuation, we calculated the equilibrium constant for the
exposure of both C247 and C307. Opening of the cryptic pocket
is far more probable than the structural fluctuation that exposes
C247 (equilibrium constants for the exposure of C247 and C307
are 6:9 ´ 10�4 ± 7:0 ´ 10�5 and 4:0 ´ 10�1 ± 1:0 ´ 10�2, respec-
tively). Therefore, a ligand would have to pay a greater energetic
cost to stabilize the conformational change that exposes C247
than to stabilize the open state of the cryptic allosteric site created
by the motion of helix 5. Taken together with the fact that the
motion of helix 5 creates a more druggable pocket than the
motion that exposes C247, we continue to focus on the cryptic
pocket created by the helix 5 motion.

Mutations support our predicted allosteric network. We sought
to test our model of allostery in VP35 by introducing mutations
and assessing their impact on the conformations of distal sites. To
select mutations, we drew on both our model of allosteric cou-
pling and the published literature. For example, our model’s
prediction of coupling between the conformation of F239 (in the
blunt-end-binding interface) and cryptic pocket opening suggests
that an F239A mutation is likely to alter pocket opening. Previous
work suggests that the linker between the two domains of Reston
VP35 confers it with greater stability and rigidity than the Zaire
variant of VP35 we focus on in this work51. One of the significant
differences between the linkers of the two proteins is the presence
of a proline in Reston VP35. Given proline is conformationally
restricted, we reasoned that substituting A291 for proline in the
linker of Zaire VP35 may restrict cryptic pocket opening and
enhance dsRNA binding. To test these predictions, we created the
relevant variants of VP35 and measured their impact on cryptic
pocket opening using our thiol labeling assay.

Thiol labeling of F239A demonstrates that the mutation
allosterically increases opening of the cryptic pocket. We find
that the observed labeling rates for the cysteines in the cryptic
pocket are twofold faster than in wild-type VP35. Fitting with the
Linderstrøm–Lang model reveals that the equilibrium probability
of C307 exposure in F239A is approximately double that of wild-
type (1:1 ± 0:2 vs 4:0´ 10�1 ± 1:0 ´ 10�2, respectively) (Supple-
mentary Fig. 5). These thiol labeling data suggest that commu-
nication flows to and from the end-cap involved dsRNA binding
residues and cryptic pocket.

In contrast, the mutation A291P decreases the probability of
pocket opening, which results in a higher affinity for dsRNA.
Thiol labeling experiments reveal that A291P dramatically
reduces the labeling rates of the two cysteines in the cryptic
pocket (Supplementary Fig. 6). In fact, the labeling rate of C326 in

the A291P background is similar to the rate of global protein
unfolding (Fig. 5A), suggesting that the pocket never opens
enough to expose the most deeply buried regions of the cryptic
pocket observed in the wild-type protein. The probability that the
C307 of the A291P variant is accessible to our DTNB-labeling
reagent is also significantly smaller than in wild-type
(1:4 ´ 10�4 ± 2:0 ´ 10�4 vs 4:0´ 10�1 ± 1:0 ´ 10�2, respectively).

Stabilizing the closed pocket increases dsRNA binding. Based
on our predicted allosteric network, stabilizing the closed state of
the cryptic pocket should enhance dsRNA binding. Specifically,
the fact that the pocket is closed in the co-crystal structure of
VP35 with dsRNA (PDB 3L26) implies a closed pocket is
favorable for dsRNA binding and a mutation that stabilizes the
pocket in its closed form would increase dsRNA binding.
Therefore, we should see a higher affinity between A291P
and dsRNA.

To test this prediction, we developed a fluorescence
polarization (FP) assay for measuring the affinity of VP35 for

C307 C326

Fig. 5 An A291P mutation favors both the closed cryptic pocket in VP35’s
IID and increases dsRNA binding. A DTNB observed labeling rates of both
wild-type and the A291P mutation for the two cysteines in the pocket. All
four cysteines are present, complete data for all four observed rates are in
Supplemental Fig. 4. B Binding of both C247S/C275S and A291P VP35 IID
to a fluorescently labeled 25-bp double-stranded RNA. The anisotropy was
calculated from measured fluorescence polarization and fit to a single-site
binding model (black and orange lines). The means and standard deviations
from three replicates are shown but error bars are generally smaller than
the symbols. Anisotropy was normalized to the max anisotropy for each
dataset. Source data are provided as a Source Data file.
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dsRNA. Paralleling past work on VP35-peptide interactions40,
we added varying concentrations of VP35 IID to a fixed
concentration of 25-bp RNA with a fluorescein isothiocyanate
(FITC) conjugation at the 5’ end (Supplementary Table 4). Free
FITC-dsRNA emits depolarized light upon excitation with
polarized light because of the molecule’s fast rotation. Binding
of one or more VP35 molecules restricts the motion of FITC-
dsRNA, resulting in greater emission of polarized light, which
is best monitored by the change in anisotropy52. This
anisotropy-based binding measurement recapitulates pre-
viously published binding affinities for two different dsRNA
end topologies (blunt or overhanging 3’ ends) (Supplementary
Fig. 8).

Our data show that closing the pocket with A291P increases
dsRNA binding. To test how A291P binds dsRNA, we repeated
the binding assay done with VP35 IID C247S/C275S with A291P
and a 25 base-pair blunt-ended dsRNA and calculated the
apparent affinity to be 1.8 ± 0.1 µM. This corresponds to a
twofold increase in apparent binding affinity relative to wild-type
VP35. We also find that A291P is sensitive to the presence of a 3’
overhang as characterized by a rightward shift of the binding
curve (Supplementary Fig. 9).

Stabilizing the open cryptic pocket allosterically disrupts
binding to dsRNA blunt ends. We reasoned that covalent
attachment of TNB to the cysteine sidechains pointing into the
pocket (C307 and C326) would provide a means to capture the open
pocket and assess the impact of stabilizing this state with a drug-sized
probe on dsRNA binding. The addition of TNB to these cysteines is
sterically incompatible with the closed conformation of VP35’s RNA-
bound IID that has been observed crystallographically. TNB’s mass of
~198Da is also similar to many drug fragments used in screening
campaigns, making it a reasonable surrogate for the type of effect one
might achieve with a fragment hit. Given that we already know
DTNB labels the IID’s cysteines, a TNB-labeled sample is easily
obtainable by waiting until the labeling reaction goes to completion.
Finally, we have previously used this same strategy to identify cryptic
pockets that exert allosteric control over the activity of β-lactamase
enzymes 12,50.

To specifically probe the behavior of effects of labeling the
cryptic pocket, we focus on a C247S/C275S variant that only has
cysteines in the cryptic pocket. As with the wild-type protein,
thiol labeling of the C247S/C275S variant is consistent with the
formation of the predicted cryptic pocket (Fig. 4D).

Comparing the dsRNA-binding profile of TNB-labeled protein
(TNB-VP35 IID) to unlabeled protein reveals that labeling
allosterically reduces the affinity for blunt-ended dsRNA by at
least fivefold (Fig. 6A). Solubility limitations prevented us from
observing complete binding curves for labeled protein, but the
data are sufficient to demonstrate that TNB-labeling has at least
as strong an effect on binding as addition of a 3’ overhang. As a
control to ensure that labeling does not disrupt binding by simply
unfolding the protein, we measured the circular dichroism (CD)
spectra of labeled and unlabeled protein. The similarity between
the CD spectra (Fig. 6B) demonstrates that the IID’s overall fold
is not grossly perturbed. Previous work demonstrated that VP35’s
two subdomains do not fold independently32 supporting our
proposal that both domains remain mostly folded. These data
indicate that the change in dsRNA binding from TNB-labeled
VP35 is unlikely to be due to a local unfolding of the β-sheet
subdomain. Furthermore, since past work demonstrated that
reducing the blunt-end-binding affinity by as little as threefold is
sufficient to allow a host to mount an effective immune
response33,34, targeting our cryptic pocket could be of great
therapeutic value.

Discussion
We have identified a cryptic allosteric site in the IID of the
Ebola virus VP35 protein that provides a new opportunity to
target this essential viral component. Past work identified several
sites within the VP35 IID that are critical for immune evasion and
viral replication28,31,36,37, but structural snapshots captured
crystallographically lacked druggable pockets32,33. We used
adaptive sampling simulations to access more of the ensemble of
conformations that VP35 adopts, uncovering an unanticipated
cryptic pocket. While the pocket directly coincides with the

Fig. 6 Stabilizing the open cryptic pocket in VP35’s IID disrupts dsRNA
binding. A Binding of unlabeled C247S/C275S VP35 IID to two different
dsRNA constructs compared to binding of TNB-labeled protein to blunt-
ended RNA. The two RNA constructs both have a 25-bp double-stranded
segment, and one has 2 nucleotide overhangs on the 3’ ends. The
anisotropy was measured via a fluorescence polarization assay, converted
to anisotropy, fit to a single-site binding model (black lines), and normalized
to the fit maximum anisotropy. The mean and standard deviation from
three replicates is shown but error bars are generally smaller than the
symbols. B Circular dichroism (CD) spectra of labeled and unlabeled
protein demonstrate that labeling does not unfold the protein. The opaque
and semi-transparent lines represent the mean and standard deviation,
respectively, from three replicates. CD spectra were collected in 50mM
sodium phosphate pH 7 at 50 µg/mL protein. Source data are provided as a
Source Data file.
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interface that binds the backbone of dsRNA, it was not clearly of
therapeutic relevance since binding dsRNA’s blunt ends is more
important for Ebola’s immune evasion mechanism34. However,
our simulations also suggested the cryptic pocket is allosterically
coupled to the blunt-end-binding interface and, therefore, could
modulate this biologically-important interaction. Analysis of our
computational model suggested that structures with an open
cryptic pocket should be less compatible with binding to RNA
blunt ends than structures with a closed pocket. Subsequent thiol
labeling experiments confirmed that fluctuations within the fol-
ded state of the IID expose two buried cysteines that line the
proposed cryptic pocket to solvent. Introducing an F239A
mutation within the blunt-end-binding interface allosterically
increases the probability of cryptic pocket opening33,53,54. An
A291P mutation allosterically suppresses pocket opening and
simultaneously increases the affinity of VP35 for dsRNA. Finally,
covalently modifying the pocket facing cysteines to stabilize the
open form of the cryptic pocket allosterically disrupts binding to
dsRNA blunt ends by at least fivefold. Previous work demon-
strated that reducing the binding affinity by as little as 3-fold is
sufficient to allow a host to mount an effective immune
response33. Therefore, it may be possible to attenuate the impact
of viral replication and restrict pathogenicity by designing small
molecules to target the cryptic allosteric site we report here.

More generally, our results speak to the power of simulations
to provide simultaneous access to both hidden conformations and
dynamics with atomic resolution. Such information is extremely
difficult to obtain from single structural snapshots or powerful
techniques that report on dynamics without directly yielding
structures, such as NMR and hydrogen deuterium exchange. As a
result, simulations are a powerful means to uncover unanticipated
features of proteins’ conformational ensembles, such as cryptic
pockets and allostery, providing a foundation for the design of
further experiments. We anticipate such simulations will enable
the discovery of cryptic pockets and cryptic allosteric sites in
other proteins, particularly those that are currently considered
difficult targets. Furthermore, the detailed structural insight from
simulations will facilitate the design of small-molecule drugs that
target these sites.

Methods
Molecular dynamics simulations and analysis. Simulations were initiated from
the apoprotein model of PDB 3FKE32,33 and run with Gromacs55 using the
amber03 force field56 and TIP3P explicit solvent57 at a temperature of 300 K and
1 bar pressure, as described previously58. Recombinant VP35 IID is known to be
monomeric supporting our choice in system setup. We first applied our FAST-
pockets algorithm42 to balance (1) preferentially simulating structures with large
pocket volumes that may harbor cryptic pockets with (2) broad exploration of
conformational space. For FAST, we performed ten rounds of simulations with
10 simulations/round and 80 ns/simulation. To acquire better statistics across the
landscape, we performed an RMSD-based clustering using a hybrid k-centers/k-
medoids algorithm59 implemented in Enspara60 to divide the data into 1000
clusters. Then we ran three simulations initiated from each cluster center on the
Folding@home distributed computing environment, resulting in an aggregate
simulation time of 122 μs.

Exposons were identified using our previously described protocols12, as
implemented in Enspara60. Briefly, the solvent-accessible surface area (SASA) of
each residue’s side-chain was calculated using the Shrake-Rupley algorithm61

implemented in MDTraj62 using a drug-sized probe (2.8 Å sphere). Conformations
were clustered based on the SASA of each residue using a hybrid k-centers/k-
medoids algorithm, using a 2.7 Å2 distance cutoff and five rounds of k-medoids
updates. A Markov time of 6 ns was selected based on the implied timescales test
(Supplementary Fig. 10). The center of each cluster was taken as an exemplar of
that conformational state, and residues were classified as exposed if their SASA
exceeded 2.0 Å2 and buried otherwise. The mutual information between the burial/
exposure of each pair of residues was then calculated based on the MSM (i.e.,
treating the centers as samples and weighting them by the equilibrium probability
of the state they represent). Finally, exposons were identified by clustering the
matrix of pairwise mutual information values using affinity propagation63.

The CARDS algorithm48 was applied to identify allosteric coupling using our
established protocols64, as implemented in Enspara60. Briefly, each dihedral angle

in each snapshot of the simulations was assigned to one of three rotameric states
(gauche+, gauche-, or trans) and one of two dynamical states (ordered or
disordered). The total coupling between each pair of dihedrals X and Y was then
calculated as I XR;YR

� �þ I XR;YD

� �þ I XD;YR

� �þ I XD;YD

� �
, where I is the

mutual information metric, XR is the rotameric state of dihedral X, and XD is the
dynamical state of dihedral X. The term I XR;YR

� �
is the purely structural

coupling, while the sum of the other three terms is referred to as the disorder-
mediated coupling. The dihedral level couplings were coarse-grained into residue-
level coupling by summing the total coupling between all the relevant dihedrals.
The network was subsequently filtered to only retain significant edges65. Finally,
communities of coupled residues were identified by clustering the residue-level
matrix of total couplings using affinity propagation63. These algorithms are
available at github.com/bowman-lab.

We processed, trained, and analyzed our DiffNet as previously described10.
Briefly, we isolated coordinates of the heavy atoms (all protein atoms excluding
hydrogens) for trajectories of our two ensembles of pocket open and closed states
using a 1.5 Å cutoff for the distance between the center of mass of residues 305–310
(helix 5) and the center of mass of residues 238 to 245 (helix 2). We then centered
the atom coordinates at the origin and aligned to 3FKE. Next, we mean shifted then
whitened the coordinates. Finally, we used the resulting data to train the neural net
for 20 epochs with 30 latent space variables with a batch size of 32. Frames with the
pocket closed were initially assigned a classification label of zero while frames with
the pocket open were assigned a label of one. For expectation maximization, we set
the initial bounds as 10–40% for closed frames then 60–90% for open frames. We
then visualized the top 250 correlated distance changes in PyMol.

We used the calc_chi1 function in MdTraj to calculate the F239 χ1in our
original MSM. We then binned the χ1 values as guache+, trans, or gauche- using
previously described cuttoffs66. To estimate the error in our rotamer distribution in
Fig. 3D, we randomly selected N trajectories from the original dataset where
N= number of total original trajectories in our dataset, with replacement. We then
refit the MSM as described above, keeping the same state space but with the
resampled trajectories, twenty-five total times. Then we calculated the total
population of each rotamer in the resampled datasets, and the mean population of
that rotamer across all resampled MSMs. The error bars are then the standard
deviation of the mean of the resampled population values for each rotamer in the
open and closed ensembles with respect to the refit MSMs.

Protein expression and purification. All variants of VP35’s IID were purified from
the cytoplasm of E. coli BL21(DE3) Gold cells (Agilent Technologies)32–34,53,54.
Variants were generated using the site-directed mutagenesis method and confirmed
by DNA sequencing. Transformed cells were grown at 37 °C until OD 0.3 then
grown at 18 °C until induction at OD 0.6 with 1mM IPTG (Gold Biotechnology,
Olivette, MO). Cells were grown for 15 h then centrifuged after which the pellet was
resuspended in 20mM sodium phosphate pH 8, 1M sodium chloride, with 5.1 mM
β-mercaptoethanol. Resuspended cells were subjected to sonication at 4 °C followed
by centrifugation. The supernatant was then subjected to Ni-NTA affinity (BioRad
Bio-Scale Mini Nuvia IMAC column), TEV digestion, cation exchange (BioRad
UNOsphere Rapid S column), and size-exclusion chromatography (BioRad Enrich
SEC 70 column or Cytiva HiLoad 16/600 Superdex 75) into 10mM HEPES pH 7,
150mM NaCl, 1 mM MgCl2, 2 mM TCEP.

Thiol labeling. We monitored the change in absorbance over time of 5,5’-
dithiobis-(2-nitrobenzoic acid) (DTNB, Ellman’s reagent, Thermo Fisher Scien-
tific). Various concentrations of DTNB were added to the protein, and change in
absorbance was measured in either an SX-20 Stopped Flow instrument (Applied
Photophysics, Leatherhead, UK), or an Agilent Cary60 UV–vis spectrophotometer
at 412 nm until the reaction reached a steady state (~300 s). Data were fit with a
Linderstrøm–Lang model to extract the thermodynamics and/or kinetics of pocket
opening, as described in detail previously12. As a control, the equilibrium constant
for folding and the unfolding rate were measured (Supplementary Table 2) and
used to predict the expected labeling rate from the unfolded state. The equilibrium
constant was inferred from a two-state fit to urea melts monitored by fluorescence
and unfolding rates were inferred from exponential fits to unfolding curves
monitored by fluorescence after the addition of urea, as described previously12,50,67.
Fluorescence data were collected using a Jasco FP-8300 Spectrofluorometer with
Jasco ETC-815 Peltier and Koolance Exos2 Liquid Coolant-controlled cuvette
holder.

Fluorescence polarization binding assay. Apparent binding affinities between
variants of VP35’s IID and dsRNA were measured using fluorescence polarization
in 10 mM Hepes pH 7, 150 mM NaCl, 1 mM MgCl2. A 25 base pair FITC-dsRNA
(Integrated DNA Technologies) substrate with and without a 2 nucleotide 3’
overhang was included at 100 nM. The sample was equilibrated for one hour before
data collection. Data were collected on a BioTek Synergy2 Multi-Mode Reader as
polarization and were converted to anisotropy as described previously52. TNB-
labeled samples were generated by allowing DTNB and VP35’s IID to react for
3 min and then removing excess DTNB with a Zeba spin desalting columns
(Thermo Fisher Scientific). Data were analyzed in Jupyter Notebook using Scipy
1.3.2, NumPy 1.14.x and 1.19.5, Matplotlib 3.5, Pandas 0.25.3, and Seaborn 0.11.2.
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A single-site binding model was sufficient to fit the data:

robs ¼ r0 þ rmax � r0
� � � KA � VP35½ �

1þ KA � VP35½ �

� �
ð1Þ

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data and molecular dynamics datasets that support this study are available from the
corresponding author upon reasonable request. MD start files are available with the
MSM data in the below linked repository. The MSM data and MD starting structures
have been deposited in the Open Science Framework database https://osf.io/5pg2a.
Referenced structures are: PDB ID 3FKE and PDB 3L26. Source data are provided with
this paper.

Code availability
FAST, Enspara (including Exposons and CARDS), and DiffNets are freely available
software packages on GitHub at https://github.com/bowman-lab/diffnets. Jupyter
Notebooks used to analyze experimental data are available upon request.
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