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Observation of Bloch oscillations dominated by
effective anyonic particle statistics
Weixuan Zhang 1,3, Hao Yuan1,3, Haiteng Wang1, Fengxiao Di1, Na Sun1, Xingen Zheng 1, Houjun Sun 2 &

Xiangdong Zhang 1✉

Bloch oscillations are exotic phenomena describing the periodic motion of a wave packet

subjected to an external force in a lattice, where a system possessing single or multiple

particles could exhibit distinct oscillation behaviors. In particular, it has been pointed out that

quantum statistics could dramatically affect the Bloch oscillation even in the absence of

particle interactions, where the oscillation frequency of two pseudofermions with an anyonic

statistical angle of π becomes half of that for two bosons. However, these statistically

dependent Bloch oscillations have never been observed in experiments until now. Here, we

report the experimental simulation of anyonic Bloch oscillations using electric circuits. By

mapping the eigenstates of two anyons to the modes of the designed circuit simulators, the

Bloch oscillations of two bosons and two pseudofermions are verified by measuring the

voltage dynamics. The oscillation period in the two-boson simulator is almost twice of that in

the two-pseudofermion simulator, that is consistent with the theoretical prediction. Our

proposal provides a flexible platform to investigate and visualize many interesting phe-

nomena related to particle statistics and could have potential applications in the field of the

signal control.
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B loch oscillations (BOs) were originally proposed for elec-
trons in crystals, which are characterized as the coherent
oscillatory motion of electrons in a periodic potential dri-

ven by an external DC electric field1,2. After a long-lasting debate
about the correctness of BOs3,4, the effective Hamiltonians
leading to BOs and their frequency-domain counterparts, called
the Wannier-Stark ladder, were confirmed5. The first experi-
mental observation of BOs was based on semiconductor
superlattices6, and a few years later, atoms in an optical potential
were also established to demonstrate such a novel effect7–10. In
fact, BO is a universal wave phenomenon. Hence, it has also been
observed in various classical wave systems11–20, such as coupled
optical waveguides11–19 and acoustic superlattices20.

On the other hand, in the few-body quantum systems descri-
bed by the Bose-Hubbard or Fermi-Hubbard model, many
investigations have shown that BOs could be significantly mod-
ified by strong particle interactions20–29. In particular, the fre-
quency doubling of BOs for two strongly correlated Bosons,
which is called fractional BOs, is experimentally observed based
on a photonic lattice simulator29, where the two-boson dynamics
are directly mapped to the propagation of light fields in the
designed two-dimensional waveguide array.

Except for bosons and fermions, anyons are quantum quasi-
particles with statistics intermediate between them30–36. Anyons
play important roles in several areas of modern physics research,
such as fractional quantum Hall systems37–40 and spin
liquids41–43. Another potential application of non-Abelian
anyons is to realize topological quantum computation44. Inter-
estingly, previous theoretical work has shown that two non-
interacting anyons could exhibit exotic BOs, where the frequency
halving of BOs for two pseudofermions exists if the ratio of the
applied external force to the hopping rate is less than or equal to
0.545. However, the experimental observation of anyonic BOs is
still a great challenge in condensed-matter systems, ultracold
quantum gases, and other classical wave systems. In this case, a
newly accessible and fully controllable platform should be con-
structed to simulate anyonic BOs with novel behaviors.

In this work, we demonstrate both theoretically and experi-
mentally that anyonic BOs can be simulated by designed electric
circuits. Using the exact mapping of two anyons in the external
forcing to modes of designed circuit lattices, the periodic
breathing dynamics of voltages are observed by time-domain
measurements in both two-boson and two-pseudofermion cir-
cuits simulators. In particular, we find that the oscillation fre-
quency in the two-boson simulator is almost twice that in the
two-pseudofermion simulator, which is consistent with the the-
oretical prediction. Our work provides a flexible platform to
implement many interesting phenomena depending on particle
statistics and could have potential applications in the field of
intergraded circuit design and electronic signal control.

Results
The theory of simulating anyonic Bloch oscillations by electric
circuits. Following the theoretical model proposed by Longhi and
Valle45, we start by considering a pair of non-interacting anyons
hopping on a one-dimensional (1D) chain subjected to an
external force F. In this case, the system can be described by the
tight-binding lattice model as:

H ¼ �J∑
N

l¼1
ðaþl alþ1 þ aþlþ1alÞ þ F∑

N

l¼1
lnl; ð1Þ

where aþl (al) and nl ¼ aþl al are the creation (annihilation) and
particle number operators of the anyon at the lth lattice site,
respectively. N is the number of lattice sites. J is the single-particle
hopping rate between adjacent sites. The anyonic creation

and annihilation operators obey the generalized commutation
relations as:

aþk al � aþl ake
iθsgnðl�kÞ ¼ δlk; alak � akale

iθsgnðl�kÞ ¼ 0; ð2Þ
where θ is the anyonic statistical angle, and sgn(x) equals −1, 0,
and 1 for x < 0, x= 0 and x > 0, respectively. It is worth noting
that anyons with θ ¼ π are “pseudofermions” as they behave like
fermions off-site while being bosons on-site. The two-anyon
solution can be expanded in the Fock space as:

jψ> ¼ 1ffiffiffi
2

p ∑
N

m;n¼1
cmna

þ
ma

þ
n j0>; ð3Þ

where j0> is the vacuum state and cmn is the probability ampli-
tude with one anyon at site m and the other one at site n. Under
the restriction of anyonic statistics, the relationship of cmn ¼
eiθsgnðn�mÞcnm is satisfied. Substituting Eqs. (1) and (3) into the
Schrödinger equation Hjψ> ¼ εjψ>, we obtain the eigen-
equation with respect to cmn as:45

εcmn ¼� J½eiθðδm;nþδmþ1;nÞcm n�1ð Þ þ e�iθðδm;nþδm�1;nÞcm nþ1ð Þ
þ c m�1ð Þn þ c mþ1ð Þn� þ Fðmþ nÞcmn:

ð4Þ

Similar to many previous works on mapping lower-dimensional
few-body systems to higher-dimensional single-body system29,46–49,
We note that Eq. (4) can also be regarded as the eigen-equation
describing a single-particle hopping on the 2D lattice with the
spatially modulated on-site potential and hopping configuration, as
shown in Fig. 1a. In this case, the probability amplitude for the 1D
two-anyon model with one anyon at site m and the other at site n is
directly mapped to the probability amplitude for the single particle
located at site (m, n) of the 2D lattice. The position-dependent on-
site potential could simulate the effect of external force. Moreover,
the hopping of a single particle along a certain direction in the 2D
lattice represents the hopping of one anyon in the 1D lattice. In this
case, the behavior of two anyons in the 1D lattice can be effectively
simulated by a single particle in the mapped 2D lattice, which
inspires the design of classical simulators to study statistic-
dependent anyonic physics.

One of the fascinating phenomena dominated by the quantum
statistics in Eq. (4) shows that the BO frequency of two
pseudofermions (θ ¼ π) becomes half of that for two bosons
(θ ¼ 0), when the ratio of the external forcing to the hopping rate
satisfies F=J ≤ 0:545. To clarify this effect, the evolution of two-
anyon eigen-energies as a function of θ is displayed in Fig. 1b with
J= 1 and F= 0.5. For a clear illustration. eigen-energies in the
range of (6 F, 24 F) are plotted. Moreover, to avoid the finite-size
effect, only eigen-energies with their eigenmodes showing the
largest overlap with the center of lattices are kept. As for the case of
two bosons, the mapped 2D lattice in Fig. 1a possesses a mirror
symmetry with respect to the m= n line, which protects the
degeneration of different energy-levels (blue dots for θ ¼ 0), and
the degenerated eigen-energies εmn ¼ mþ nð ÞF are equally spaced
in the form of the Wannier-Stark ladder with Δε ¼ F. By
introducing the statistical angle of two anyons, the mirror symmetry
is broken, resulting in a splitting of the highly degenerated eigen-
spectrum of two bosons. In this case, the eigen-spectra of two
anyons are always not equal-spaced and the energy spacing is
smaller than the bosonic counterpart. When the statistical angle
reaches to θ ¼ π, many eigenmodes become nearly degenerated
again. Under a relatively strong hopping condition (F/J < 0.5), the
suitable energy-level coupling between different anyonic bands
could make the Wannier-Stark spectrum reappear for pseudofer-
mions. The lower spatial symmetry of the mapped lattice model of
pseudofermions compared to that of bosons leads to a smaller
energy degeneracy and a denser distribution of eigen-spectrum. In
this case, the energy spacing of pseudofermions is Δε ¼ F=2, which
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makes the BO frequency of two pseudofermions become half of that
for two non-interacting bosons. Although the statistic-induced
halving of the BO frequency is very interesting, to date, the
experimental observation of such an exotic effect is still lacking even
using the potential artificial structures50–52.

Based on the similarity between the circuit Laplacian and lattice
Hamiltonian53–70, electric circuits can be used as an extremely
flexible platform to fulfill the above mapped 2D lattice with
different statistical angles. Figure 1c illustrates the schematic
diagram for a part of the designed circuit simulator with θ ¼ π,
which corresponds to four lattice sites enclosed by the blue dashed
block in Fig. 1a. Here, a pair of circuit nodes connected by the
inductor L are considered to form an effective site in the 2D lattice
model. The voltages at these two nodes are marked by V m;nð Þ;1
and V m;nð Þ;2, which are suitably formulated to form a pair of

pseudospins V"ðm;nÞ;#ðm;nÞ ¼ ðV m;nð Þ;1 ±V m;nð Þ;2Þ=
ffiffiffi
2

p
. To simulate

the real-valued hopping rate, two capacitors (the capacitance equals
to C) are used to directly link adjacent nodes without a cross. For
the realization of the hopping rate with a phase (e ± iπ), two pairs of
adjacent nodes are cross-connected via C. Position-dependent
capacitors ðmþ nÞCF are used for grounding to simulate the
spatially modulated on-site potential induced by the external
forcing. Moreover, the extra capacitor Ce, which is crucial for the
achievement of anyonic BOs in the circuit networks (demonstrated
below), is also added to connect each circuit node to the ground.
Through the appropriate setting of grounding and connecting, the
circuit eigen-equation can be derived as:

ðf 20=f 2 � 4� Ce=CÞV#;mn ¼� e�iπðδm;nþδm;nþ1ÞV#;m nþ1ð Þ

� eiπðδm;nþδmþ1;nÞV#;m n�1ð Þ � V#; mþ1ð Þn

� V#; m�1ð Þn þ mþ nð Þ CF

C

� �
V

#;mn

;

ð5Þ

where f is the eigen-frequency (f 0 ¼ 1=2π
ffiffiffiffiffiffiffiffiffiffiffi
CL=2

p
) of the designed

circuit, and V#;ðm;nÞ ¼ ðV m;nð Þ;1 � V m;nð Þ;2Þ=
ffiffiffi
2

p
represents the

voltage of pseudospin at the circuit node (m, n). Details for the
derivation of circuit eigenequations are provided in Supplementary
Note 1. It is shown that the eigen-equation of the designed electric
circuit possesses the same form as Eq. (4). In particular, the
probability amplitude for the 1D two-pseudofermion model cmn is
mapped to the voltage of pseudospin V#;ðm;nÞ at the circuit node
(m, n). The eigen-energy (ε) of two anyons is directly related to the
eigen-frequency (f) of the circuit as ε ¼ f 20=f

2 � 4� Ce=C, with
other parameters being J ¼ 1 and F ¼ CF=C. It is worth noting
that the method for designing the circuit simulator is applicable to
other statistical angles θ ¼ v

o π (v and o are integers), where the
complex hopping rate Je± i

v
oπ could be realized by suitably braiding

the connection pattern of o adjacent circuit nodes in a single lattice
site53,54. In this case, the relationship between ε and f with different
values of θ remains the same. We note that the simulation of
anyons by designed circuit networks could be intuitively understood
as follows. To exchange locations of two anyons, the first anyon
should tunnel from the original position (the mth site) to the
position of the second anyon initially located (the nth site), that is
from cmn to cnn. Then, the second anyon should also move from its
original position to the position of the first anyon originally
occupied, corresponding to that from cnn to cnm. In this case, the
effective amplitude for the exchange of two anyons could be
expressed by the product of hopping amplitudes in these two
processes, and an associated phase factor e ± iθ related to the particle
statistic should appear. To ensure the appearance of a statistic-
related phase factor e ± iθ , the hopping amplitudes at the diagonal
must be e± iθ along one axis.

To analyze the behavior of BOs in the circuit simulator with
respect to θ, eigen-frequencies of the designed circuit as a
function of the statistical angle θ should be calculated. The
parameters are set as C= 10 pF, Ce= 2 nF, L= 10 µH, and

Fig. 1 Schematic diagram of designed circuit simulators for the Bloch oscillation of a pair of anyons. a The mapped 2D lattice of the single particle for
simulating the 1D two-anyon effect in the absence of on-site interaction under an external forcing. The color represents the value of the on-site potential related to
the external forcing. The arrow corresponds to the hopping rate with a complex phase e± iθ . c Schematic diagram for a part of the designed circuit simulator with
θ ¼ π corresponding to four lattice sites enclosed by the blue dashed block in panel a. A pair of circuit nodes belonging to a single site are connected by the blue
inductor L. The yellow, orange, green capacitors correspond to grounding capacitors at sites of (6, 5) or (5, 6), (6, 6) and (5, 5), respectively. The cyan capacitor
marks the connection capacitor between circuit nodes at different sites. b, d Calculated eigen-energies of two anyons and eigen-frequencies of the circuit simulator
as a function of the statistical angle θ. The blue and green dots correspond to eigen-frequencies of two-boson and two-pseudofermion circuit simulators.
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CF= 5 pF. Due to the nonlinear relationship between the eigen-
frequency of the circuit simulator and the eigen-energy of two

anyons (f ¼ f 0=ðεþ 4þ Ce=CÞ1=2), the frequency-spectrum of
the designed circuit should deviate from the energy-spectrum of
two anyons. In fact, such a deviation could be eliminated
by setting an extremely large grounding capacitor Ce (see
Supplementary Note 2 for details). As shown in Fig. 1d, the
frequency-spectrum related to eigen-energies in the range of
(6 F, 24 F) is plotted, where the excitation frequency (1.56 MHz)
used in simulations and measurements (discussed below) is
located within this frequency range. In this case, we can see that
the evolution of eigen-frequencies for the circuit simulator
versus the statistical phase θ possesses the same trend as that of
the two-anyon eigen-energy. In particular, the nearly equal-
spaced frequency-spectrum of the designed circuit with θ ¼ 0
(4f B � 1:863 kHz) exists, which is analogous to the Wannier-
Stark ladder of a pair of non-interacting bosons. Additionally,
the frequency-spectrum of the designed circuit for pseudofer-
mions is equal-spaced with the spacing being 4f f � 0:931 kHz,
which is nearly half of 4f B. With such a good correspondence
between the frequency-spectrum of the designed 2D circuit and
the 1D two-anyon model, the behavior of the quantum
statistics-dominated BOs should be effectively implemented
by the designed electric circuit.

Numerical results of simulating anyonic Bloch oscillations in
electric circuits. In this part, using the designed circuit simulator
with 23 ´ 23 node pairs (corresponding to the 1D two-anyon
model with N = 23 lattice sites), we numerically simulate the
behavior of BOs for two non-interacting anyons with statistical
angles being θ ¼ 0 and θ ¼ π. Here, the values of C;CF ; Ce and L
are taken as 10 pF, 5 pF, 2 nF, and 10 µH (the same as those used
in Fig. 1d). To illustrate the frequency-spectra, as shown in Fig. 2a
and b, we calculate the sum of impedance for fifteen diagonal
nodes (from (5,5) to (19,19)) in two-boson and two-
pseudofermion circuit simulators, respectively. It is clearly
shown that various equally spaced impedance peaks appear in the
central frequency-domain, manifesting the existence of Wannier-
Stark spectra of our designed circuit simulators. The small
deviation at low- and high-frequency ranges is due to the finite-
size effect, which makes boundary modes be excited in addition to
bulk states by circuit nodes far from the center (see Supple-
mentary Note 3 for details). It is noted that the frequency-spacing
of two adjacent impedance peaks for the bosonic simulator is two
times that for two pseudofermions, which is consistent with the
calculated frequency-spectra in Fig. 1d.

To clearly illustrate the statistics-dependent BO in our designed
electric circuits, we perform time-domain simulations of voltage
dynamics using LTSpice software. First, we focus on the circuit
simulator of two non-interacting bosons. Here, the excitation

 

 

Fig. 2 Numerical results for simulating anyonic Bloch oscillations in electric circuits. a, b The sum of impedance for fifteen diagonal nodes (from (5, 5) to
(19, 19)) of circuit simulators for two bosons (the red line) and two pseudofermions (the blue line), respectively. The time-dependent evolution of voltage
signals at all nodes in the 2D circuit simulator with θ ¼ 0 for (c) and θ ¼ π for (g). The 2D distributions of voltage amplitude and phase at different times in
(d) and (e) for θ ¼ 0, and in (h) and (i) for θ ¼ π, where subplots from left to right correspond to results with increased times. The simulated voltage
signals at the node (5, 5) of 2D circuits with θ ¼ 0 for (f), and θ ¼ π for (j).
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frequency is set as f= 1.56MHz, and the central circuit node
is excited by V 12;12ð Þ;1 ¼ V0e

i2πft . Figure 2c displays the time-
dependent evolution of jV m;n½ �;1ðtÞj2 at all nodes, where the circuit
node (m, n) is labeled by (m− 1)N+ n. We connect a suitable
capacitor between the excited circuit node and the voltage source to
ensure that the periodic oscillation could also appear at the excited
node (12, 12). In this case, although the large occupation exists at the
center site (the excited site), it is not a constant but also exhibits
periodic oscillation. Amplitude (normalized to the maximum) and
phase distributions of voltage signals at selected times with equal
intervals (in the first period) are presented in Fig. 2d and e. We can
see that voltages at symmetric circuit nodes (m, n) and (n, m) are
always the same, being consistent with the commutation relation of
two bosons. In addition, it is shown that the voltage displays the
periodic breathing dynamics, indicating the appearance of BOs. The
time-dependent voltage signals at a selected circuit node (m= 5,
n= 5) is further calculated, as presented in Fig. 2f. We can see that
the revival of voltage is clearly verified with a single-site resolution.
The oscillation period could be obtained by calculating the time
difference between two adjacent voltage maxima of a circuit node. In
this case, the associated oscillation period at the circuit node (5, 5) is
~0.548ms, which is nearly consistent with the period TB ¼
1=4f B ¼ 0:537ms predicted by the frequency-spectrum in Fig. 1d.
By calculating the period on many other representative circuit
nodes, the period error is in the range of [−0.01ms, 0.012ms].

Next, we calculate the BO of two non-interacting pseudofer-
mions by the designed electric circuit. The excitation frequency is
also set as 1.56 MHz, which is located in the equally spaced
region of the frequency-spectrum at θ ¼ π. The voltage
pseudospin can be suitably excited by setting the input signal as
V 12;12ð Þ;1 ¼ V0e

i2πft ;V
12;12ð Þ;2 ¼ �V0e

i2πft . The time-dependent

evolution of jV#; m;n½ �ðtÞj2 at all circuit nodes is displayed in
Fig. 2g. Figure 2h and i shows the normalized amplitude and
phase distributions of the voltage pseudospin at different times in
the first period. We can see that the phase difference between a
pair of circuit nodes located at (m, n) and (n, m) always equals to
π (except for the initial time), which is consistent with the
requirement of anyonic commutation relation for pseudofer-
mions. Moreover, the calculated voltage signal of jV#; 5;5½ � tð Þj is
presented in Fig. 2j. It is shown that the periodic breathing
dynamics of the voltage pseudospin could also appear in the
circuit simulator for two pseudofermions. The calculated period
of BOs is approximately 1.08 ms (with the error being
[−0.0068 ms, 0.013 ms]), being consistent with Tf ¼ 1=4f f ¼
1:074ms predicted by the frequency-spectrum in Fig. 1d. More-
over, compared with the results of the bosonic circuit simulator,
we find that the BO frequency in the two-boson circuit simulator
is almost twice that in the two-pseudofermion simulator. This is
in accord with the theoretical results in the two-anyon lattice
model (see Supplementary Note 4 for details).

It is worth noting that the above results only focus on the two-
boson/two-pseudofermion models at a fixed excitation frequency
of 1.56 MHz and constant values of CF ¼ 5 pF and Ce ¼ 2 nF. In
Supplementary Note 5, we also simulate anyonic BOs by our
designed electric circuits with different excitation frequencies,
external forces and grounding capacitors Ce. It is shown that the
smaller the external force is, the larger the oscillation period and
amplitude become. Moreover, we find that the more ideal BO
could be realized with a larger value of Ce, which could make the
frequency-spectra of circuit simulators become more equally
spaced than the ideal Wannier-Stark spectrum.

Experimental observation of anyonic Bloch oscillations in
electric circuits. To experimentally observe the anyonic BOs, the

designed circuit simulators are fabricated, where the corresponding
parameters are the same as those used in Fig. 2. A photograph
image of the circuit sample is presented in Fig. 3a, and enlarged
views of the front and back sides are plotted in the right insets.
Here, a single printed circuit board (PCB), which contains 23´ 23
node pairs, is applied to the circuit. It is noted that our fabricated
circuit simulator could perform the BO of two anyons with θ ¼ 0
(θ ¼ π) when the switches (enclosed by white blocks) located
around the diagonal line of the sample are opened (closed). This is
because these switches could change the connection pattern
between adjacent circuit nodes from direct connections to cross-
connections. In this case, if two pairs of adjacent circuit nodes are
directly (cross) connected through the capacitor C (framed by red
circles), the hopping rate without (with) a phase factor e± iπ could
be realized, which is required for the two-boson (two-pseudo-
fermion) circuit simulator. Moreover, the position-dependent
grounding capacitors ðmþ nÞCF (framed by blue circles) are used
to implement the external forcing. The inductor L and grounding
capacitor Ce are enclosed by the pink and green frames, respec-
tively. Additionally, the tolerance of the circuit elements is less than
1% to avoid the detuning of circuit responses. Details of the sample
fabrication are provided in Methods.

Firstly, as shown in Fig. 3b and c, the summed impedance of
fifteen diagonal nodes (from (5, 5) to (19, 19)) are measured in
the fabricated two-boson and two-pseudofermion circuit simu-
lators using a Wayne Kerr precision impedance analyzer. We can
see that the equal-spaced impedance peaks also exist in
experiments. Compared with simulation results in Fig. 2a and
b, the larger width of measured impendence peaks results from
the lossy effect in the fabricated circuit. The frequency-spacing of
two adjacent impedance peaks for the bosonic circuit simulator is
still nearly two times that for the pseudofermion circuit
simulator (three little peaks exist between two large peaks
shown in the inset), indicating that our fabricated circuits could
indeed exhibit Wannier-Stark spectra of two bosons and two
pseudofermions.

Then, we measure the temporal dynamics of the fabricated
electric circuit with θ ¼ 0 (open switches), where a circuit node is
excited by V 12;12ð Þ;1 ¼ V0e

i2πft (V0 ¼ 1V) with f= 1.56MHz. The
measured amplitude and phase distributions of the voltage signal
at different times (in the first period) are plotted in Fig. 3d. We
can see that the symmetric voltage distribution exists. The small
derivation should result from the weak disorder effects in the
circuit (see Supplementary Note 6). Moreover, Fig. 3e displays the
measured voltage signal at (5, 5) in the time-domain. It is clearly
shown that the damped BO appears. Based on the same method
of obtaining the BO period in simulations, the measured damped
BO period is ~0.535 ms (with the error being [−0.015 ms,
0.017 ms]), which is consistent with the simulation. The decay of
the revival voltage is due to the large lossy effect, resulting from
the resistive loss of linking wires and the finite Q-factor of the
applied inductor. To fit the strength of loss in the fabricated
circuit, we calculate the voltage dynamics with different series
resistances of inductors (see Supplementary Note 7). In this case,
we can deduce that the effective series resistance of inductance in
the fabricated circuit is approximately 50 mΩ.

Finally, we turn to the fabricated circuit with θ ¼ π
(close switches), and the excitation signal is set as V 12;12ð Þ;1 ¼
V0e

i2πft ;V 12;12ð Þ;2 ¼ �V0e
i2πft . As shown in Fig. 3f, the measured

amplitude and phase distributions of V#; m;n½ �ðtÞ at different times
in the first period are presented. It is shown that the nearly
asymmetric phase distribution is observed. Similar to the case of
two bosons, the small derivation should result from the disorder
effects in the circuit sample. In addition, Fig. 3g displays the
measured voltage signal of jV#; 5;5½ � tð Þj. We can see that the
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damped oscillation period is ~1.078 ms (with an error being
[−0.021 ms, 0.016 ms]), which is also consistent with the
simulated result. Compared to the measured period with
θ ¼ 0, we note that the BO frequency related to a pair of
pseudofermions is also half of that for two bosons. Moreover,
similar to the bosonic circuit simulator, the significant decay of
the voltage signal results from the large lossy effect, where the
fitted series resistance of inductances is about 50 mΩ.

It is worthy to note that the loss in fabricated circuits could be
mapped to the dissipation rate of the 1D anyonic lattice model.
To clarify the influence of losses on the anyonic BOs, we extend

the two-anyon lattice model in Eq. (1) to contain the intrinsic
dissipation rate71 (see Supplementary Note 8 for details). In this
case, similar to the measured voltage dynamics, the damped BOs
of two anyons also appear.

Discussion
We note that the above-designed LC circuit possesses the iden-
tical stationary eigen-equation with that for the 1D two-anyon
system. With the advantage of diversity and flexibility for circuit
elements, we can design another kind of electric circuit, which is
based on resistances and capacitances, to precisely match the

Fig. 3 Experimental results for observing anyonic Bloch oscillations. a Photograph images of the fabricated circuit simulator. The enlarged views for the
front and back sides are shown in right insets. The switches are enclosed by white blocks around the diagonal line. Two pairs of adjacent circuit nodes
are connected through the capacitor C framed by red circles). The position-dependent grounding capacitors ðmþ nÞCF are framed by blue circles. The
inductor L and grounding capacitor Ce are enclosed by pink and green frames, respectively. b, c The measured sum of impedance for fifteen diagonal nodes
(from (5, 5) to (19, 19)) of circuit simulators for two bosons (the red line) and two pseudofermions (the blue line), respectively. The measured distributions
of voltage amplitude and phase at different times in (d) and (e) for θ ¼ 0, and in g and h for θ ¼ π. The measured voltage signals of the circuit node (5, 5)
with θ ¼ 0 for (f), and θ ¼ π for (i).
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time-dependent Schrödinger equation of two pseudofermions
and two bosons. In this case, the BOs dominated by quantum
statistics can also be observed in the designed RC circuit. Detailed
results are given in Supplementary Note 9.

In addition, it is worthy to stress that the near-perfect Wannier-
Stark spectrum could also appear at other statistical angles (besides
θ ¼ 0 and θ ¼ π) under a suitable value for the ratio of the external
forcing to the hopping rate (F/J), where the corresponding period of
the BO could become three times of that for two bosons (see
Supplementary Note 10 for details). Such a BO dominated by
particle statistics beyond bosons and pseudofermions could also be
simulated by designed RLC circuit networks combined with a
negative impedance converter with current inversion72.

In conclusion, we have experimentally demonstrated that electric
circuits can be used as a flexible simulator to investigate the
statistics-dominated BO, where the oscillation frequency of two
pseudofermions is half of that for two bosons in the absence of on-
site interaction. Using the exact mapping of two anyons in the
external forcing to modes of designed circuit lattices, the periodic
breathing dynamics of voltage in circuit simulators with θ ¼ 0 and
θ ¼ π have been observed. Our proposal could provide a flexible
platform to further investigate and visualize many interesting phe-
nomena related to particle statistics and other exotic few-particle
physics. With the flexibility that the connection and grounding of
circuit nodes are allowed in any desired way free from constraints of
locality and dimensionality, the anyonic physics existing in the lat-
tice model with nonlocal hopping and interactions (beyond nearest
neighbors) could also be achieved. Moreover, by mapping the 1D
multiple-anyon model to the higher-dimensional lattice model, the
circuit network could also be used to simulate anyonic physics with
more particles. Furthermore, including nonreciprocal and non-
Hermitian elements in the circuit network, the novel behavior
induced by the interplay between the non-Hermitian effect73 and
the quantum correlation can be investigated. In addition, electric
circuits are easily fabricated using existing chip manufacturing
technology, making the achievable number of circuit nodes become
extremely increased. Such an electric chip could make the designed
circuit simulator implement much more complex anyonic physics,
such as statistically induced phase transitions and statistics-related
topological phases. Finally, the designed circuit simulator could also
give a way to manipulate the electronic signals with exotic behaviors.

Methods
Sample fabrications and circuit signal measurements. We exploit the 2D
electric circuits by using PAD program software, where the PCB composition,
stack-up layout, internal layer, and grounding design are suitably engineered. Here,
the well-designed 2D PCB possesses six layers, containing the top layer, the bottom
layer, two mid-layers, and two internal planes, to suitably arranging circuit ele-
ments, linking wires, and the ground setting. It is worth noting that the ground
layer should be placed in the gap between any two layers to avoid mutual induc-
tance. Moreover, all PCB traces have a relatively large width (0.75 mm) to reduce
the parasitic inductance, and the spacing between electronic devices is also large
enough (0.3–0.5 mm) to avert spurious inductive coupling. The SMP connectors
are welded on PCB nodes for signal injection and detection. To ensure the reali-
zation of BOs in electric circuits, both the tolerance of circuit elements and the
series resistance of inductors should be as low as possible. For this purpose, we use
a WK6500B impedance analyzer to select circuit elements with high accuracy (the
averaged disorder strength is less than 1%) and low losses.

For the measurement of BOs, we use the signal generator (NI PXI-5404) with
eight output ports to act as the current source for exciting one/two circuit nodes
related to a single lattice site with a constant amplitude and node-dependent initial
phases. To ensure that the periodic oscillation could also appear at the excitation
node, we connect a suitable capacitor (~100 pF) between the excitation circuit node
and the input source. One output of the signal generator (the initial phase is set to 0)
is directly connected to one end of the oscilloscope (Agilent Technologies Infiniivision
DSO7104B) to ensure an accurate start time. The measured voltage signals are in the
range from 0ms to 2ms in the time-domain, where 0ms is defined as the time for the
simultaneous signal injection and measurement. We repeat the time-domain
measurements of the circuit simulator, which exhibit the same response under
repeated excitations, to obtain voltage signals of all circuit nodes. Finally, the

measured real-valued voltage signals are transformed into complex ones based on the
Hilbert-transform, which gives the results of phase distributions at different times.

Data availability
All data are displayed in the main text and Supplementary Information. The data that
support the findings of this study are available from the corresponding author upon
reasonable request.

Code availability
The code that supports the plots within this paper is available from the corresponding
author upon reasonable request.
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