Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universality of Dicke superradiance in arrays of quantum emitters


Dicke superradiance is an example of emergence of macroscopic quantum coherence via correlated dissipation. Starting from an initially incoherent state, a collection of excited atoms synchronizes as they decay, generating a macroscopic dipole moment and emitting a short and intense pulse of light. While well understood in cavities, superradiance remains an open problem in extended systems due to the exponential growth of complexity with atom number. Here we show that Dicke superradiance is a universal phenomenon in ordered arrays. We present a theoretical framework – which circumvents the exponential complexity of the problem – that allows us to predict the critical distance beyond which Dicke superradiance disappears. This critical distance is highly dependent on the dimensionality and atom number. Our predictions can be tested in state of the art experiments with arrays of neutral atoms, molecules, and solid-state emitters and pave the way towards understanding the role of many-body decay in quantum simulation, metrology, and lasing.


Atoms in close proximity alter each others’ radiative environment and collectively interact with light1,2,3,4. The “environment” for each of the atoms depends on the internal state of all others, which changes in time. For fully-inverted atoms at a single spatial location, this leads to the emission of a short pulse of light that initially rises in intensity, in contrast to the exponential decay of independent atoms. This “superradiant burst”, or Dicke superradiance, occurs because atoms synchronize as they decay, locking in phase and emitting at an increasing rate. Superradiant bursts have been observed in a variety of dense disordered systems3,4,5,6,7,8,9. Dicke superradiance has also been demonstrated in cavities10,11, where the condition of atoms at a point is emulated by the confinement of the optical field to zero dimensions. In this high-symmetry scenario, atoms are indistinguishable from each other, and can only occupy states that obey a particle-exchange symmetry. This restricts the Hilbert space to permutationally symmetric states, whose number scales linearly with atom number, thus making the dynamical evolution exactly solvable.

Numerical studies of superradiant emission in extended geometries (of sizes larger than the emission wavelength) have been limited to small numbers of atoms12,13, small numbers of excitations14, or uniform atomic densities where specific atomic positions are not taken into account15. However, recent experimental demonstrations of ordered atomic arrays, via optical tweezers16,17,18,19,20,21 and optical lattices22,23,24,25, open a new world of possibilities, where hundreds of atoms can be placed in almost arbitrary positions. These setups thus demand a new outlook on the problem, which has remained open until now due to the exponential growth of the Hilbert space. In extended systems, particle-exchange symmetry is broken and numerical calculations require a Hilbert space which grows as 2N, where N is the atom number.

Here, we introduce a theoretical framework that scales linearly with atom number and allows us to demonstrate that Dicke superradiant decay generically arises in extended systems, below a critical inter-atomic distance that depends on the dimensionality. We do so by noting that there is no need to compute the full dynamical evolution of the system: the nature of the decay can be deduced from the statistics of the first two emitted photons. We find that as the inter-atomic distance increases, there is a smooth crossover between a superradiant and a monotonically decreasing emission rate, as shown in Fig. 1. We obtain an analytical “minimal condition” for Dicke superradiance, which is universal and provides a bound on the maximal inter-atomic separation to observe this phenomenon. This enables us to study the role of geometry in the decay of very large atomic arrays, a significant conceptual advance on a decades-old problem.

Fig. 1: Many-body decay is determined by the distance between atoms and the array’s dimensionality.
figure 1

Inverted atoms placed at the same location (d → 0) interact with each other and decay collectively via the emission of a burst of light, with a peak at time \({t}_{\max }\). This is the hallmark of Dicke superradiance. In contrast, atoms that are far separated (d → ) emit as single entities, in the form of an exponentially decaying pulse. For extended finite arrays, there is a critical distance at which the crossover between a superradiant burst and monotonically decreasing emission occurs.


We first present the theoretical toolbox to describe the dynamics of a collection of atoms interacting via a shared electromagnetic field. We consider N identical two-level atoms of spontaneous emission rate Γ0 and transition wavelength λ0 placed in free space with arbitrary positions. After tracing out the electromagnetic field using a Born–Markov approximation26,27, the atomic density matrix \(\rho =\left|\psi \right\rangle \left\langle \psi \right|\) evolves as

$$\dot{\rho} = - \frac{{{{{{\rm{i}}}}}}}{\hbar} [{{{{{\mathcal{H}}}}}},\rho] + \underbrace{\sum\limits_{\nu=1}^N \frac{{{\Gamma}}_\nu}{2} \left( 2{\hat{{{{{\mathcal{O}}}}}}}_\nu \rho \,{\hat{{{{{\mathcal{O}}}}}}}_\nu^{{\dagger}} - \rho\, {\hat{{{{{\mathcal{O}}}}}}}_\nu^{{\dagger}}{\hat{{{{{\mathcal{O}}}}}}}_\nu - {\hat{{{{{\mathcal{O}}}}}}}_\nu^{{\dagger}}{\hat{{{{{\mathcal{O}}}}}}}_\nu \rho \right)}_{{{{{{{\rm{dissipative}}}}}}\,{{{{{\rm{evolution}}}}}}:\,{{{{{\rm{correlated}}}}}}\,{{{{{\rm{photon}}}}}}\,{{{{{\rm{emission}}}}}}}},$$

where the Hamiltonian \({{{{{{{\mathcal{H}}}}}}}}\) describes coherent interactions between atoms and \(\{{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }\}\) are operators that represent how atoms “jump” from the excited to the ground state by collectively emitting a photon. Jump operators are found as the eigenstates of the N × N dissipative interaction matrix Γ with elements Γij, proportional to the propagator of the electromagnetic field (i.e., the Green’s function) between pairs of atoms i and j (see refs. 12,26,27,28 and “Methods”). The corresponding eigenvalues provide the jump operator rates {Γν}, which represent how frequently such a jump occurs. Each of these jump operators imprints a phase in the atoms, and generates a photon with a specific spatial profile in the far field. They thus can be understood as collective “decay channels” for the atomic ensemble.

As we demonstrate below, Dicke superradiance is preserved as long as the number of (relevant) decay channels is small. This occurs because dissipative interactions (rather than coherent Hamiltonian dynamics) are responsible for the suppression of superradiance in ordered arrays12,13. In the paradigmatic example studied by Dicke, where all atoms are exactly at one point, only one of the decay channels is bright (with decay rate Γbright = NΓ0), while all the others are completely dark (i.e., Γν ≠ bright = 0). This means that the only possible decay path to the ground state for atoms that are initially excited is through repeated action of the bright operator, which imprints a phase pattern in the atoms that is reinforced in each process of photon emission. Coherence emerges via this dissipative mechanism, which leads to the development of a macroscopic dipole through synchronization and to a rapid release of energy in the form of a superradiant burst.

In ordered arrays, the number of bright decay channels can be controlled by the inter-atomic distance. In principle, all jump operators are allowed to act. For small lattice constants, their decay rates vary dramatically due to constructive and destructive interference. They can be larger (bright) or smaller (dark) than the single atom decay rate Γ0. Extremely dark rates (which are strictly zero in the thermodynamic limit) emerge for inter-atomic separations below a certain distance that depends on the dimensionality of the array29. As the distance grows, the distribution of the decay rates becomes more uniform. This leads to a strong competition between different decay channels, and to decoherence through the randomization of the atomic phases after several emission processes have occurred.

We show here that Dicke superradiance generically occurs in arrays, but only below a critical inter-atomic distance, which can be calculated with a complexity that scales only linearly with system size. For a fixed atom number, the superradiant burst diminishes as the inter-atomic distance increases, eventually being replaced by a monotonically decaying pulse. The crossover between these regimes is marked by an infinitesimally small burst that occurs at t = 013.

Our key insight is that atomic synchronization occurs immediately or not at all, and thus the nature of the decay can be characterized from early dynamics. In particular, one can predict the presence of a superradiant burst based solely on the statistics of the first two emitted photons. The minimum requirement for a superradiant burst to occur is that the first photon enhances the emission rate of the second. This is captured by the second-order correlation function

$${g}^{(2)}(0)=\frac{\mathop{\sum }\nolimits_{\nu ,\mu =1}^{N}{{{\Gamma }}}_{\nu }{{{\Gamma }}}_{\mu }\left\langle {\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\mu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\mu }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }\right\rangle }{{\left(\mathop{\sum }\nolimits_{\nu = 1}^{N}{{{\Gamma }}}_{\nu }\left\langle {\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }\right\rangle \right)}^{2}},$$

where the expectation value is taken at the initial state, i.e., \(\left|\psi (t=0)\right\rangle ={\left|e\right\rangle }^{\otimes N}\). When this quantity is greater than unity, the decay is characterized as superradiant. Figure 2 shows the correlation between g(2)(0) and the presence or absence of a burst for small atom numbers, for which we can calculate the full dynamics. As soon as g(2)(0) > 1, the time of maximum emission deviates from zero (i.e., the burst occurs at a finite time). Moreover, the second-order correlation function increases along with the height of the peak of the photon emission rate, and is below unity when the rate is peaked at t = 0.

Fig. 2: Photon statistics predicts Dicke superradiance.
figure 2

We calculate g(2)(0) (at t = 0), as an enhanced two-photon emission rate is a pre-requisite for a burst. The time at which the photon rate is maximum (\({t}_{\max }\)) as a function of the second-order correlation function (at t = 0) shows that \({t}_{\max } > 0\) only if g(2)(0) > 1. Inset: Maximum intensity, normalized by intensity at t = 0. In both plots, all nine atoms are initially excited, with polarization perpendicular to the array.

By calculating g(2)(0) analytically (see “Methods”), we obtain the minimal condition for Dicke superradiance:

$${g}^{(2)}(0) \; > \; 1\,\,\,\,\Leftrightarrow \,\,\,\,{{{\rm{Var}}}} \left({\frac{\{{\Gamma}_{\nu} \}} {{\Gamma}_{0}}}\right) \; > \; 1,$$

where Var is the variance of the decay rates of the jump operators. This expression is exact and universal, and does not involve any assumption about the atomic positions. Small inter-atomic distances maximize the variance of the decay rates, as most jump operators will be dark (with Γν 0) and just a small number of them will be bright (with a large Γν).

We note that the complexity of the problem has decreased tremendously: from solving a differential equation in an exponentially growing Hilbert space to diagonalizing a matrix whose dimension scales linearly with atom number. This allows one to find the distance at which Dicke superradiance disappears in arbitrary geometries with an extremely large atom number, as all the necessary details are captured in the dissipative interaction matrix Γ. Of course, one has to pay a price for this reduction in complexity. As we cannot calculate the full evolution, we can only predict whether a superradiant burst is going to occur or not. Extracting information about the height of the peak or the time at which it will appear requires a different approach30,31.

To prove that the above inequality can be used to characterize Dicke superradiance, we demonstrate that the system does not rephase at later times, either through Hamiltonian action or through further dissipation. First, Hamiltonian dynamics are not significant at early times, as shown in Fig. 3a. Due to the ordered nature of the array, each atom (except those near the boundaries) experiences a similar environment and local dephasing due to Hamiltonian action is thus minimized. To further confirm this point, we consider a time delay between the emission of the first two photons, during which the Hamiltonian acts, and find the Hamiltonian adds a slow dephasing to the atoms but, importantly, does not enhance photon emission (see Supplementary Fig. 2). Second, dissipation into different channels cannot rephase the atoms, as the process is irreversible. With each photon that is emitted, there is one less atom able to emit. To obtain a superradiant burst, the induced atomic correlations that emerge through decay must be large enough to compensate for the loss of emitters, a process that gets harder the more photons have been radiated away. We characterize this through the third-order correlation function, which can be analytically calculated (see “Methods”). In all geometries considered here, we find that the third photon is never enhanced when the second photon is not. Therefore, further jumps do not rephase the array, as shown in Fig. 3b, where g(3)(0) drops below unity at a slightly smaller distance than g(2)(0). As anticipated, the second photon is always the last one to lose its stimulated enhancement.

Fig. 3: Role of coherent and dissipative evolution in dephasing and suppression of Dicke superradiance.
figure 3

a The coherent evolution does not significantly modify the early time dynamics, thus preserving superradiance, as shown by the full evolution of the master equation (i.e., Eq. (1)) for 16 initially excited atoms with inter-atomic distance d = 0.1λ0 arranged in different geometries with and without Hamiltonian interactions. Emission rate is normalized by that at t = 0. b Three-photon decay is never enhanced unless two-photon emission is too, as demonstrated by the second- and third-order correlation functions, plotted as a function of the inter-atomic separation for a square 2D array of 6 × 6 atoms. In all cases, atoms are polarized perpendicular to the array.

Results and discussion

Contrary to the accepted understanding in the literature3,4, we find that large chains and rings behave almost identically, as both do not emit a superradiant burst above dcritical ≈ 0.3λ0, as shown in Fig. 4a. Despite the ring’s particle-exchange symmetry, the difference between the ring and the chain is negligible for large atom number. This is because dephasing is caused by competition between multiple decay channels, which exist regardless of the array topology13. Interactions across the diameter of the ring are very weak, so the exchange symmetry does not matter, as the atoms essentially see the same local environment in both cases.

Fig. 4: Dicke superradiance is universal and appears (below a critical distance) for arrays of any dimensionality, including imperfectly filled ones.
figure 4

a, b Boundaries between the burst (colored) and no-burst (white) regions as a function of inter-atomic distance d and atom number for a chains and rings and b square arrays. The crossover occurs where g(2)(0) = 1. Upward pointing and downward pointing triangles represent points where, with decreasing d, g(2)(0) goes above and below unity, respectively. c Critical distance for different filling fractions η. The histogram shows 2000 configurations of a 12 × 12 site square arrays stochastically filled with efficiency η. Envelopes are calculated as rolling averages. Atoms are polarized a parallel to the array (for the ring this implies a spatially dependent polarization), b perpendicular (blue) and parallel (red) to the plane, and c perpendicular to the plane.

Two- and three-dimensional arrays also display Dicke superradiance, at larger inter-atomic separations than those found in chains. Interestingly, the total size of the array is much larger than a wavelength. Figure 4b shows the critical distance for a two-dimensional (2D) square array of up to 40 × 40 atoms. In this geometry, the critical distance is not monotonic with the atom number. These sudden variations are due to “revivals” in g(2)(0), which can be seen in Fig. 3b, associated with changes in the distribution of \(\left\{{{{\Gamma }}}_{\nu }\right\}\) as the lattice constant hits certain geometric resonances (see ref. 32 and Supplementary Fig. 1). For large array (of N ~ 40 × 40 atoms), the critical distance is as large as dcritical ≈ 0.8λ0 for atoms polarized perpendicular to the array surface, and it seems to continue increasing with atom number, albeit slowly.

Dicke superradiance is due to the dominance of particular decay channels, whose emission is enhanced due to constructive interference. Since the sum of the decay rates is always NΓ0 (regardless of the atomic positions), these bright decay channels must be balanced by dark decay channels to maximize the variance. In ordered arrays, the presence of extremely dark channels is explained by energy–momentum mismatch, where some channels correspond to spin waves with wave-vectors outside the light cone29,33. In 2D arrays, the spin wave with equal phase on all sites, with an in-plane wave-vector k = 0, emits perpendicular to the array. If the atomic dipole axis points in that direction then emission is forbidden, creating a region of subradiance that persists up to d < λ029. Hence, the crossover between superradiant to monotonic decay occurs at much larger distances for atoms with this polarization. The same phenomenon exists in three-dimensional (3D) lattices for any linear polarization axis. Large 2D and 3D lattices both have values of dcritical well beyond λ031,34,35. For these higher dimensions, the dominance of certain channels is maintained due to robust constructive inteference between many neighbors, compensated by large numbers of somewhat subradiant, but not perfectly dark, channels.

We demonstrate that Dicke superradiance is robust to imperfections typically found in experiments, such as filling fraction smaller than unity. Figure 4c shows the bound for stochastically generated 12 × 12 arrays filled with efficiency η. For η = 90%, there is a small reduction in the critical distance. However, at η = 50%, the drop is much larger. This is because the revivals in g(2)(0) are particularly muted by imperfect filling and, at this efficiency, do not breach unity. This phenomenon is also responsible for the splitting of the values of dcritical at 80% filling efficiency. Superradiance is also robust to position disorder and small imperfections in the initial state (see Supplementary Fig. 3).

Dicke superradiance should thus be observable in experiments with arrays of inter-atomic separation below the critical distance, which are close to being achieved in state-of-the-art setups36,37. It is important to notice that the critical distance does not signal a sharp transition between monotonic decay and superradiance, but instead a smooth crossover. Experimental signatures would be observable well below this bound. Besides atomic tweezer arrays and optical lattices, solid-state emitters hosted in bulk crystals38,39 or in 2D materials40,41,42 are good candidates to observe this physics. These systems can achieve small lattice constants, although they present other difficulties, such as inhomogeneous broadening and non-radiative decay. Nevertheless, Dicke superradiance is robust against these sources of imperfection (see Supplementary Fig. 4).

Superradiance in an extended array is very different from superradiance in a cavity. In the latter, superradiance involves three phenomena simultaneously: a growth in the photon emission rate, a rapid increase of the population of the cavity mode (due to the burst), and an N2-scaling of the radiated intensity peak. These three concepts are not equivalent for extended arrays in free space, and this has experimental consequences. First, in free space, photons are scattered in all directions, and the relevant geometry is not only that of the array, but that of the array together with the detector. In this work, we effectively integrate over all directions, which would correspond to collecting light over a large solid angle. As photon emission after a jump is directional12,13, the burst is most optimally measured by a detector placed at the location where the far field distribution of the brightest jump operator is maximal. We note that our methods can be extended to account for “directional superradiance.” Recent work34 has shown that, unsurprisingly, the critical distance depends on the angular position of the detector. Second, the peak intensity may no longer scale as N2. Finding the exact scaling is numerically challenging as it requires full dynamical evolution, though it should be accessible in experiments. Nevertheless, we speculate that the scaling will depend on the dimensionality and inter-atomic distance, and will be slower than N2 (approaching N for one dimension (1D) and with a power law whose exponent increases with dimension).

In conclusion, we have put forward a universal criterion that shines light into the physics of Dicke superradiance in extended systems. We have also demonstrated that Dicke superradiance universally appears in atomic arrays. We have bounded the critical distance that signals the crossover between monotonic decay and a superradiant burst, which is far larger than previously anticipated (for arrays of dimensionality higher than 1D). This bound is found by diagonalizing a matrix that scales only linearly with atom number. This method bypasses the exponentially growing Hilbert space required for full evolution by simplifying the problem to the statistics of the first two photons, which allows us to predict superradiance for very large arrays. Our approach could potentially be applied to disordered atomic ensembles43,44 (where very small inter-atomic distances are achievable, but introduce large Hamiltonian frequency shifts that may need to be accounted for), to other types of Markovian electromagnetic reservoirs, such as nanophotonic structures45,46 (by simply changing the Green’s function47), and to emitters with more complex internal or hyperfine structure48,49,50.

The understanding of many-body decay provided by our work is critical for developing robust and scalable quantum applications, ranging from quantum computing and simulation to metrology and lasing. In particular, our work is relevant for Rydberg atom quantum simulators51,52,53, where Rydberg states may decay via long-wavelength transitions. These decay paths may be superradiantly enhanced at short distances54,55. Atomic arrays are also used in state-of-the-art atomic clocks and other precision measurement experiments56,57. As such systems shrink, it is crucial to understand the impact of collective dissipation. Finally, controlling the light emitted by an atomic array enables its use as an optical source. We have demonstrated that geometry can be used to alter the collective optical properties of the array and shape the temporal profile and statistics of the emitted light. This presents the opportunity to use atomic arrays to produce directional single photons58, correlated photons13, or superradiant lasers59. Alternatively, measurement of the emitted light provides a window into the complex evolution of the atomic system, and directional detection may enable heralded production of many-body entangled dark states.


Atom–atom interactions

We consider N two-level atoms of resonance frequency ω0 and spontaneous emission rate Γ0 in free space at positions \(\left\{{{{{{{{{\bf{r}}}}}}}}}_{i}\right\}\). After tracing out the electromagnetic field using a Born–Markov approximation26,27, the atomic density matrix ρ evolves as

$$\dot{\rho }=-\frac{{{{{{{{\rm{i}}}}}}}}}{\hslash }[{{{{{{{\mathcal{H}}}}}}}},\rho ]+\mathop{\sum }\limits_{i,j=1}^{N}\frac{{{{\Gamma }}}_{ij}}{2}\left(2{\hat{\sigma }}_{ge}^{i}\rho {\hat{\sigma }}_{eg}^{j}-\rho \,{\hat{\sigma }}_{eg}^{j}{\hat{\sigma }}_{ge}^{i}-{\hat{\sigma }}_{eg}^{j}{\hat{\sigma }}_{ge}^{i}\rho \right),$$

where \({\hat{\sigma }}_{ge}^{i}=\left|{g}_{i}\right\rangle \left\langle {e}_{i}\right|\) is the atomic coherence operator, \(\left|{e}_{i}\right\rangle\) and \(\left|{g}_{i}\right\rangle\) are the excited and ground states of the ith atom, and the Hamiltonian reads

$${{{{{{{\mathcal{H}}}}}}}}=\hslash \mathop{\sum }\limits_{i=1}^{N}{\omega }_{0}{\hat{\sigma }}_{ee}^{i}+\hslash \mathop{\sum }\limits_{i,j=1}^{N}{J}^{ij}{\hat{\sigma }}_{eg}^{i}{\hat{\sigma }}_{ge}^{j}.$$

The coherent and dissipative interaction rates between atoms i and j are given by12,28

$${J}^{ij}-{{{{{{{\rm{i}}}}}}}}\frac{{{{\Gamma }}}^{ij}}{2}=-\frac{{\mu }_{0}{\omega }_{0}^{2}}{\hslash }\,{{{{{\boldsymbol{\wp}}}}}}^{* }\cdot {{{{{{{{\bf{G}}}}}}}}}_{0}({{{{{{{{\bf{r}}}}}}}}}_{i},{{{{{{{{\bf{r}}}}}}}}}_{j},{\omega }_{0})\cdot {{{{{\boldsymbol{\wp}}}}}},$$

where is the dipole matrix element of the atomic transition and G0(ri, rj, ω0) is the propagator of the electromagnetic field between atomic positions ri and rj26,27

$${{{{{{{{\bf{G}}}}}}}}}_{0}({{{{{{{{\bf{r}}}}}}}}}_{ij},{\omega }_{0})=\frac{{e}^{{{{{{{{\rm{i}}}}}}}}{k}_{0}{r}_{ij}}}{4\pi {k}_{0}^{2}{r}_{ij}^{3}}\left[({k}_{0}^{2}{r}_{ij}^{2}+{{{{{{{\rm{i}}}}}}}}{k}_{0}{r}_{ij}-1){\mathbb{1}}+(-{k}_{0}^{2}{r}_{ij}^{2}-3{{{{{{{\rm{i}}}}}}}}{k}_{0}{r}_{ij}+3)\frac{{{{{{{{{\bf{r}}}}}}}}}_{ij}\otimes {{{{{{{{\bf{r}}}}}}}}}_{ij}}{{r}_{ij}^{2}}\right],$$

where rij = ri − rj and rij = rij. The dissipative interactions can be recast in terms of jump operators, \(\left\{{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }\right\}\), found as the N eigenvectors of the matrix Γ with elements Γij. The decay rates, \(\left\{{{{\Gamma }}}_{\nu }\right\}\), are found as the corresponding eigenvalues. The atomic master equation thus reads

$$\dot{\rho }=-\frac{{{{{{{{\rm{i}}}}}}}}}{\hslash }[{{{{{{{\mathcal{H}}}}}}}},\rho ]+\mathop{\sum }\limits_{\nu =1}^{N}\frac{{{{\Gamma }}}_{\nu }}{2}\left(2{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }\rho \,{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }^{{{{\dagger}}} }-\rho \,{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }-{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }\rho \right).$$

The jump operators are generically a superposition of lowering operators and can be expanded as

$${\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }=\mathop{\sum }\limits_{i=1}^{N}{\alpha }_{\nu ,i}{\hat{\sigma }}_{ge}^{i},\,\,\,\,{{{{{{{\rm{where}}}}}}}}\,\,\,\,\mathop{\sum }\limits_{i=1}^{N}{\alpha }_{\nu ,i}^{* }{\alpha }_{\mu ,i}={\delta }_{\nu \mu }\,\,\,\,{{{{{{{\rm{and}}}}}}}}\,\,\,\,\mathop{\sum }\limits_{\nu =1}^{N}{{{\Gamma }}}_{\nu }| {\alpha }_{\nu ,i}{| }^{2}={{{\Gamma }}}_{0}.$$

In the above expression, δμν is the Kronecker delta function and αν,i is the spatial profile of the ν − jump operator. The total photon emission rate is calculated as

$$R=\mathop{\sum }\limits_{\nu =1}^{N}{{{\Gamma }}}_{\nu }\left\langle {\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }\right\rangle .$$

Derivation of the second-order correlation function g (2)(0)

The second-order correlation function is calculated as

$${g}^{(2)}(0)=\frac{\mathop{\sum }\limits_{\nu ,\mu =1}^{N}{{{\Gamma }}}_{\nu }{{{\Gamma }}}_{\mu }\left\langle {\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\mu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\mu }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }\right\rangle }{{\left(\mathop{\sum }\limits_{\nu = 1}^{N}{{{\Gamma }}}_{\nu }\left\langle {\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }\right\rangle \right)}^{2}},$$

where the expectation value is taken on the fully excited state \({\left|e\right\rangle }^{\otimes N}\), which is the initial state of the system. Substituting in the form of the operators, as shown in Eq. (9), one finds

$${g}^{(2)}(0)=\frac{\mathop{\sum }\limits_{\nu ,\mu =1}^{N}{{{\Gamma }}}_{\nu }{{{\Gamma }}}_{\mu }\mathop{\sum }\limits_{i,j,l,m=1}^{N}{\alpha }_{\nu ,i}^{* }{\alpha }_{\mu ,j}^{* }{\alpha }_{\mu ,l}{\alpha }_{\nu ,m}\left\langle {\hat{\sigma }}_{eg}^{i}{\hat{\sigma }}_{eg}^{j}{\hat{\sigma }}_{ge}^{l}{\hat{\sigma }}_{ge}^{m}\right\rangle }{{\left(\mathop{\sum }\limits_{\nu = 1}^{N}{{{\Gamma }}}_{\nu }\mathop{\sum }\limits_{i,j = 1}^{N}{\alpha }_{\nu ,i}^{* }{\alpha }_{\nu ,j}\left\langle {\hat{\sigma }}_{eg}^{i}{\hat{\sigma }}_{ge}^{j}\right\rangle \right)}^{2}}.$$

On the fully excited state, these expectation values are evaluated as

$$\left\langle {\hat{\sigma }}_{eg}^{i}{\hat{\sigma }}_{ge}^{j}\right\rangle ={\delta }_{ij},\,\,\,\,\,\,\,\,\left\langle {\hat{\sigma }}_{eg}^{i}{\hat{\sigma }}_{eg}^{j}{\hat{\sigma }}_{ge}^{l}{\hat{\sigma }}_{ge}^{m}\right\rangle =\left({\delta }_{im}{\delta }_{jl}+{\delta }_{il}{\delta }_{jm}\right)\left(1-{\delta }_{ij}\right).$$


$${g}^{(2)}(0) =\frac{\mathop{\sum }\limits_{\nu ,\mu =1}^{N}{{{\Gamma }}}_{\nu }{{{\Gamma }}}_{\mu }\left(\mathop{\sum }\limits_{i,j=1}^{N}| {\alpha }_{\nu ,i}{| }^{2}| {\alpha }_{\mu ,j}{| }^{2}\;+\;\mathop{\sum }\limits_{i,j=1}^{N}{\alpha }_{\nu ,i}^{* }{\alpha }_{\mu ,j}^{* }{\alpha }_{\mu ,i}{\alpha }_{\nu ,j}\;-\;2\mathop{\sum }\limits_{i=1}^{N}| {\alpha }_{\nu ,i}{| }^{2}| {\alpha }_{\mu ,i}{| }^{2}\right)}{{\left(\mathop{\sum }\limits_{\nu = 1}^{N}{{{\Gamma }}}_{\nu }\mathop{\sum }\limits_{i = 1}^{N}| {\alpha }_{\nu ,i}{| }^{2}\right)}^{2}}\\ =\frac{\mathop{\sum }\limits_{\nu ,\mu =1}^{N}{{{\Gamma }}}_{\nu }{{{\Gamma }}}_{\mu }\left[\left(\mathop{\sum }\limits_{i=1}^{N}| {\alpha }_{\nu ,i}{| }^{2}\right)\left(\mathop{\sum }\limits_{j=1}^{N}| {\alpha }_{\mu ,j}{| }^{2}\right)+\left(\mathop{\sum }\limits_{i=1}^{N}{\alpha }_{\nu ,i}^{* }{\alpha }_{\mu ,i}\right)\left(\mathop{\sum }\limits_{j=1}^{N}{\alpha }_{\mu ,j}^{* }{\alpha }_{\nu ,j}\right)-2\mathop{\sum }\limits_{i=1}^{N}| {\alpha }_{\nu ,i}{| }^{2}| {\alpha }_{\mu ,i}{| }^{2}\right]}{{N}^{2}{{{\Gamma }}}_{0}^{2}}\\ =\frac{\mathop{\sum }\limits_{\nu ,\mu =1}^{N}{{{\Gamma }}}_{\nu }{{{\Gamma }}}_{\mu }\left[1+{\delta }_{\nu \mu }-\mathop{\sum }\limits_{i=1}^{N}2| {\alpha }_{\nu ,i}{| }^{2}| {\alpha }_{\mu ,i}{| }^{2}\right]}{{N}^{2}{{{\Gamma }}}_{0}^{2}}=\frac{{N}^{2}{{{\Gamma }}}_{0}^{2}+\mathop{\sum }\limits_{\nu =1}^{N}{{{\Gamma }}}_{\nu }^{2}-2\mathop{\sum }\limits_{i=1}^{N}\left(\mathop{\sum }\limits_{\nu =1}^{N}{{{\Gamma }}}_{\nu }| {\alpha }_{\nu ,i}{| }^{2}\right)\left(\mathop{\sum }\limits_{\mu =1}^{N}{{{\Gamma }}}_{\mu }| {\alpha }_{\mu ,i}{| }^{2}\right)}{{N}^{2}{{{\Gamma }}}_{0}^{2}}\\ =1+\mathop{\sum }\limits_{\nu =1}^{N}{\left(\frac{{{{\Gamma }}}_{\nu }}{N{{{\Gamma }}}_{0}}\right)}^{2}-\frac{2}{N}\equiv 1+\frac{1}{N}\left[{{{{{{{\rm{Var}}}}}}}}\left(\frac{\left\{{{{\Gamma }}}_{\nu }\right\}}{{{{\Gamma }}}_{0}}\right)-1\right].$$

Derivation of the third-order correlation function g (3)(0)

The third-order correlation function is calculated as

$${g}^{(3)}(0) =\frac{\mathop{\sum }\limits_{\nu ,\mu ,\chi =1}^{N}{{{\Gamma }}}_{\nu }{{{\Gamma }}}_{\mu }{{{\Gamma }}}_{\chi }\left\langle {\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\mu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\chi }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\chi }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\mu }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }\right\rangle }{{\left(\mathop{\sum }\limits_{\nu = 1}^{N}{{{\Gamma }}}_{\nu }\left\langle {\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }^{{{{\dagger}}} }{\hat{{{{{{{{\mathcal{O}}}}}}}}}}_{\nu }\right\rangle \right)}^{3}}.\\ =\frac{\mathop{\sum }\limits_{\nu ,\mu ,\chi =1}^{N}{{{\Gamma }}}_{\nu }{{{\Gamma }}}_{\mu }{{{\Gamma }}}_{\chi }\mathop{\sum }\limits_{i,j,l,m,n,p=1}^{N}{\alpha }_{\nu ,i}^{* }{\alpha }_{\mu ,j}^{* }{\alpha }_{\chi ,l}^{* }{\alpha }_{\chi ,m}{\alpha }_{\mu ,n}{\alpha }_{\nu ,p}\left\langle {\hat{\sigma }}_{eg}^{i}{\hat{\sigma }}_{eg}^{j}{\hat{\sigma }}_{eg}^{l}{\hat{\sigma }}_{ge}^{m}{\hat{\sigma }}_{ge}^{n}{\hat{\sigma }}_{ge}^{p}\right\rangle }{{\left(\mathop{\sum }\limits_{\nu = 1}^{N}{{{\Gamma }}}_{\nu }\mathop{\sum }\limits_{i,j = 1}^{N}{\alpha }_{\nu ,i}^{* }{\alpha }_{\nu ,j}\left\langle {\hat{\sigma }}_{eg}^{i}{\hat{\sigma }}_{ge}^{j}\right\rangle \right)}^{3}}$$

For the fully-excited state, the denominator is \({\left(N{{{\Gamma }}}_{0}\right)}^{3}\). For the numerator, the expectation value is

$$\left\langle{\hat{\sigma}}_{eg}^i{\hat{\sigma}}_{eg}^j{\hat{\sigma}}_{eg}^l{\hat{\sigma}}_{ge}^m{\hat{\sigma}}_{ge}^n{\hat{\sigma}}_{ge}^p\right\rangle = \left[ \delta_{ip}\left(\delta_{jn}\delta_{lm} + \delta_{jm}\delta_{ln}\right) + \delta_{in}\left(\delta_{jp}\delta_{lm} + \delta_{jm}\delta_{lp}\right)\right. \\ + \left.\delta_{im}\left(\delta_{jp}\delta_{ln} + \delta_{jn}\delta_{lp} \right) \right] \times \left(1 - \delta_{ij} - \delta_{il} - \delta_{jl} + 2\delta_{ij}\delta_{il}\right).$$

Using the same relations as above, we calculate the value of g(3)(0) as

$${g}^{(3)}(0) = \frac{1}{{N}^{3}{{{\Gamma }}}_{0}^{3}}\mathop{\sum }\limits_{\nu =1}^{N}\mathop{\sum }\limits_{\mu =1}^{N}\mathop{\sum }\limits_{\chi =1}^{N}{{{\Gamma }}}_{\nu }{{{\Gamma }}}_{\mu }{{{\Gamma }}}_{\chi }\left(1+2{\delta }_{\nu \mu \chi }+{\delta }_{\nu \mu }+{\delta }_{\nu \chi }+{\delta }_{\mu \chi }+12\mathop{\sum }\limits_{i=1}^{N}| {\alpha }_{\nu ,i}{| }^{2}| {\alpha }_{\mu ,i}{| }^{2}| {\alpha }_{\chi ,i}{| }^{2}\right.\\ \quad\,-2\mathop{\sum }\limits_{i=1}^{N}| {\alpha }_{\nu ,i}{| }^{2}| {\alpha }_{\chi ,i}{| }^{2}-2\mathop{\sum }\limits_{i=1}^{N}| {\alpha }_{\nu ,i}{| }^{2}| {\alpha }_{\mu ,i}{| }^{2}-2\mathop{\sum }\limits_{i=1}^{N}| {\alpha }_{\mu ,i}{| }^{2}| {\alpha }_{\chi ,i}{| }^{2}\\ \quad\, \left.-4{\delta }_{\nu \chi }\mathop{\sum }\limits_{i=1}^{N}| {\alpha }_{\nu ,i}{| }^{2}| {\alpha }_{\mu ,i}{| }^{2}-4{\delta }_{\nu \mu }\mathop{\sum }\limits_{i=1}^{N}| {\alpha }_{\nu ,i}{| }^{2}| {\alpha }_{\chi ,i}{| }^{2}-4{\delta }_{\mu \chi }\mathop{\sum }\limits_{i=1}^{N}| {\alpha }_{\nu ,i}{| }^{2}| {\alpha }_{\mu ,i}{| }^{2}\right)\\ = \frac{1}{{N}^{3}{{{\Gamma }}}_{0}^{3}}\left({N}^{3}{{{\Gamma }}}_{0}^{3}+2\mathop{\sum }\limits_{\nu =1}^{N}{{{\Gamma }}}_{\nu }^{3}+3N{{{\Gamma }}}_{0}\mathop{\sum }\limits_{\nu =1}^{N}{{{\Gamma }}}_{\nu }^{2}+12N{{{\Gamma }}}_{0}^{3}-6{N}^{2}{{{\Gamma }}}_{0}^{3}-12{{{\Gamma }}}_{0}\mathop{\sum }\limits_{\nu =1}^{N}{{{\Gamma }}}_{\nu }^{2}\right)\\ = 1+2\mathop{\sum }\limits_{\nu =1}^{N}{\left(\frac{{{{\Gamma }}}_{\nu }}{N{{{\Gamma }}}_{0}}\right)}^{3}+\left(3-\frac{12}{N}\right)\mathop{\sum }\limits_{\nu =1}^{N}{\left(\frac{{{{\Gamma }}}_{\nu }}{N{{{\Gamma }}}_{0}}\right)}^{2}+\frac{12}{{N}^{2}}-\frac{6}{N}.$$

Data availability

All data in this manuscript are available upon reasonable request.

Code availability

All code used in this manuscript is available upon reasonable request.


  1. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    ADS  CAS  MATH  Article  Google Scholar 

  2. Rehler, N. E. & Eberly, J. H. Superradiance. Phys. Rev. A 3, 1735–1751 (1971).

    ADS  Article  Google Scholar 

  3. Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    ADS  CAS  Article  Google Scholar 

  4. Benedict, M. G., Ermolaev, A. M., Malyshev, V. A., Sokolov, I. V. & Trifonov, E. D. Super-Radiance: Multiatomic Coherent Emission (CRC Press, 1996).

  5. Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973).

    ADS  Article  Google Scholar 

  6. Inouye, S. et al. Superradiant Rayleigh scattering from a Bose-Einstein condensate. Science 285, 571–574 (1999).

    CAS  PubMed  Article  Google Scholar 

  7. Scheibner, M. et al. Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007).

    CAS  Article  Google Scholar 

  8. Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    ADS  PubMed  Article  CAS  Google Scholar 

  9. Ferioli, G. et al. Laser driven superradiant ensembles of two-level atoms near Dicke’s regime. Phys. Rev. Lett. 127, 243602 (2021).

    ADS  CAS  PubMed  Article  Google Scholar 

  10. Raimond, J. M., Goy, P., Gross, M., Fabre, C. & Haroche, S. Collective absorption of blackbody radiation by Rydberg atoms in a cavity: an experiment on Bose statistics and Brownian motion. Phys. Rev. Lett. 49, 117–120 (1982).

    ADS  CAS  Article  Google Scholar 

  11. Slama, S., Bux, S., Krenz, G., Zimmermann, C. & Courteille, P. W. Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity. Phys. Rev. Lett. 98, 053603 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  12. Clemens, J. P., Horvath, L., Sanders, B. C. & Carmichael, H. J. Collective spontaneous emission from a line of atoms. Phys. Rev. A 68, 023809 (2003).

    ADS  Article  CAS  Google Scholar 

  13. Masson, S. J., Ferrier-Barbut, I., Orozco, L. A., Browaeys, A. & Asenjo-Garcia, A. Many-body signatures of collective decay in atomic chains. Phys. Rev. Lett. 125, 263601 (2020).

    ADS  MathSciNet  CAS  PubMed  Article  Google Scholar 

  14. Scully, M. O., Fry, E. S., Raymond Ooi, C. H. & Wódkiewicz, K. Directed spontaneous emission from an extended ensemble of n atoms: timing is everything. Phys. Rev. Lett. 96, 010501 (2006).

    ADS  PubMed  Article  CAS  Google Scholar 

  15. Friedberg, R. & Hartmann, S. R. Temporal evolution of superradiance in a small sphere. Phys. Rev. A 10, 1728–1739 (1974).

    ADS  Article  Google Scholar 

  16. Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  18. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  19. Norcia, M. A., Young, A. W. & Kaufman, A. M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 041054 (2018).

    Google Scholar 

  20. Saskin, S., Wilson, J. T., Grinkemeyer, B. & Thompson, J. D. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett. 122, 143002 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  21. Ohl de Mello, D. et al. Defect-free assembly of 2D clusters of more than 100 single-atom quantum systems. Phys. Rev. Lett. 122, 203601 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  22. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  23. Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  24. Greif, D. et al. Site-resolved imaging of a fermionic Mott insulator. Science 351, 953–957 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  25. Kumar, A., Wu, T.-Y., Giraldo, F. & Weiss, D. S. Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon. Nature 561, 83–87 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  26. Gruner, T. & Welsch, D.-G. Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics. Phys. Rev. A 53, 1818–1829 (1996).

    ADS  CAS  PubMed  Article  Google Scholar 

  27. Dung, H. T., Knöll, L. & Welsch, D.-G. Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings. Phys. Rev. A 66, 063810 (2002).

    ADS  Article  CAS  Google Scholar 

  28. Carmichael, H. J. & Kim, K. A quantum trajectory unraveling of the superradiance master equation. Opt. Commun. 179, 417–427 (2000).

    ADS  CAS  Article  Google Scholar 

  29. Asenjo-Garcia, A., Moreno-Cardoner, M., Albrecht, A., Kimble, H. J. & Chang, D. E. Exponential improvement in photon storage fidelities using subradiance and “selective radiance” in atomic arrays. Phys. Rev. X 7, 031024 (2017).

    Google Scholar 

  30. Robicheaux, F. & Suresh, D. A. Beyond lowest order mean-field theory for light interacting with atom arrays. Phys. Rev. A 104, 023702 (2021).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  31. Rubies-Bigorda, O. & Yelin, S. F. Superradiance and subradiance in inverted atomic arrays. Preprint at (2021).

  32. Bettles, R. J., Gardiner, S. A. & Adams, C. S. Cooperative ordering in lattices of interacting two-level dipoles. Phys. Rev. A 92, 063822 (2015).

    ADS  Article  CAS  Google Scholar 

  33. Zoubi, H. & Ritsch, H. Metastability and directional emission characteristics of excitons in 1D optical lattices. Europhys. Lett. 90, 23001 (2010).

    ADS  Article  CAS  Google Scholar 

  34. Robicheaux, F. Theoretical study of early-time superradiance for atom clouds and arrays. Phys. Rev. A. 104, 063706 (2021).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  35. Sierra, E., Masson, S. J. & Asenjo-Garcia, A. Dicke superradiance in ordered lattices: dimensionality matters. Preprint at (2021).

  36. Rui, J. et al. A subradiant optical mirror formed by a single structured atomic layer. Nature 583, 369–374 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  37. Glicenstein, A. et al. Collective shift in resonant light scattering by a one-dimensional atomic chain. Phys. Rev. Lett. 124, 253602 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  38. Kornher, T. et al. Production yield of rare-earth ions implanted into an optical crystal. Appl. Phys. Lett. 108, 053108 (2016).

    ADS  Article  CAS  Google Scholar 

  39. Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  40. Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Proscia, N. V. et al. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica 5, 1128–1134 (2018).

    ADS  CAS  Article  Google Scholar 

  42. Li, C. et al. Scalable and deterministic fabrication of quantum emitter arrays from hexagonal boron nitride. Nano Lett. 21, 3626–3632 (2021).

    ADS  CAS  PubMed  Article  Google Scholar 

  43. Guerin, W., Araújo, M. O. & Kaiser, R. Subradiance in a large cloud of cold atoms. Phys. Rev. Lett. 116, 083601 (2016).

    ADS  PubMed  Article  CAS  Google Scholar 

  44. Ferioli, G., Glicenstein, A., Henriet, L., Ferrier-Barbut, I. & Browaeys, A. Storage and release of subradiant excitations in a dense atomic cloud. Phys. Rev. X 11, 021031 (2021).

    CAS  Google Scholar 

  45. Goban, A. et al. Superradiance for atoms trapped along a photonic crystal waveguide. Phys. Rev. Lett. 115, 063601 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  46. Solano, P., Barberis-Blostein, P., Fatemi, F. K., Orozco, L. A. & Rolston, S. L. Super-radiance reveals infinite-range dipole interactions through a nanofiber. Nat. Commun. 8, 1857 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Chang, D. E., Cirac, J. I. & Kimble, H. J. Self-organization of atoms along a nanophotonic waveguide. Phys. Rev. Lett. 110, 113606 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  48. Hebenstreit, M., Kraus, B., Ostermann, L. & Ritsch, H. Subradiance via entanglement in atoms with several independent decay channels. Phys. Rev. Lett. 118, 143602 (2017).

    ADS  PubMed  Article  Google Scholar 

  49. Asenjo-Garcia, A., Kimble, H. J. & Chang, D. E. Optical waveguiding by atomic entanglement in multilevel atom arrays. Proc. Natl. Acad. Sci. USA 116, 25503–25511 (2019).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Article  Google Scholar 

  50. Piñeiro Orioli, A., Thompson, J. K. & Rey, A. M. Emergent dark states from superradiant dynamics in multilevel atoms in a cavity. Phys. Rev. X 12, 011054 (2021).

    Google Scholar 

  51. Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667–670 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  52. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  53. Kim, H., Park, Y.-J., Kim, K., Sim, H.-S. & Ahn, J. Detailed balance of thermalization dynamics in Rydberg-atom quantum simulators. Phys. Rev. Lett. 120, 180502 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  54. Wang, T. et al. Superradiance in ultracold Rydberg gases. Phys. Rev. A 75, 033802 (2007).

    ADS  Article  CAS  Google Scholar 

  55. Goldschmidt, E. A. et al. Anomalous broadening in driven dissipative Rydberg systems. Phys. Rev. Lett. 116, 113001 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  56. Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia 56, 065004 (2019).

    ADS  CAS  Article  Google Scholar 

  57. Norcia, M. A. et al. Seconds-scale coherence on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  58. Holzinger, R., Moreno-Cardoner, M. & Ritsch, H. Nanoscale continuous quantum light sources based on drive dipole emitter arrays. Appl. Phys. Lett. 119, 024002 (2021).

    ADS  CAS  Article  Google Scholar 

  59. Bohnet, J. G. et al. A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78–81 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

Download references


We are grateful to L. A. Orozco, I. Ferrier-Barbut, A. Browaeys, D. E. Chang, M. Lipson, and E. Sierra for discussions. Research was supported by Programmable Quantum Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES). We acknowledge computing resources from Columbia University’s Shared Research Computing Facility project, which is supported by NIH Research Facility Improvement Grant 1G20RR030893-01, and associated funds from the New York State Empire State Development, Division of Science Technology and Innovation (NYSTAR) Contract C090171, both awarded April 15, 2010.

Author information

Authors and Affiliations



The numerical analysis was carried out by S.J.M. S.J.M. and A.A.-G. contributed to the development of theoretical ideas and tools, and to the writing of the manuscript.

Corresponding authors

Correspondence to Stuart J. Masson or Ana Asenjo-Garcia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masson, S.J., Asenjo-Garcia, A. Universality of Dicke superradiance in arrays of quantum emitters. Nat Commun 13, 2285 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing