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Local structure-function relationships in human
brain networks across the lifespan
Farnaz Zamani Esfahlani1, Joshua Faskowitz 1,2, Jonah Slack1, Bratislav Mišić 3 & Richard F. Betzel 1,2,4,5✉

A growing number of studies have used stylized network models of communication to predict

brain function from structure. Most have focused on a small set of models applied globally.

Here, we compare a large number of models at both global and regional levels. We find that

globally most predictors perform poorly. At the regional level, performance improves but

heterogeneously, both in terms of variance explained and the optimal model. Next, we expose

synergies among predictors by using pairs to jointly predict FC. Finally, we assess age-related

differences in global and regional coupling across the human lifespan. We find global

decreases in the magnitude of structure-function coupling with age. We find that these

decreases are driven by reduced coupling in sensorimotor regions, while higher-order cog-

nitive systems preserve local coupling with age. Our results describe patterns of structure-

function coupling across the cortex and how this may change with age.
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The human connectome constitutes the complete set of
neural elements and their anatomical connections to one
another1. At the macroscale, the connectome can be

represented as a graph or network whose nodes and edges cor-
respond to brain regions and white-matter fiber tracts2. The
topological organization of the connectome is non-random and
exhibits small-world architecture3, hubs and rich clubs2,4,
modules5, and cost-effective spatial embedding6. These structural
features constrain patterns of inter-areal communication7–10,
inducing correlations in regional activity, i.e. functional
connectivity11,12.

Estimates of connectomes and functional networks can be
obtained easily thanks to easy-to-use processing and recon-
struction pipelines13,14. However, linking the two connectional
modalities to one another has proven challenging, leading to
many different approaches15,16. Some of the earliest studies of
structure-function coupling constrained generative, biophysical
models of brain activity with anatomical connections, noticing
that the correlation structure of the synthetic time series output
by the model was, itself, correlated with both the anatomical
network and empirical functional connectivity7,8,17,18. Other
studies have opted for a simpler, albeit amechanistic, approach
and computed correlations between anatomical and functional
connection weights2,19, sometimes using multivariate methods20.

Although scientifically profitable, both approaches have lim-
itations. Biophysical models, for instance, entail high computa-
tional costs that preclude exhaustive searches of parameter spaces.
Conversely, statistical and correlative approaches provide limited
insight into the mechanisms that support structure-function
coupling. Situated between these two extremes, however, are
stylized models of interregional communication12. In general,
these models are based on simple dynamical processes, e.g.
diffusion11, epidemic spreading21, shortest-paths routing22,
whose solutions can be expressed analytically, and entail low
computational costs. As a result, this approach allows users to
flexibly implement and adjudicate between different models of
communication23.

Broadly, the space of communication models can be organized
along a single axis, with models positioned according to how
“centralized” or “decentralized” their communication policy is12,22.
Shortest paths, for instance, are an example of a centralized
communication policy in that using a shortest path for signaling
requires complete knowledge of a network’s global topology. That
is, a particle (signal) moving from a source region to a target region
needs to “know” which nodes are on the shortest path and which
connections need to be traversed to stay on that path. In contrast,
“decentralized” communication policies require no knowledge and
include diffusion processes (random walks)24 and network
navigation25 - where a particle moves from one node to another
according to some greedy policy, e.g. choose the connected
neighbor nearest the target in some metric space. Alongside cen-
tralized and decentralized models are similarity-26 and distance-
based measures23, which assess the overlap of brain regions’ con-
nectivity patterns or their nearness to one another in space.

Although communication models are becoming increasingly
common and have been used recently to study individual differ-
ences in phenotypes and traits27, cognition28, and for subject
identification29, there remain many open questions and frontiers.
First, most studies focus on a select set of communication mea-
sures and do not compare the performance of those measures
against other models. Second, most studies have focused on using
communication models to explain variation in whole-brain func-
tional connectivity. In contrast, several recent studies have shown
that structure-function coupling is heterogeneous across the
cortex30,31, suggesting variation in the underlying communication
process and motivating further study. Finally, neither of these

questions have been addressed in an applied context. Consider, for
instance, the human lifespan. Although many studies have inde-
pendently documented differences in structural32–34 and func-
tional connections35,36 through development, maturation, and
adulthood, how they evolve jointly in terms of communication
models and at the level of brain regions is unknown28,37.

Here, we address these limitations directly. Using data from the
Human Connectome Project38 and a suite of communication
models (predictors) based on both centralized and decentralized
processes, topological similarity, and spatial embedding, we show
that at the single-subject level, communication models fit at the
regional level outperform those fit globally. We also find that
predictors based on path length perform poorly, whereas pre-
dictors that describe decentralized communication processes
perform better. We also show that the variance explained in
regional functional connectivity follows a system-specific pattern,
with primary sensory systems being more predictable than het-
eromodal systems. Relatedly, we also find that the distribution of
optimal factors vary by brain system. Next, we explore more
synergies among predictors, using multi-linear models to predict
the weights of functional connections. We find that, among the
optimal pairings, a relatively small number of predictors appeared
disproportionately often, forming a core set of predictors that,
collectively, is essential for predicting regional FC. Finally, we
analyze data from the extended Nathan Kline Institute lifespan
sample39. We show that, globally, FC becomes less explainable
across the lifespan, irrespective of best predictor. However, we
also show that the prevelance of certain predictors vary stereo-
typically with age and, although FC predictability decreases with
age, the regional pattern of predictability was heterogeneous and
largely spared systems associated with executive function and
introspection (control and default mode networks). Note that
following preprocessing and network construction, we employed
a secondary set of criteria for censoring high-motion frames and,
if necessary, excluding subjects on the basis of motion. All results
described herein were generated using these motion censored
data. See Methods for details of exclusion criteria.

Results
Here, we explore three interrelated questions: Which commu-
nication model best explains observed patterns of FC? How does
the optimal model vary across cortex? Does the magnitude of
coupling and the optimal model vary over the course of the
human lifespan? To test these hypotheses, we analyzed two
separate structure-function datasets. The first comes from the
Human Connectome Project38 and includes structural and
functional connectivity (SC; FC) data from 100 individuals. The
second dataset comes from the Nathan Kline Institute-Rockland
lifespan sample39 and includes SC and FC data from 542 indi-
viduals. In the following sections, we analyze cortical networks
parcellated into N= 400 regions of interest40. For details con-
cerning data processing and network definition, see Methods.

Our analyses are divided into several sections. In the section
Global structure-function coupling is not fully explained by any
factor, we investigate individual heterogeneity in terms of which
factors best predict whole-brain patterns of FC. Then, in the
section Regional structure-function coupling is heterogeneous, we
investigate both regional and inter-individual variability in the
optimal factor for predicting the FC profiles of single brain
regions. Then, in the section Exploiting synergies among pre-
dictors leads to increased explanatory power, we use multi-linear
models to explain regional patterns of FC. Finally, in the section
Structure-function coupling weakens across the human lifespan,
we analyze lifespan differences in structure-function relationships
as assessed using communication models.
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Global structure-function coupling is not fully explained by
any factor. Recent work has focused on using simple, stylized
models to transform sparse SC data into fully-weighted matrices
to explain variation in whole-brain patterns of FC (Fig. 1a). In
most applications, only a few predictors are investigated, making it
difficult to assess the relative performances of different predictors.

Here, we generate a large number of matrices based on SC data
from individual subjects. These transformations yield a distinct
geometric, topological, or dynamic factor that can then be used to
explain variation inter-regional FC. Broadly, we focused on ten
classes of predictors: flow graphs parameterized at different
timescales41, two based on greedy navigation42, two based on
communicability43,44, seven based on path transitivity parame-
terized at different weight-to-cost transformations11, two based
on the matching index26, seven based on path length parameter-
ized at different weight-to-cost transformations, two based on
cosine similarity, seven based on search information parameter-
ized at different weight-to-cost transformations45, mean first
passage times of random walkers46, and Euclidean distance. In
total, we explored 40 different predictors. In Fig. 1b we show
examples of several predictors for a single subject.

First, we assessed whether the FC variance explained was
different from one predictor to another. In general, we found high
levels of heterogeneity across predictors in terms of their ability to
explain the variance in empirical FC (one-way ANOVA;

F(39)= 270.0; p < 10−15; Fig. 1c). At a single subject level, no
predictor explained more than 12.67% of variance. We also
assessed the statistical significance of variance explained by each
predictor and for each subject, comparing the observed R2 values
against those obtained using a spatially-constrained permutation
model47 (1000 permutations). We also identified predictors
whose distribution of R2 values across subjects excluded a value
of zero (Fig. 1c).

Aggregating across subjects, the best predictors were weighted
mean first passage time (mfpt-wei; R2= 0.078 ± 0.019),
weighted communicability (comm-wei; R2= 0.066 ± 0.013), the
flow graph estimated at a Markov time of t= 2.5
(fgwei-2.50; R2= 0.060 ± 0.014), and Euclidean distance (euc;
R2= 0.057 ± 0.016). The remaining factors all explained less
variance. Note that these general trends persist, irrespective of
whether we examine whole-brain connectivity data or connectiv-
ity data based on single hemispheres (see Supplementary Fig. S1).

Across all factors, we found that the majority of variance
explained can be attributed to one-step (direct) connections
(Fig. 1d). Isolating these connections alone, we found that the
average variance explained increased (from 3.4% to 3.9%; paired
sample t-test, p= 8.5 × 10−4). However, for multi-step paths, the
variance explained decreased substantially.

Collectively, these results suggest that whole-brain FC is not
well explained by any single factor in isolation (maxðR2Þ � 0:1)
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measures are red, matching index is yellow, and mean first passage time is dark blue. c Variance in whole-brain FC weights explained by factors. Each point
represents a subject (Nsub= 70 subjects following exclusion for motion and data quality; FC and SC averaged over two scan sessions). In each boxplot, the
“box” denotes interquartile range (IQR), the horizontal bar indicates the median value, and the whiskers include points that are within 1.5 × IQR of upper
and lower bounds of the IQR (25th and 7th percentiles). Any points that fall beyond the whiskers are, by convention, considered outliers. d Decreases in
variance explained as a function of path lengths (hops). Source data are provided as a Source Data file.
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and that the weights of direct connections are more easily
explained than indirect connections. Both of these results are in
line with previous studies11 and motivate further investigation
into structurally-based explanatory predictors of FC.

Regional structure-function coupling is heterogeneous. In the
previous section we focused on explaining variance in whole-
brain FC using a series of predictors obtained by transforming the
SC matrix. In general, we found high levels of heterogeneity and
weak correspondence between FC and predictors. In order to
achieve better explanatory power, several recent studies have
focused on regional patterns of FC and explaining variance in FC
from the perspective of individual nodes30,31,48. However, these
studies were limited in scope to a select set of predictors. Here, we
use the same set of 40 predictors to explain regional patterns of
FC and identify the optimal factors for each region and brain
system.

To explain regional patterns of FC, we fit linear models
wherein every row (or equivalently column) in the FC matrix are
explained based on the same row in a predictor matrix. Repeating
this procedure for every region, predictor, and subject returns a
matrix of R2 values whose dimensions are [400 × 40 × 95]. In
general, we find that the overwhelming majority of these models
are statistically significant at the single-subject level (see Fig. S2a
for results from the HCP dataset). To visualize these results and
for subsequent statistical analyses, we averaged over subjects and
plotted the mean variance explained for each region and predictor
(Fig. 2a). As in the previous section, we found considerable
variability across predictors (one-way ANOVA R2; F(39)= 138.7;
p < 10−15) but also across regions (one-way ANOVA R2;
F(399)= 36.0; p < 10−15), confirming that both regions and
predictors differ from one another in terms of their mean
variance explained. We also compared the spatial similarity
between predictors (the similarity of the 400 × 1 vectors of
variance explained at each region) and used an embedding
algorithm to assign predictors locations in two-dimensional space
based on that similarity (Fig. 2b).

In general, we found that models seeking to explain local (i.e.
regional) variation in FC outperform global models. For each
region, we calculated the maximum variance explained by any

model and found values, in some cases, that exceeded 33%
variance explained (Fig. 3a). Interestingly, the magnitude of
variance explained was, itself, variable across cortex and
concentrated within specific sets of brain systems (Fig. 3b, c).
In particular, we found that the FC patterns of regions in the
somatomotor and visual network were better explained than
those of regions in other brain systems (1000 spin test
permutations49; false-discovery rate fixed at 5%; padjusted= 0.036).
Irrespective of brain region, we found that Euclidean distance
(euc), weighted mean first passage time (mfpt-wei), weighted
communicability (comm-wei), binary cosine similarity (cos-bin),
and the length of navigation paths in units of Euclidean distance
(nav-ms), were the most common across subjects, being classified
as optimal for 16.8, 15.4, 8.2, 6.3, and 5.0 percent of brain regions.
In contrast, the predictors that were least likely to be considered
optimal included measures of binary and weighted shortest paths,
search information, and flow graphs at long Markov times (See
Supplementary Fig. S3 for complete ranking).

Relatedly, we observed that the predictors associated with the
maximum variance explained varied across regions and systems
(Fig. 3d). We found that within every brain system certain
predictors were overrepresented relative to their baseline rate.
Consider the visual system, for instance (Fig. 3e). At the
population level, 44% of visual regions exhibited FC patterns
that were best predicted by their Euclidean distance from other
regions. In comparison, the FC patterns of only 12% of control
regions were best explained by Euclidean distance (the whole-
brain rate is 21%). Interestingly, we found that the control and
default mode networks diverged from the whole-brain levels at
the highest rate, with 16 and 17 of the 40 predictors over-
represented in these systems, respectively (40% and 42.5%). In
contrast, sensorimotor systems (somatomotor and visual) over-
represented only five predictors each (12.5%). These observations
align with the putative functional roles of these systems – control
and default mode are thought to be polyfunctional while
sensorimotor systems subtend a narrower set of functions related
to processing specific modalities of information.

Indeed, the predictors were differentially associated with
brain regions and systems. To better understand exactly which
regions were best explained by a given predictor, we grouped
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predictors into ten broad classes and calculated how each
region’s FC pattern was best explained by each class of predictor
across the 95 subjects (Fig. 3). To assess whether these regional
patterns of predictor preference were concentrated within
distinct brain systems, we averaged their scores by systems40

and compared these averages with those obtained under a
spatially-aware permutation model47,49 (1000 permutations;
false discovery rate fixed at 5% leading to adjusted critical value
of padj= 0.0053). For instance, we found flow graphs over-
represented within the control and default mode networks,
navigability within the dorsal attention network, communcia-
bility in temporoparietal network, path transitivity in default
mode, matching index within control network, path length
within the visual and control networks, cosine similarity within
the somatomotor network, search information within the
control network, and mean first passage time within the
temporoparietal network. Interestingly, as a predictor Euclidean
distance was not overrepresented within any system, suggesting
it lacked clear system specificity.

Finally, we calculated for each region the fraction of subjects
for whom each of the 40 predictors was optimal. We treated this
distribution as a set of features for each region, describing its
preference for one predictor or another. Then, we computed the
similarity of these feature vectors for every pair of brain regions,
resulting in 400 × 400 correlation matrix, which we then clustered
using modularity maximization. We found evidence of ten
consensus communities, four of which were large and were
investigated further (Supplementary Fig. S4). In general, each of

these four communities disproportionately represented a single
specific predictor. Namely, weighted mean first passage time
(cluster 1), Euclidean distance (cluster 2), weighted communic-
ability (cluster 3), and weighted matching index (cluster 4)
(Supplementary Fig. S4c).

We also compared the regional variance explained by
communication models with structural connectivity weights
alone (Fig. 4). Note that while structural connectivity is sparse
and static, all of the communication models yield dense, fully-
weighted matrices and many realize stylized dynamical processes.
We found that, while the two techniques generated similar
regional patterns of explained variance (mean similarity of
r= 0.32 ± 0.09; Fig. 4a, b), using communication models as
predictors generally outperformed structural connectivity (Fig. 4c,
d), with the FC of 68.6 ± 0.06% of regions being better explained
by predictors derived from the SC matrices than the SC matrix
itself.

Collectively, these results suggest that global models of
interregional communication may fail to account for regional
preferences in communication patterns. By fitting explanatory
models at the level of regions, we can expose these preferences
and heterogeneity across the cerebral cortex in terms of regional
predictability.

Exploiting synergies among predictors leads to increased
explanatory power. In the previous two sections, we demon-
strated that at the whole-brain level, measures of communication
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explained a small fraction of variance in FC, but could be
improved upon by modeling FC at the level of individual brain
regions. In both cases, we modeled FC linearly in terms of one
predictor and a constant. However, several studies have examined
the extent to which combinations of predictors, e.g. search
information and Euclidean distance11,23,31 led to an improvement
in variance explained when combined in a multilinear model.
Here, we focus on local models while simultaneously building
upon those earlier studies to systematically explore all possible
combinations of terms.

We constructed linear models of FC based on pairs of
predictors. With 40 predictors this yields 40 × 39/2= 780 unique
dyads, which we used to explain regional FC variance. To reduce
the total number of dyads, we performed the following greedy
analysis. For each subject and region, we identified the predictor
that explained the greatest fraction of variance in its FC. Then, of
the remaining 39 predictors, we identified the one that, when
included in the multilinear model, yielded the greatest perfor-
mance improvement. Then, we counted how frequently specific
pairs of predictors appeared together in the multilinear models
and summarized the results as a square predictor × predictor
matrix (Fig. 5a). Interestingly, we found that the counts followed
a heavy tailed distribution, such that a small fraction of predictor
pairs appeared disproportionately more frequently than others
(Fig. 5b). When we considered the marginal distribution (Fig. 5a,

bar plot at the top of the matrix), we found that Euclidean
distance, weighted mean first passage time, weighted communic-
ability, weighted search information (with γ= 4), and navigability
participated in the most dyads, suggesting that these factors,
when paired with others, are important for explaining regional
patterns of FC.

To better understand the interrelationships among predictors,
we modeled the matrix in Fig. 5a as a graph, where nodes and
edges correspond to predictors and the frequency with which
predictor pairs appear, respectively (see Fig. 5c for an embedding
of the network in two-dimensional space). Upon visual examina-
tion of the connectivity matrix, it appeared that a small fraction of
predictors broadly interacted with others while the remaining
predictors weakly interacted with one another. This type of
organization is hallmark of core-periphery meso-scale structure,
where a densely-connected core of nodes projects to a sparsely
connected periphery. In this context, the “core” refers to pairs of
predictors (metrics) that frequently appear together in two-term
multilinear models. The same core predictors may sometimes be
paired with peripheral predictors, but peripheral predictors are
infrequently paired together. That is, the core is comprised of
predictors that exhibit strong synergies in their ability to predict
FC patterns; the periphery is comprised of predictors that exhibit
relatively weak synergies. To test whether this type of structure
was present, we applied a core-periphery detection algorithm that,
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rather than a binary classification of a node as “core” or
“peripheral”, assign each node a parameterized and continuous
measure of coreness. Here, we systematically varied the two
parameters – α and β – which control, roughly, the smoothness of
the distinction between core and periphery and the number of
nodes in the core, respectively. We aggregated coreness scores over
the top 5% of parameter pairs to obtain a mean coreness score for
every node (see Supplementary Fig. S5). As expected, the
predictors with the highest levels of coreness included Euclidean
distance, weighted communicability, weighted mean first passage
time, and search information (with γ= 4) (Fig. 5a; right margin).
With the exception of Euclidean distance, all of these measures are
based on diffusive, decentralized dynamics. Mean first passage
time and search information concern random walks over a
network, while communicability is associated with the ensemble of
multi-step walks through a network. In contrast, measures based
on shortest-paths routing (weighted and binary shortest paths) fall
squarely in the periphery.

In the previous analyses, we examined synergies between pairs of
predictors. Specifically, we focused on how synergies vary across the
brain, which regions are associated the greatest improvements, and
what pairs of predictors drive these improvements? First, we
compared the increase in explained variance (ΔR2) as a result of
including the second predictor. Here, when we calculate ΔR2, we
adjust the multilinear model’s R2 to penalize for the addition of a
second predictor (see Methods for details of the correction). As
expected, all changes in variance explained were positive (Fig. 5d)
and were largely concentrated in somatosensory systems (spin test,
1000 repetitions, false discovery rate fixed at q= 0.05; padj= 0.0081;
Fig. 5e), suggesting that the biggest increases were associated with
regions and systems whose baseline R2 was among the greatest prior
to introducing a second predictor.

For completeness, we all considered the effect of combining all
predictors into the same linear model. Note that many of the

predictors are correlated, making it difficult to assess their unique
contributions. However, we note that including all predictors
yields R2 values that are, on average, 3.3 ± 1.3 times greater than
the best pairs of predictors. The regions that benefit the most
from the inclusion of all predictors fall within default mode and
salience/ventral attention systems, and, in some cases, exhibit
increases in R2 that are ten times that of the best predictor pair.
The results of this additional analysis are summarized in
Supplementary Fig. S6.

In parallel, we repeated the above analysis using principal
components derived from predictors rather than the predictors
themselves. This procedure helps address concerns related to
correlated predictors. In general, the results of this analysis
converge with those reported here. See Supplementary Fig. S7 for
a summary of these results.

Collectively, these results demonstrate that improvements
gained by using multiple predictors to explain FC have distinct
spatial topography, favoring unimodal sensory systems. More-
over, even with multiple predictors, the predictability of FC in
heteromodal cortices improves little.

Structure-function coupling weakens across the human life-
span. In the previous sections we systematically evaluated the
utility of different structural predictors for explaining variance in
regional patterns of FC. Those analyses were carried out using
data from the Human Connectome Project and included subjects
of, roughly, the same age range (young adult; 18–30 years). In this
section, we use data from the enhanced Nathan Kline Institute-
Rockland sample, which comprises 542 individuals from the
Rockland, NY community whose ages range from childhood
through senescence (7–85 years). Specifically, we focus on the
magnitude of structure-function coupling across the lifespan and
differences in the optimal predictor as a function of age.
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Fig. 5 Pairwise synergies between predictors.We used two-predictor multi-linear models to predict regional patterns of FC and identified the optimal pair
of predictors for each region and each subject. We then counted how frequently each pair of predictors appeared in the set of optimal predictors. This
procedure yields a symmetric matrix of counts (a). The counts were approximately log-normally distributed (b). The matrix could be modeled as a graph
and each node’s (predictor’s) coreness could be directly calculated (node positions based on principal components analysis of count matrix) (c). In this
plot, coordinates were determined by: 1) thresholding the count matrix to retain, for each predictor, its k= 4 nearest neighbors, and 2) performing a
principal component analysis on the thresholded and symmetrized matrix. Here, the coordinates represent the first two principal components, PC1 and
PC2. Predictors that are near/distant from one another in principal components space pair with similar/dissimilar sets of predictors when improving R2.
Predictors are joined by an edge if they are considered nearest neighbors. As in Fig. 2b, we did not center or z-score columns as part of the principal
component analysis. We also calculated the mean regional improvement in R2 from using the multi-linear model versus the model with a single predictor.
Each point represents a brain region (N= 400 parcels defined based on40). d Improvement (ΔR2) projected onto the cortical surface. e Improvement
grouped by canonical brain systems (asterisks indicate statistical significance). In each boxplot, the “box” denotes interquartile range (IQR), the horizontal
bar indicates the median value, and the whiskers include points that are within 1.5 × IQR of upper and lower bounds of the IQR (25th and 7th percentiles).
Any points that fall beyond the whiskers are, by convention, considered outliers. Source data are provided as a Source Data file.
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First, we assessed how differences in global structure-function
correspondence varied with age. To do this, we calculated the
maximum R2 for each participant across all predictors. Then, to
rule out the possibility that inter-individual differences in
variance explained is related to differences in sex, time of visit
(for data acquisition), data quality measures like number of
uncensored frames and the framewise displacement associated
with those frames, or global network properties like total weight
and binary density, we regressed these values out of each subjects’
R2 value. The residuals obtained following this procedure are, by
definition, orthogonal to those nuisance variables. Finally, we
calculated the linear correlation of these residuals with subjects’
ages and observed that the two were significantly associated with
one another (r=−0.11; p= 0.02); Fig. 6a, suggesting that the
magnitude of structure-function correspondence decreases
monotonically with age. Globally, the most common optimal
predictors of FC were Euclidean distance (63% of participants)
and weighted mean first passage time (33%) (Fig. 6b).

The previous analysis focused on global coupling between
structure and function. Next, we investigated age-related
differences in structure-function coupling at a local (regional)
level. As with the global analysis, we regressed out the effect of
sex, time of visit, the number of frames used to estimate FC, and
the mean framewise displacement of “clean” frames along with
global network properties. Because we were examining effects at
the level of individual nodes, we also regressed out the effect of
nodes’ binary and weighted degrees. First, we asked whether the
prevalence of certain predictors varied with age. For each region,
we identified the predictor that best explained its regional pattern
of FC and, for each subject, calculated the fraction of regions best
explained by each factor. Then, we calculated the correlation of
frequencies with biological age (Fig. 6c). We found that only
weighted and binary mean first passage time were significantly
correlated with age (r=− 0.32 and r=− 0.22; p= 9.8 × 10−13

and p= 7.7 × 10−7; false discovery rate fixed at q= 0.05; adjusted
critical value of padj= 0.0011). We also repeated this analysis after

binning subjects according to their ages and found similar results
irrespective of bin size (see Supplementary Fig. S8).

Next, we asked whether the maximum variance explained by
any predictor – a measure of structure-function coupling – varied
with age. We found a hemispherically symmetric (Fig. 6e)
correlation pattern in which most regions, mirroring the global
pattern, decreased with age. Interestingly, the spatial pattern of
correlations was system-specific, with negative correlations
significantly concentrated within somatomotor and visual
systems (spin test, 1000 repetitions, false discovery rate fixed at
q= 0.05; padj= 0.00181; Fig. 6f). Interestingly, the relationship
between variance explained and its correlation with age was
negative, so that regions with high levels of structure-function
coupling in normative adults were more likely to decrease with
age (Fig. 6g). Note that we also found system-specific correlations
of R2 with measures of intelligence, although these values were
overall much weaker in magnitude and that, after multiple
comparison corrections, none of the regional correlations are
significant, although some system-level effects exist (spin test,
1000 permutations, padj= 0.0054; see Supplementary Fig. S9).

An important concern related to age differences in structure-
function coupling is the possibility of a floor effect. Namely, that
the R2 of some regions cannot exhibit significant decreases
because it is already near its theoretical floor value. To assess the
likelihood of such an effect occurring, we estimated floor values
for each region and subject using a permutation-based null model
(100 repetitions; see Supplementary Fig. S10 for methodological
details) and compared them against the observed R2 values. In
general, we found that most regions (96.8 ± 1.5% were signifi-
cantly greater than their theoretical floor) and that those regions
nearing the floor did not overlap with the regions in which we
reported strong age effects.

Collectively, these results suggest that the interrelationship of
structural and functional connectivity covaries weakens with age.
Notably, the areas that exhibit the greatest reductions fall within
sensorimotor systems, which are among those with the strongest
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coupling to begin with, and include regions in striate and
extrastriate cortex, as well as primary motor cortex and superior
parietal lobule. Areas within heteromodal systems, like default
mode and control networks, on the other hand, exhibit subtle
reductions in coupling magnitude and, in some cases, even increase
with age (for instance, both dorsal and ventral prefrontal cortices
along with temporal pole). Our findings point to heterogeneous
differences in the complex relationship between the brain’s physical
wiring and its intrinsic functional organization.

Discussion
Here, we aimed to address two questions about structure-function
coupling in brain networks. What structurally-derived measure
does the best job predicting FC? Second, how does the best
measure vary locally, from one region to another? As a final
application, we considered how the optimal predictor varies with
biological age in a large lifespan dataset. We found that predic-
tions of whole-brain FC were poor, irrespective of predictor, and
could be improved upon by making predictions at a local, i.e.
regional level. At this scale, the optimal predictor varied by
region, with Euclidean distance and weighted mean first passage
time among the best. Consistent with previous reports, the spatial
patterning of structure-function coupling favored sensorimotor
cortices. We then explored synergies between predictors and their
inclusion in multi-linear models. Again, we found that Euclidean
distance and weighted mean first passage time, along with mea-
sures of communicability and, in some instances, search infor-
mation and path transitivity, exhibited strong synergistic
relationships such that their joint inclusion in a model tended to
support improvements in functional variance explained. Finally,
we examined structure-function coupling across the human life-
span. We found that, globally, the magnitude of coupling
decreased with age, an observation driven by decreases in local
coupling of visual and somatomotor systems. Structure-function
coupling in higher-order cognitive systems, including the control
and default mode networks, went largely unchanged with age
and, in some cases, even increased.

Communication processes and sparse-to-fully weighted trans-
formations of SC. Many studies have attempted to link patterns
of structural and functional connectivity to one another. At one
extreme are studies that investigated neurobiologically realistic
models, e.g. neural mass models (NMMs), whose parameters
correspond to biophysical constants and generate time-varying
voltage traces from neuronal populations7,17,24,50,51. These
models offer a mechanistic description of how structural links
constrain brain dynamics and give rise to cohesive and correlated
activity. The performance of neural mass models can be improved
upon by allowing for regional heterogeneity in parameters,
matching additional features of empirical brain activity, including
separation of dynamic timescales and the patterning of time-
varying connectivity52,53. However, NMMs come at a high
computational cost, limiting the possibility of performing
exhaustive parameter searches or fitting the complete set of
parameters at a subject-level.

At the other extreme are studies that link structure to function
by directly comparing the weights of connections. In one of the
earliest studies of the human connectome, the authors showed
that structural weights (estimated as a length and volume
normalized streamline count) and their corresponding functional
connections are correlated, both globally and for select seed
regions2. Similarly,54 demonstrated that coherent patterns of
spontaneous and task-evoked activity in the macaque oculomotor
system are supported by anatomical connections. These types of
correlative relationships are found at other spatial scales using

invasive reconstruction and imaging techniques applied to mode
organisms. For instance, in55, the authors used “barcoding” to
reconstruct cellular-level synaptic connectivity and linked con-
nection weights to the correlation structure of spontaneous
activity recorded using widefield fluorescence imaging. Broadly,
these approaches demonstrate that, for structurally connected
neural elements, their anatomical connection weight is correlated
with the similarity of their recorded activity. This approach for
studying structure-function relationships, however, is limited in
that comparisons between connection weights can only be carried
out for directly connected pairs of neural elements. If two cells,
populations, or regions are not directly connected, then it
becomes impossible to make a prediction about its functional
coupling.

The results reported here are situated between these two
extremes and adopt useful principals from each while avoiding
some of the pitfalls12. Specifically, we focus on predicting the
weights of functional connections by transforming the sparse SC
matrix into a fully-weighted (and possibly signed) matrix. Some
of these transformations incorporate elements of dynamics. Flow
graphs, for example, embed the probabilistic flow of random
walkers between two nodes into the edges of a graph41. Other
transformations embody communication policies that the brain
could conceivably implement as means of transmitting a signal/
information from one region to another. Shortest paths are an
example of a centralized communication process, in that to take
advantage of these paths would require global knowledge (a
centralized pool of information) of the network’s shortest path
structure. In contrast, decentralized processes like diffusion/
random walks or navigation evolve without the need for any
additional information11,45. Path transitivity and search informa-
tion blend these two concepts, treating shortest paths as fixed
constructs, but asking how easily they could be traversed passively
by a knowledgeless random walker. Other transformations
represent geometric relationships between nodes or the topolo-
gical similarity of their structural connectivity patterns.

Practically, using matrix-based predictors to explain FC has
many advantages. Unlike biophysical models, all of the predictors
studied here can be generated in seconds of computation time,
reducing the computational burden associated with realistic
models. However, this improvement in computational complexity
does not require that we jettison all information about dynamics;
as noted earlier, many of the matrices provide summary
information about dynamical processes. This approach also
circumvents the issue of missing connections. Unlike correlative
methods that can only compute the similarity of existing
structural and functional connections, this approach transforms
the sparse structural matrix into a fully-weighted matrix, where
every entry can be, in principle, non-zero. This allows for a more
direct comparison. Lastly, previous studies of identical datasets
have shown that the matrix predictors tend to outperform even
biophysical models in terms of matching empirical patterns of
FC8,11.

Here, we extend the matrix-based prediction approach from a
global, whole-brain level to a the level of individual brain regions.
Our approach builds upon other recent studies that examined
heterogeneity in coupling patterns across regions30,31 and
systems48. Despite differences in dataset, parcellation, and choice
of predictor, our results are closely aligned with those of previous
studies, which reported strong coupling in sensorimotor cortices
and weaker coupling in heteromodal regions. Interestingly,
heteromodal cortex includes regions that expanded dramatically
over the course of mammalian evolution56 and others that
develop at a protracted rate57, leading to the hypothesis that their
interregional connectivity may be shaped by different organiza-
tional principles than regions in unimodal cortex and serving as a
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possible explanation for the weakened structure-function
coupling.

Of course, there are serious tradeoffs associated with modeling
FC in terms of matrix-based predictors derived from SC. Namely,
it sacrifices the neurobiological plausibility of NMMs for
computational ease and the interpretability of direct structure/
function correlations in order to generate fully-weighted matrices.
Additionally, matrix-based predictors fundamentally lack a
temporal dimension. That is, they compress information about
dynamical processes, e.g. diffusion, navigation, shortest paths
routing, into matrix form, the precise temporal evolution of those
processes is lost. In contrast, biophysical models document the
temporal evolution of activity, generating spike trains, voltage
traces, or hemodynamic signals from cells, populations, or
regions58–60. These temporal data provide an additional target
for modeling studies; rather than simply matching the correlation
structure of brain activity, can a model also replicate its time-
varying features? Indeed, while recent work has begun to
investigate time-varying structure-function coupling53,61–63,
future studies are necessary.

In summary, there exists a spectrum of methods for assessing
and modeling structure-function coupling in empirical data18,64–70.
Each method possesses a distinct set of advantages and
disadvantages, such that some research questions are better
addressed by one method and not another. For instance,
biophysical models offer a neurobiological account of the relation-
ships between structure and function while making population-
level time courses available for analysis. On the other hand, the
complexity of biophysical models might make them unappealing
for studies where the aim is to generate a biomarker of structure-
function coupling. In that case, a simple correlation between SC
and FC weights may suffice. In general, these methods should be
viewed as complementary rather than adversarial, affording
researchers the opportunity to examine data under different sets
of assumptions, across spatial scales, with varying levels of
neurobiological realism, and using different computational tools.

Shortest paths or diffusion; centralized or decentralized pro-
cesses? Path-based metrics are often used as markers to compare
populations of individuals in an effort to distinguish clinical
subjects from controls71 or to be linked with a continuous mea-
sure, e.g. intelligence scores72.These metrics include the well-
known characteristic path length – the mean number of steps in
shortest paths over all pairs of nodes – and efficiency, the mean
reciprocal of the shortest path lengths73.

Although these measures are commonplace in network
neuroscience, they implicitly prioritize shortest paths as the
communication routes between brain regions. Although super-
ficially this seems like a reasonable assumption, other studies have
cast doubt on these findings, noting that the backbone of shortest
paths involves only small fraction of network edges21,74 and that,
for a brain to use shortest paths for communication, requires that
it has global knowledge of its shortest path structure11,22, which is
not obviously biologically plausible.

Recently, however, a growing number of studies have presented
alternative and decentralized communication models. These
include models of diffusion and random walk dynamics24,75,
epidemic spread21,76, more complicated models that allow for an
interpolation between centralized and decentralized processes22,
and navigation models42,77. Unlike shortest paths, these commu-
nication processes evolve using local knowledge – the next step
depends on the weights of edges (random walks) or the distance
of directly connected neighbor from the eventual target.

Here, and in agreement with other studies11, we find that
shortest paths structure (both binary and weighted) do a poor job

in recapitulating patterns of FC. In contrast, measures like mean
first passage time, communicability (which emphasizes not just
the single shortest path in a network, but all walks of all lengths),
and others derived from navigation appear near the top of the list
in terms of frequency. Although these observations do not
conclusively demonstrate that shortest path structure plays no
role in communication processes, they do support the hypothesis
that decentralized measures may play an outsized (and possibly
underappreciated) role in shaping interregional communication
processes. We note, however, that under certain circumstances,
e.g. biased random walks or navigation strategies42, may access a
network’s shortest paths.

The impact of space on structure-function coupling. One of the
long-standing observations about brain networks is that their
architecture is shaped, in part, by the space in which they are
embedded78. The tight statistical relationship between distance
and presence/absence of structural connections and their weights
holds at virtually all scales74, from cellular-level connectomes79,
to areal maps80, to non-invasive imaging with MRI81. This rela-
tionship also holds for functional imaging data82, although the
coupling between space and FC is statistically less severe83,84.

The observation that SC and FC are both constrained by space
has lead to speculation that at least some fraction of variance in
structure-function coupling can be attributed to their joint
embedding in Euclidean space. Indeed, previous studies have
shown that structure-function correlations are attenuated after
regressing out the effects of Euclidean distance11,23, though the
resulting correlations suggest that there remains some residual
relationship.

Here, we adopted a local perspective on structure-function
relationships and directly compared different predictors with one
another. This allows us to test the extent to which Euclidean
distance outperformed any of the other network measures for
predicting FC. Indeed, we found that Euclidean distance was
always among the best measures. This was true for predicting FC
globally in both the HCP and NKI datasets, as well as the analysis
of local connectivity. However, our local analysis revealed that,
for many regions, especially those in control, somatomotor, and
temporoparietal networks, Euclidean distance was outperformed
by other measures. On the other hand, Euclidean distance was
overrepresented as an optimal predictor within the visual,
salience/ventral attention, and dorsal attention networks.

These observations suggest that the impact of spatial relation-
ships on SC an FC and their statistical coupling to one another is
heterogeneous and, to some extent, system-specific.

Differences in structure-function coupling with age. The pro-
gression through development, maturation, and senescence is one
of the most profound and shared human experiences. It is
accompanied by increased diffusivity of task-evoked brain
activity85 and reductions in system segregation35,36. Similar dif-
ferences occur structurally, with reductions in modularity86 and
increased characteristic path length32. Less is known about how
structural and function differences occur in parallel, and espe-
cially at the local scale30.

Here, we investigate lifespan differences in structure-function
coupling, and find that with age, the global correlation is reduced.
At the local scale, these differences are paralleled by reductions in
both weighted and binary measures of mean first passage time,
whichrefers to the number of steps in a random walk when a
random walker starting at node i is likely to have visited node j.
Importantly, mean first passage time is a descriptor for a diffusive
(random walk) process. Based on these findings and along with
the observation that the magnitude of global structure-function
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coupling decreases with age, we speculate that, decentralized
patterns of interregional communication may degrade over the
human lifespan, prompting a decoupling of functional connec-
tivity from structure.

However, there are several potential limitations of this analysis.
Specifically, there exist alternative interpretations of our results
that are difficult to rule out conclusively. Here, we interpret R2 as a
measure of how strongly or weakly structural and functional
connectivity are coupled to one another and that age-related
differences in R2 reflect shifts in network-level communication
patterns or policies. Aging, however, is accompanied by systematic
differences in other brain and physiological measurements87,
including level of in-scanner motion35,88, respiratory and cardiac
signatures, and neurovascular coupling89. Here, we adopted a
conservative approach to addressing motion-related issues,
excluding from analysis any subjects whose in-scanner motion
exceeded a threshold. This approach, however, may inadvertently
exclude subjects with usable data. Addressing issues related the
neurovascular coupling, on the other hand, presents a greater
challenge, as how best to assess and correct for subject- and
region-level coupling patterns remains an open frontier in aging
neuroscience90–92. This topic should be the focus of future studies.

Future directions and limitations. This study suffers from a
number of limitations. Streamline tractography provides an
estimation of the underlying white matter that is potentially
hampered by biases involving complex fiber geometry and lim-
itations given the inverse problem that the methodology aims to
solve93. For instance, our current study focuses on cortico-cortical
pathways, excluding subcortical nuclei and the cerebellum from
analysis. While the justification for this exclusion is straightfor-
ward – limitations of whole-brain diffusion imaging and tracto-
graphy make it challenging to accurately resolve the connections
of small structures in the basal ganglia94,95 – it nonetheless leaves
open the possibility that our results will change with the inclusion
of these structures. Future studies should examine whole-brain
communication processes and include structures from the sub-
cortex and cerebellum96.

Another potential limitation concerns the breadth of matrix-
wide predictors. Here, we examine 40 predictors, each of which of
represent a dynamical, topological, or geometric factor that could
explain patterns of FC. However, there are other predictors that
could, in principle, be explored here but due to the scope of the
paper are not. In addition, there are other methods, including
spectral decompositions69, deep learning67, and embedding
models70,97, that can lead to high levels of structure-function
coupling, but present little mechanistic insight. Future studies
should investigate alternative predictors and other methods in
greater detail, seeking to merge machine-learning and neurobio-
logical accounts of structure-function coupling.

Interestingly, while the regional patterns of structure-function
coupling in NKI and HCP datasets were correlated, the coupling
patterns were not identical. While the origins of this difference
remain unclear, possible explanations include differences in
sample size (N= 95 in HCP versus N= 542 in NKI, before
further exclusion for motion), heterogeneity, and community
representativeness. Other possibilities include differences in
data quality and preprocessing strategies. In the NKI dataset,
functional and structural networks were estimated using a
volumetric parcellation in subject anatomical space. In contrast,
the HCP data was processed using surface-based analyses. Indeed,
recent studies have identified notable differences between these
two image processing pipelines98. Future studies should investi-
gate this possibility in greater detail, documenting the effect of
different processing pipelines on local structure-function coupling.

A final limitation concerns the possibility that the reported
correlations between R2 and age could be attributed to a floor
effect. That is, any regions that start with low R2 early in life
necessarily have less room to decrease over the course of the
lifespan, whereas regions that start with high levels of R2 have
more room to decrease. Although we show that the fraction of
regions that may be susceptible to this effect is small, the spatial
pattern is correlated with the reported R2vs age correlation map
(see Supplementary Fig. S10). Disentangling true age-related
differences from floor effects is challenging and may require the
use of an unbounded measure other than R2 for assessing
structure-function correspondence. Future work should investi-
gate these potential confounds in greater detail.

Methods
Datasets
Human connectome project. The Human Connectome Project (HCP) dataset38

consisted of structural magnetic resonance imaging (T1w), resting state functional
magnetic resonance imaging (fMRI) data, as well as diffusion magnetic resonance
imaging data (dMRI) from 100 unrelated adult subjects. These subjects were
selected as they comprised the “100 Unrelated Subjects” released by the Human
Connectome Project. After excluding subjects based on data completeness and
quality control (see Quality Control), the final subset utilized included 95 subjects
(56% female, mean age= 29.29 ± 3.66, age range= 22–36). The study was
approved by the Washington University Institutional Review Board and informed
consent was obtained from all subjects. Participants were not compensated. A
comprehensive description of the imaging parameters and image preprocessing can
be found in99. Images were collected on a 3T Siemens Connectome Skyra with a
32-channel head coil. Subjects underwent two T1-weighted structural scans, which
were averaged for each subject (TR= 2400 ms, TE= 2.14 ms, flip angle= 8°,
0.7 mm isotropic voxel resolution). Subjects underwent four resting state fMRI
scans over a two-day span. The fMRI data was acquired with a gradient-echo
planar imaging sequence (TR= 720 ms, TE= 33.1 ms, flip angle= 52°, 2 mm
isotropic voxel resolution, multiband factor= 8). Each resting state run duration
was 14:33 min, with eyes open and instructions to fixate on a cross. Finally, subjects
underwent two diffusion MRI scans, which were acquired with a spin-echo planar
imaging sequence (TR= 5520 ms, TE= 89.5 ms, flip angle= 78°, 1.25 mm iso-
tropic voxel resolution, b-vales= 1000, 2000, 3000 s/mm2, 90 diffusion weighed
volumes for each shell, 18 b= 0 volumes). These two scans were taken with
opposite phase encoding directions and averaged.

Nathan Kline Institute, Rockland Sample. The Nathan Kline Institute Rockland
Sample (NKI) dataset consisted of structural magnetic resonance imaging, resting
state functional magnetic resonance imaging data, as well as diffusion magnetic
resonance imaging data from 811 subjects (downloaded December 2016 from the
INDI S3 Bucket) of a community sample of participants across the lifespan. After
excluding subjects based on data and metadata completeness and quality control
(see Quality Control), the final subset utilized included 542 subjects (56% female,
age range= 7–84). The study was approved by the Nathan Kline Institute Insti-
tutional Review Board and Montclair State University Institutional Review Board
and informed consent was obtained from all subjects. Subjects were compensated
for participation. A comprehensive description of the imaging parameters can be
found online at the NKI website. Briefly, images were collected on a Siemens
Magneton Trio with a 12-channel head coil. Subjects underwent one T1-weighted
structural scan (TR= 1900 ms, TE= 2.52 ms, flip angle= 9°, 1 mm isotropic voxel
resolution). Subjects underwent three differently parameterized resting state scans,
but only one acquisition is used in the present study. The fMRI data was acquired
with a gradient-echo planar imaging sequence (TR= 645 ms, TE= 30 ms, flip
angle= 60°, 3 mm isotropic voxel resolution, multiband factor= 4). This resting
state run lasted approximately 9:41 seconds, with eyes open and instructions to
fixate on a cross. Subjects underwent one diffusion MRI scan (TR= 2400 ms,
TE= 85 ms, flip angle= 90°, 2 mm isotropic voxel resolution, 128 diffusion
weighted volumes, b-value= 1500 s/mm2, 9 b= 0 volumes).

Quality control. For HCP, all preprocessed time series were visually inspected for
visual artifact. Subject motion measurements during the fMRI and DWI scanning
sessions were obtained from the HCP minimal preprocessing pipeline output
directories (files: Movement_RelativeRMS.txt and eddy_unwarped_i-
mages.eddy_movement_rms). Across fMRI sessions and the single fMRI
session, the mean and mean absolute deviation of the motion measurements were
calculated, resulting in four summary motion measures per subject. Subjects
exceeding 1.5 times the inter-quartile range (in the adverse direction) of the
measurement distribution for more than one of these summary motion measure-
ments were excluded. This resulted in the exclusion of four subjects. One additional
subject was excluded due to software error during DWI processing.

The NKI was downloaded in December of 2016 from the INDI S3 Bucket. At
the time of download, the dataset consisted of 957 T1w (811 subjects), 914 DWI
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(771 subjects), and 718 fMRI ("acquisition645”; 634 subjects) images. T1w and
DWI images, and tractography results were first filtered based on visual inspection.
T1w images were filtered based on artifact, such as ringing or ghosting (43 images)
and for FreeSurfer reconstruction failure (105 images) as assesses with the
ENIGMA QC tools, leaving 809 T1w images (699 subjects). DWI images were
filtered based on corrupt data (13 images) and artifact on fitted fractional
anisotropy maps (18 images), leaving 883 images (747 subjects). Tractography was
run on 781 images (677 subjects) that had both quality controlled T1w and DWI
images. Tractography results were filtered based on artifact, which include failure
to resolve callosal, cingulum, and/or corticospinal streamlines or errors resulting in
visually sparse streamline densities, resulting in 764 tractography runs
(661 subjects). T1w, DWI, and fMRI images were then filtered using computed
image quality metrics100–102. T1w images were excluded if the scan was marked as
an outlier (1.5x the inter-quartile range in the adverse direction) in three or more of
following quality metric distributions: coefficient of joint variation, contrast-to-
noise ratio, signal-to-noise ratio, Dietrich’s SNR, FBER, and EFC. DWI images
were excluded if the percent of signal outliers, determined by eddy_qc, was greater
than 15%. Furthermore, DWI were excluded if the scan was marked as an outlier
(1.5x the inter-quartile range in the adverse direction) in two or more of following
quality metric distributions: temporal signal-to-noise ratio, mean voxel intensity
outlier count, or max voxel intensity outlier count. fMRI images were excluded if
greater than 15% of time frames exceeded 0.5 mm framewise displacement.
Furthermore, fMRI images were excluded the scan was marked as an outlier (1.5x
the inter-quartile range in the adverse direction) in 3 or more of the following
quality metric distributions: DVARS standard deviation, DVARS voxel-wise
standard deviation, temporal signal-to-noise ratio, framewise displacement mean,
AFNI’s outlier ratio, and AFNI’s quality index. This image quality metric filtering
excluded zero T1w images, 16 DWI images, and 21 fMRI images. Following this
visual and image quality metric filtering, 809 T1w images (699 subjects), 728 DWI
images (619 subjects), and 697 fMRI images (633 subjects). The intersection of
subjects with at least one valid T1w, DWI, and fMRI images totaled 567 subjects.
Finally, age metadata was available for 542 of these subjects.

Image processing. Structural, functional, and diffusion images of the HCP dataset
were minimally preprocessed according to the description provided in99. Briefly,
T1w images were aligned to MNI space before undergoing FreeSurfer’s (version 5.3)
cortical reconstruction workflow. fMRI images were corrected for gradient distor-
tion, susceptibility distortion, and motion, and then aligned to the corresponding
T1w with one spline interpolation step. This volume was further corrected for
intensity bias and normalized to a mean of 10000. This volume was then projected
to the 32k_fs_LR mesh, excluding outliers, and aligned to a common space using a
multi-modal surface registration103. The resultant CIFTI file for each HCP subject
used in this study followed the file naming pattern: *_REST{1,2}_{LR,RL}
_Atlas_MSMAll.dtseries.nii. DWI images were normalized to the mean
b0 image, corrected for EPI, eddy current, and gradient non-linearity distortions,
and motion, and aligned to subject anatomical space using a boundary-based
registration104. In addition to HCP’s minimal preprocessing, diffusion images were
corrected for intensity non-uniformity with N4BiasFieldCorrection105.
FSL’s dtifit was used to obtain scalar maps of fractional anisotropy, mean dif-
fusivity, and mean kurtosis. The Dipy toolbox (version 1.1)106 was used to fit a
multi-shell multi-tissue constrained spherical deconvolution107 to the diffusion data
with a spherical harmonics order of 8, using tissue maps estimated with FSL’s
fast108. Tractography was performed using Dipy’s Local Tracking
module106. Multiple instances of probabilistic tractography were run per subject109,
varying the step size and maximum turning angle of the algorithm. Tractography
was run at step sizes of 0.25mm, 0.4mm, 0.5 mm, 0.6mm, and 0.75 mm with the
maximum turning angle set to 20°. Additionally, tractography was run at maximum
turning angles of 10°, 16°, 24°, and 30° with the step size set to 0.5mm. For each
instance of tractography, streamlines were randomly seeded three times within each
voxel of a white matter mask, retained if longer than 10 mm and with valid end-
points, following Dipy’s implementation of anatomically constrained
tractography110, and errant streamlines were filtered based on the cluster confidence
index111.

For NKI, T1w images were submitted to FreeSurfer’s cortical reconstruction
workflow (version 6.0). The FreeSurfer results were used to skull strip the T1w, which
was subsequently aligned to MNI space with 6 degrees of freedom. fMRI preprocessing
was performed using the fMRIPrep version 1.1.813. The following description of fMRI
preprocessing is based on fMRIPrep’s documentation. This workflow utilizes ANTs
(2.1.0), FSL (5.0.9), AFNI (16.2.07), FreeSurfer (6.0.1), nipype112, and nilearn113. Each
T1w was corrected using N4BiasFieldCorrection105 and skull-stripped using
antsBrainExtraction.sh (using the OASIS template). The ANTs derived
brain mask was refined with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the cortical gray-matter of
Mindboggle114. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter
(WM) and gray-matter (GM) was performed on the brain-extracted T1w using
fast108. Functional data was slice time corrected using 3dTshift from AFNI and
motion corrected using FSL’s mcflirt. “Fieldmap-less” distortion correction was
performed by co-registering the functional image to the same-subject T1w with
intensity inverted115 constrained with an average fieldmap template116, implemented
with antsRegistration. This was followed by co-registration to the

corresponding T1w using boundary-based registration104 with 9 degrees of freedom,
using bbregister. Motion correcting transformations, field distortion correcting
warp, and BOLD-to-T1w transformation warp were concatenated and applied in a
single step using antsApplyTransforms using Lanczos interpolation. Frame-wise
displacement117 was calculated for each functional run using the implementation of
Nipype. The first four frames of the BOLD data in the T1w space were discarded.
Diffusion images were preprocessed following the “DESIGNER” pipeline using
MRTrix (3.0)118,119, which includes denoising, Gibbs ringing and Rician bias
correction, distortion and eddy current correction120 and B1 field correction. DWI
were then aligned to their corresponding T1w and the MNI space in one interpolation
step with B-vectors rotated accordingly. Local models of white matter orientation were
estimated in a recursive manner121 using constrained spherical deconvolution107 with
a spherical harmonics order of 8. Tractography was performed using Dipy’s Local
Tracking module106. Probabilistic streamline tractography was seeded five times in
each white matter voxel. Streamlines were propagated with a 0.5mm step size and a
maximum turning angle set to 20°. Streamlines were retained if longer than 10 mm
and with valid endpoints, following Dipy’s implementation of anatomically
constrained tractography110

Network definition
Parcellation. As HCP fMRI was provided in 32k_fs_LR space, this data could be
parcellated based on the available Schaefer 400 parcellation40 in the CIFTI file
format. For HCP DWI and NKI fMRI and DWI, the Schaefer 400 parcellation was
rendered as a volumetric parcellation in each subject’s anatomical space within the
gray matter ribbon. To transfer the parcellation from fsaverage to subject space,
FreeSurfer’s mris_ca_label function was used in conjunction with a pre-
trained Gaussian classifier surface atlas122 to register cortical surfaces based on
individual curvature and sulcal patterns.

Structural connectivity. For HCP, for each tractography instance, streamline counts
were normalized by dividing the count between nodes by the geometric average
volume of the nodes. Since tractography was run nine times per subject, edge values
were collapsed across runs. To do this, the weighted mean was taken with weights
based on the proportion of total streamlines at that edge. This amounts to calculating
the expected value, where probabilities are based on the proportion of total edge
weight across tracotgraphy instances. This operation biases edge weights towards
larger values, which reflect tractography instances better parameterized to estimate
the geometry of each connection. For NKI, streamline counts were normalized by
dividing the count between nodes by the geometric average volume of the nodes.

Functional connectivity. For HCP and NKI, each preprocessed BOLD image was
linearly detrended, band-pass filtered (0.008–0.08 Hz), confound regressed and
standardized using Nilearn’s signal.clean function, which removes confounds
orthogonally to the temporal filters. The confound regression strategy included six
motion estimates, mean signal from a white matter, cerebrospinal fluid, and whole
brain mask, derivatives of these previous nine regressors, and squares of these 18
terms. Spike regressors were not applied to the HCP data. Spike regressors for
frames with motion greater than 0.5 mm framewise displacement were applied to
the NKI data. The 36 parameter strategy (with and without spike regression) has
been show to be a relatively effective option to reduce motion-related artifacts123.
Following these preprocessing operations, the mean signal was taken at each node,
in either the surface space (HCP) or volumetric anatomical space (NKI).

Frame censoring and exclusion criteria. In the main text, we analyzed data that had
been processed using the above procedure. We also performed extensive post-
processing of these data to reduce the likelihood that in-scanner motion con-
tributed to any reported effects117,123–125. Specifically, we implemented the fol-
lowing steps for both the HCP and NKI datasets:

1. Using the Movement_RelativeRMS.txt time series, we identified
frames with motion greater than 0.15. These frames were immediately
censored and not used in the estimation of FC.

2. We also censored any low-motion time points that were within two frames
of any of the frames censored in step 1.

3. Following steps 1 and 2, we further censored any sequence of temporally
contiguous low-motion frames that was shorter than five frames.

4. Lastly, we excluded a scan if more than 50% of its frames were flagged as
high-motion following steps 1–3, i.e. were censored. If any scan from a given
subject was removed, we removed that subject and all of their other scans
from analysis.

Given these criteria, we retained 70/95 HCP subjects. Of these remaining subjects,
we retained, on average, 90.3 ± 0.97% of their frames. The frames that were
retained had 0.07 ± 0.01 relative motion. In contrast, the censored frames had
relative motion of 0.15 ± 0.03. For the NKI dataset, we retained 474/542 subjects,
keeping 93.3 ± 10.0% of frames, with a mean motion level of 0.06 ± 0.01. The
censored frames had a motion level of 0.16 ± 0.06. In the Supplementary Material
we explored the relationship of structure-function coupling with age after binning
subjects based on their biological age. Using 10 bins of approximately equal
numbers of subjects, we found that the subjects excluded due to frame censoring
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disproportionately impacted older age bins (correlation between the number of
subjects excluded in each bin and the bin’s median age; ρ= 0.47; p= 0.038). All
results reported in the main text were generated using these datasets.

Predictors
Flow graphs. A flow graph is a transformation of a network’s (possibly sparse)
connectivity matrix, Aij, into a fully-weighted matrix in which the dynamics of a
Markov process are embedded into edge weights41. Flow graphs have been applied
in neuroscience for the purposes of community detection126. For a continuous time
random walk with dynamics _pi ¼ �∑jLijpj, the corresponding flow graph is given

by A0ðtÞij ¼ ðe�tLÞi jsj . In these expressions, the matrix L is the normalized Laplacian
whose elements are given by Lij=D− A/s, where si=∑jAij is a node’s degree or
weighted degree and D is the degree diagonal matrix (a square matrix the elements
of s along its diagonal). The variable pi represents the probability of finding a
random walker on vertex i.

The element A0ðtÞij represents the probabilistic flow of random walkers between
nodes i and j at time t. Here, we generated flow graphs using both binary and
weighted structural connectivity matrices at evaluated them at different Markov
times, t. Specifically, we focused on t= 1, 2.5, 5, and 10. We refer to these variables
as fgbin- or fgwei- followed by Markov time, t.

Navigation. The aim of many networks is to move something from one point in the
network to another in as few steps as possible, i.e. to take advantage of shortest
paths. However, doing so requires requires full knowledge of a network’s shortest
path structure, which may not be a realistic assumption, especially for naturally-
occurring biological systems like brains. However, it may be the case that simple
routing strategies – rules or heuristics for how to move from one node to another –
can sometimes uncover optimal or near-optimal shortest paths. One such routing
rule is, given a target node T, to always move towards the node nearest the target in
some metric space, e.g. Euclidean space.

Recently, this navigation approach was applied to brain networks42. This study
defined two measures based on navigation of connectome data. First, they defined
the number of hops in the shortest path uncovered by the navigation process. We
refer to this variable as nav-num. Note that for some node pairs, the navigation
procedure leads to a dead end or a cycle – in which case the number of hops is
listed as ∞. For the completed paths, the authors also defined their total length in
metric space (in this case Euclidean distance). We refer to this variable as nav-ms
and, like nav-num, impute incomplete paths with values of ∞.

Communicability. Communicability43 is a weighted sum of walks of all lengths
between pairs of nodes. For a binary network, it is calculated as G= eA or ∑1

p¼0
Ap

p! .

The contribution of direct links (1-step walks) is A1

1! , two-step walks is A2

2! , three-step

is A3

3! , and so on. In other words, longer walks have larger denominators and,
effectively, are penalized more severely. We denote this measures as comm-bin.

For weighted networks, we follow44 and first normalize the weighted
connectivity matrix as A0 ¼ D�1=2AD�1=2 where D is the degree diagonal matrix.
As before, this normalized matrix is the exponentiated to calculate the weighted
communicability Gwei ¼ eA

0
. We denote this measures as comm-wei.

Matching index. The matching index26 is a measure of overlap between pairs of nodes
based on their connectivity profiles. Suppose Γi= j:Aij > 0 is the set of all nodes
directly connected to node i. We can calculate the matching index between nodes i

and j as Mij ¼
jΓinj\Γjni j
jΓinj ∪ Γjni j. Here, Γi⧹j refers to the neighbors of node i excluding node j.

Shortest paths. In a network, each edge can be associated with a cost. For binary
networks, the cost is identical for each edge; for weighted networks the cost can be
obtained by a monotonic transformation of edges’ weights to length, e.g. by raising
an edge’s weight to a negative power. The shortest path between a source node, s,
and a target node, t, is the sequence of edges πs→ t= {Asi, Aij,…, Akt} that mini-
mizes the sum Csi+ Cij+…+ Ckt, where Csi is the cost of traversing the edge
linking nodes s and i.

Here, we calculated shortest paths matrices for the binary network (where the
cost is identical for all existing edges) and also for a parameterized affinity-to-cost
transformation evaluated at several different parameter values. Specifically, we used
the following transformation: Cij ¼ A�γ

ij . We focused on the parameter values
γ= 0.125, 0.25, 0.5, 1.0, 2.0, and 4.0. We refer to these measures as pl-bin and pl-
wei- followed by γ value.

Cosine similarity. The cosine similarity measures the angle between two vectors,
x= [x1,…, xP], and x= [y1,…, yP]. Specifically, it measures Sxy ¼ x�y

kxk�kyk. Here, we

treated regions’ connectivity profiles (the row of the connectivity matrix) as vectors
and computed the similarity between all pairs of regions. We repeated this pro-
cedure for both the binary (cos-bin) and weighted (cos-wei) connectivity matrices.

Search information. Search information measures the amount of information (in
bits) required to traverse shortest paths in a network11,45. If the shortest path

between nodes s and t is given by πs→ t= {s, i, j,…, k, l, t}, then the probability of

taking that path is given by: P(πs→ t)= psi × pij ×… × pkl × plt, where pij ¼
Aij

∑jAij
. The

information required to take this path, then, is Sðπs!tÞ ¼ log2½Pðπs!tÞ�.
Here, we calculated search information based on binary shortest paths (si-bin)

and based on shortest paths obtained from each of the weight-to-cost
transformations (si-wei-γ value).

Mean first passage time. The mean first passage time (MFPT) refers to the expected
number of steps a random walk must evolve for a random walked starting at node i
to end up at node j46,127. Here, we expressed the columns as z-scores to remove
nodal (column) biases and analyzed the resulting matrices for the binary (mfpt-bin)
and weighted (mfpt-wei) connectivity matrices.

Euclidean distance. The final predictor that we considered was the Euclidean dis-
tance between regional centers of mass (euc).

Core-periphery analysis. We used a core-periphery model to analyze the count
matrix of how often pairs of predictors were included together in the same multi-
linear model. In this context, a core refers to a group of predictor that are densely
internally connected and to a periphery, that connect to the core but not to other
peripheral predictors128. To identify core-periphery structure, we used a variant of
a common core-periphery definition in which the transition from core to periphery
varies smoothly. Rather than using a binary assignment of nodes to a core or a
periphery, this allows nodes to have a graded and continuous assignments. We
begin by defining the N × 1 vector Ci of non-negative elements129. Given this
vector, we then defined the matrix Cij= CiCj subject to the constraint that
∑ijCij= 1. The values in the vector C are permutations of the vector:

C�
m ¼ 1

1þ expð�ðm� βNÞ ´ tanðπα=2ÞÞ : ð1Þ

The coreness of each node is the permutation of C�
m that maximizes the core

quality function:

R ¼ ∑
ij
GijCiCj: ð2Þ

This method introduces two free parameters, α∈ [0, 1] and β ∈ [0, 1]. The value
of α determines the sharpness of the core-periphery boundary. With α= 1, the
transition is binary while the transition with α= 0 is maximally fuzzy. Similarly,
the value of β determines the size of the core; as β ranges from 0 to 1, the size of the
core varies from N to 0. In our application, we performed a grid search of 51
logarithmically-spaced values of α and β, using a simulated annealing algorithm to
maximize R (with 25 restarts).

Community detection. In the main text, we described an analysis in which we
clustered brain regions based on the similarity of their optimal predictor. Briefly,
this procedure entailed calculating for each brain region the frequency with which
predictor, p, was optimal, i.e. explained the greatest amount of variance in that
regions’ FC pattern. This resulted in a vector h= {h1,…, hp,…, h40} subject to the
constraint that ∑php= 1. We then computed the correlation between all pairs of
brain regions based on these vectors. We refer to this matrix as S, whose element Sij
denotes the similarity between feature vectors of regions i and j.

To better understand the structure of S, we clustered brain regions into
communities using modularity maximization5,130,131. To do so, we optimized the
modularity quality function:

Q ¼ ∑
ij
Bijδðσ i; σ jÞ ð3Þ

where Bij= Sij− γ ⋅ Pij. In this expression, Pij is the expected weight of the
connection between regions i and j and γ is a structural resolution parameter that
tunes the number of size of detected communities. For simplicity, we set
γ=〈S〉= 0.296 ≈ 0.3 and used this value for all pairs of brain regions. For
completeness, however, we also tested other resolution parameter values, ranging
from γ= 0 to γ= 1 in increments of 0.025. We show some of these communities in
Supplementary Fig. S4d.

We used a generalization of the Louvain algorithm132 to optimize Q. This
algorithm is non-deterministic and results in a degeneracy of near-optimal
solutions. To resolve this degeneracy, we used a consensus clustering algorithm in
which we ran the Louvain algorithm 1000 times (random initial conditions) and
computed the co-assignment probability for all pairs of brain regions, i.e. the
likelihood that they were assigned to the same community74,133–135. Then, we
calculated the expected probability that any two nodes were assigned to the same
community after randomly and independently permuting the order of each of the
1000 partitions. From these two values, we calculated a new modularity matrix –
the observed co-assignment probability minus the expected – and clustered this
matrix again (repeating the algorithm 1000 times). This sequence – modularity
maximization followed by construction of observed and expected co-assignment
probabilities – was repeated until each of the 1000 runs converged to an identical
solution. At this point the consensus algorithm terminated.
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Adjusted R2 for the multilinear model. In the main text we reported the change
in variance explained, ΔR2 as a result of including two predictors. In general, we
might expect increases in R2 simply due to the inclusion of a second parameter.
One strategy to account for this addition is to adjust the R2 measure based on the

number of predictors. Specifically, we calculated R2
adjusted ¼ 1� ð1�R2 ÞðN�1Þ

N�p�1 for each

region for both the one- and two-term models. Here, N= 399 is the number of
samples (Nregions− 1 because we exclude self-connections) and p is the number of
predictors in the model and is equal to p= 2 and p= 3 for the one- and two-
predictor models (the additional parameter is from the intercept).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw and minimally-processed HCP and NKI data are available under restricted access
to maintain subject privacy. Access to raw and minimally processed data can be obtained
by digitally signing a data use agreement (https://db.humanconnectome.org/app/template/
Login.vm and http://fcon_1000.projects.nitrc.org/indi/enhanced/neurodata.html). The
derivative data generated in this study are provided in the Source Data file. Any additional
unrestricted materials are available upon request from the authors. Source data are
provided with this paper.

Code availability
Code for estimating the predictors from structural connectivity and using them to predict
functional connectivity is available at https://github.com/brain-networks/local_scfc.
Subject specific parcellations were fit with FreeSurfer 6.0.1 using code available here:
https://github.com/faskowit/multiAtlasTT and data available here: https://figshare.com/
articles/multiAtlasTT_data_hcptrained/7552853. fMRI data were nuisance regressed with
code available here: https://github.com/faskowit/app-fmri-2-mat which uses Nilearn’s
signal.clean, from Nilearn 0.5.0.
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