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Shared and unique brain network features predict
cognitive, personality, and mental health scores in
the ABCD study
Jianzhong Chen1,2,3,4,20, Angela Tam 1,2,3,4,20, Valeria Kebets1,2,3,4, Csaba Orban 1,2,3,4,

Leon Qi Rong Ooi 1,2,3,4,5, Christopher L. Asplund 2,3,4,6,7,8, Scott Marek9, Nico U. F. Dosenbach 10,11,12,13,

Simon B. Eickhoff14,15, Danilo Bzdok 16,17, Avram J. Holmes 18 & B. T. Thomas Yeo 1,2,3,4,5,19✉

How individual differences in brain network organization track behavioral variability is a

fundamental question in systems neuroscience. Recent work suggests that resting-state and

task-state functional connectivity can predict specific traits at the individual level. However,

most studies focus on single behavioral traits, thus not capturing broader relationships across

behaviors. In a large sample of 1858 typically developing children from the Adolescent Brain

Cognitive Development (ABCD) study, we show that predictive network features are distinct

across the domains of cognitive performance, personality scores and mental health assess-

ments. On the other hand, traits within each behavioral domain are predicted by similar

network features. Predictive network features and models generalize to other behavioral

measures within the same behavioral domain. Although tasks are known to modulate the

functional connectome, predictive network features are similar between resting and task

states. Overall, our findings reveal shared brain network features that account for individual

variation within broad domains of behavior in childhood.
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A central question in systems neuroscience is how brain-
network architecture supports a wide repertoire of human
behavior across the lifespan. Childhood is a period of

rapid neural development and behavioral changes across cogni-
tion, personality, and mental health1–3. Consequently, there is
particular interest in understanding the nature of brain-behavior
relationships instantiated early in the lifespan4,5. Here, we utilized
a large-scale dataset of typically developing 9- to 10-year-old
children6 to quantitatively characterize functional network orga-
nization that supports individual-level prediction of cognitive
performance, impulsivity-related personality scores, and mental
health assessments across resting and task states.

Whole-brain connectome-wide neurodevelopmental studies
have found associations between resting-state functional network
organization and behavioral traits7–10. However, clinical decisions
are made at the individual level11,12. As such, there is an
increasing shift from associational analyses to individual-level
prediction13–17. Using machine-learning algorithms, we can
exploit interindividual heterogeneity in functional connectomes
to make predictions about a single person’s behavior14. Conse-
quently, neurodevelopmental prediction studies have used
resting-state functional connectivity (resting FC) to predict
individual differences in cognitive performance18,19, impulsivity
scores20 and autism symptoms21,22.

Recent studies have further suggested that task-state functional
connectivity (task FC) yields better prediction of cognitive per-
formance over resting FC23–25, with additional improvements
from combining task FC and resting FC26,27. Therefore, one
might hypothesize that the functional connections predictive of
individual-level cognition (i.e., predictive network features) might
differ between rest and task states. However, other studies have
shown that the brain functional network architecture is broadly
similar during rest and task28–30. While task contexts reliably
modulate functional network organization31–33, task modulation
of the functional connectome within individuals is much smaller
than differences between individuals34. Therefore, an alternative
hypothesis is that predictive-network features are similar across
brain states. We seek to investigate the two competing hypotheses
in this study.

Furthermore, most previous connectome-based prediction
studies have focused on specific behavioral traits17,19,21,23–25,35.
Yet, the human brain has evolved to execute a diverse range of
behaviors, so focusing on single behavioral traits might miss the
forest for the trees36. More specifically, it remains unclear whe-
ther predictive-network features are similar or different across
behavioral measures. For example, specialized brain networks
support distinct cognitive processes, such as attention, language,
or episodic memory37–39. Thus, one might hypothesize that dis-
tinct network features support prediction of different cognitive
traits. Conversely, many studies have emphasized information
integration across specialized brain networks40–42. FC studies of
cognition14,19,23 and mental disorders43–46 have also suggested
the importance of default, control, and salience/ventral attention
networks. Therefore, an alternate hypothesis is that a common set
of predictive-network features might explain individual differ-
ences in cognition, or even across cognition and mental health.
To systematically investigate the two hypotheses, we considered
the prediction of a variety of behavioral measures. This popula-
tion neuroscience approach allowed us to estimate the degree of
overlap in predictive-network features across different behavioral
domains (cognitive performance, personality scores, and mental
health assessments), as well as across phenotypes within the same
behavioral domain.

In the present study, we utilized the Adolescent Brain Cogni-
tive Development (ABCD) study, a unique dataset with a large
sample of children and a diverse set of behavioral measures6. We

used resting FC and task FC to predict a wide range of cognitive,
impulsivity-related personality, and mental health measures. We
also investigated whether combining resting FC and task FC can
improve behavioral prediction. Most importantly, we explored
the existence of shared and unique predictive-network features
within and across behavioral domains, as well as across brain
(resting and task) states.

Results
We used resting fMRI and task fMRI from 11875 children
(ABCD 2.0.1 release). There were three tasks: monetary-incentive
delay (MID), stop-signal task (SST), and N-back. We also con-
sidered all available dimensional neurocognitive47 and mental
health48 assessments, yielding 16 cognitive, 9 (impulsivity-rela-
ted) personality, and 11 mental health measures (Supplementary
Tables 1 and 2). Mental health measures included assessments
from Achenbach Child Behavior Check List49, Parent General
Behavior Inventory50, and Pediatric Psychosis Questionnaire—
Brief Version51. After quality control (QC) and considering only
participants with complete resting fMRI, task fMRI, and beha-
vioral data, our main analyses utilized data from 1858 unrelated
children (Fig. 1A).

Task FC outperforms resting FC for predicting cognition, but
not personality or mental health. We computed FC (Pearson’s
correlations) among the average time courses of 400 cortical52

and 19 subcortical53 regions (Fig. 1B, C), yielding a 419 × 419 FC
matrix for each brain state (rest, MID, SST, and N-back). We
used kernel regression to predict each behavioral measure based
on resting FC, MID-FC, SST-FC, and N-back FC separately. We
have previously demonstrated that kernel regression is a powerful
approach for resting-FC behavioral prediction54. The idea behind
kernel regression is that participants with more similar FC
matrices would exhibit more similar behavior.

To evaluate the kernel regression performance, we utilized an
inner-loop (nested) cross-validation procedure in which partici-
pants were repeatedly divided into training and test sets. The
regression model was fitted on the training set and used to predict
behavior in the test set. Care was taken so that participants from
the same site were not split between training and test sets. This
cross-validation procedure was repeated 120 times to ensure
stability55. See “Methods” for more details.

Figure 2A shows the prediction performance averaged within
each behavioral domain. Each behavioral domain was predicted
better than chance (false-discovery rate FDR q < 0.05) with
p < 0.001 across all brain states for cognition, (impulsivity-
related) personality, and mental health, respectively.

Consistent with previous studies23, we found that MID-FC and
N-back FC outperformed resting FC (p < 0.001) in predicting
cognition. SST-FC had worse performance than resting FC
(p= 0.008), but we note that resting FC had about 50% more
timepoints than SST-FC, which could explain the difference.
Interestingly, N-back FC performed the best with the least
amount of timepoints. In the cases of personality and mental
health, there was no statistical difference between resting FC and
any task state. Thus, task FC appeared to improve prediction
performance for cognition, but not personality or mental health.

Combining task FC and resting FC improves prediction, par-
ticularly for cognition. Previous studies have suggested that
combining task FC and resting FC can improve prediction of fluid
intelligence test performance26,27 and reading comprehension24.
We extended the previous studies by performing multikernel ridge
regression using resting FC, MID-FC, SST-FC, and N-back FC
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jointly to predict a broader range of cognitive measures as well as
noncognitive (personality and mental health) measures.

Figure 2 shows the multikernel prediction performance
averaged within each behavioral domain. Since N-back performed
the best among the single-kernel regression for all behavioral
domains (Fig. 2A), we compared multikernel FC with N-back FC
(Fig. 2B). We found that multikernel FC performed better than
N-back FC for cognitive (p < 0.001) and personality (p= 0.022),
but not mental health (p= 0.124).

Figure 3 shows the prediction performance of multikernel FC
for all individual behaviors. As can be seen, the prediction
performance varies widely across behavioral measures. All 16
cognitive and 9 personality measures were significantly predicted
better than chance, while 6 of the 11 mental health measures were
significantly predicted. On average, across behavioral measures
that were predicted better than chance, the correlation between
observed and predicted values for cognition was 0.316 ± 0.126
(mean ± std), personality was 0.103 ± 0.044, and mental health
was 0.132 ± 0.053.

Thus, prediction performance was better for cognition than
personality or mental health. For example, the best predicted
cognitive measure was crystallized cognition with an accuracy of

r= 0.530, while the best predicted personality measure was
positive urgency with an accuracy of 0.143 and the best predicted
mental health measure was total psychosis symptoms with an
accuracy of 0.184. Henceforth, we will focus on the 31 behavioral
measures that were significantly predicted by multikernel FC.

Predictive brain-network features cluster together within
behavioral domains. Most previous studies have focused on
predicting a small number of behavioral measures. By considering
a large number of behavioral measures across multiple behavioral
domains, we were able to explore the question of whether pre-
dictive brain-network features were shared or unique across
behavioral measures. The multikernel regression models were
inverted56, yielding a 419 × 419 predictive-feature matrix for each
brain state (rest, MID, SST, and N-back) and each behavioral
measure. Haufe’s inversion approach yields a positive (or nega-
tive) predictive-feature value for an edge, indicating that higher
FC for the edge was associated with predicting greater (or lower)
behavioral values.

Most previous studies have interpreted the regression
weights19,24 or selected features14,23 of predictive models, which

Full ABCD cohort
(N = 11875)

Excluded (N = 1314):
- Did not have all task-fMRI & behavior

Excluded (N = 1194):
- Did not have resting-fMRI & T1 

Excluded (N = 404):
- Did not pass Freesurfer recon-all 

Excluded (N = 4457):
- Did not pass resting-fMRI quality control

Excluded (N = 2478):
- Did not pass task-fMRI quality control

Excluded (N = 170):
- Siblings (N = 167)
- Phillips scanner (N = 3)

Have resting-fMRI & T1
(N = 10681)

Passed Freesurfer recon-all
(N = 10277) 

Passed resting-fMRI quality 
control (N = 5820) 

Have all task-fMRI & 
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Fig. 1 Overview of preprocessing workflow. A Flowchart illustrating inclusion/exclusion criteria. B Cortical parcellation of 400 regions52. Parcel colors are
assigned according to 17 large-scale networks152. Image reproduced under a CC BY 4.0 license, credit: https://doi.org/10.6084/m9.figshare.10062482.v1
(C) Nineteen subcortical regions53. Image reproduced under a CC BY 4.0 license, credit: https://doi.org/10.6084/m9.figshare.10063016.v1.
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Fig. 2 Cross-validated prediction performance. A Prediction performance
(Pearson’s correlation between observed and predicted values) using
kernel ridge regression for resting state and task states (MID, SST, and N-
back). Multikernel FC utilized FC from all 4 brain states for prediction.
* denotes above-chance prediction after correction for multiple
comparisons (FDR q < 0.05). ^ denotes statistically significant difference
between approaches after correction for multiple comparisons (FDR
q < 0.05). Note that we only compared multikernel FC with N-back, the
best single-kernel regression performer. For the single-kernel results, we
only compared resting state with each of the three task states. The boxplots
show the average accuracy within each behavioral domain across 120
replications. The cognition domain comprises measures such as fluid
cognition and working memory. The (impulsivity-related) personality
domain comprises measures such as sensation seeking and behavioral
inhibition. The mental health domain comprises measures such as thought
problems and psychosis severity. For each boxplot, the horizontal line
indicates the median and the circle indicates the mean. The bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively.
Outliers are defined as data points beyond 1.5 times the interquartile range.
The whiskers extend to the most extreme data points not considered
outliers. Task FC appeared to only improve prediction performance for
cognition, but not (impulsivity-related) personality or mental health.
Multikernel FC improved prediction performance for cognition and
personality, but not mental health. Similar conclusions were obtained using
coefficient of determination (COD) instead of Pearson’s correlation as a
measure of prediction performance (Supplementary Fig. 1). MID: monetary-
incentive delay; SST: stop-signal task. B The average difference in accuracy
(Pearson’s correlation between observed and predicted values) between
the multikernel FC and N-back models across 120 replications. Source data
are provided as a Source Data file.
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Fig. 3 Cross-validated prediction performance (Pearson’s correlation
between observed and predicted values) using multikernel ridge
regression by exploiting resting FC, MID-FC, SST-FC, and N-back FC
jointly. A Cognitive measures. B (Impulsivity-related) Personality
measures. C Mental health measures. * denotes above-chance prediction
after correcting for multiple comparisons (FDR q < 0.05). The boxplots
show the accuracy across 120 replications. Note the different scales across
the three panels. The same set of behavioral measures were predicted
better than chance when using coefficient of determination (COD) instead
of Pearson’s correlation as a measure of prediction performance
(Supplementary Fig. 2). Boxplot convention is the same as Fig. 2. Source
data are provided as a Source Data file.
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can be highly misleading56. For example, suppose we seek to
predict the target variable y (e.g., fluid cognition) from the FC of
two edges (FC1 and FC2). In this hypothetical example, let us
further assume that FC1 ¼ y �motion, and FC2 ¼ motion. Then
a prediction model with 100% accuracy would be
1 ´ FC1þ 1 ´ FC2. The regression weights of this model are both
one for FC1 and FC2. Therefore, if we interpreted the weights of
the regression model, we would conclude that both FC1 and FC2
are strongly related to the target variable y. Haufe’s inversion
resolves this issue by computing the covariance between the
predicted target variable and the FC of the two edges. Using the
Haufe approach, FC2 will be assigned a weight of zero, consistent
with the intuition that FC2 is not related to the target variable
even though it is helpful for predicting the target variable. As will
be shown in additional control analyses, the predictive features
were more robust across regression models with Haufe’s
approach, further underlining the importance of this inversion
process.

Supplementary Figs. 3–6 show the predictive-feature matrices
of all 31 significantly predicted behaviors for all brain states. The
predictive features were similar within each behavioral domain,
but there was a number of notable exceptions. For example,
within the somatomotor network, resting-state predictive-net-
work features were positive for reward responsiveness, but
negative for sensation seeking. To quantify the degree of
similarity in predictive-network features across behavioral
measures, predictive-feature matrices for each behavioral measure
were concatenated across brain states and correlated between
behaviors, yielding a 31 × 31 matrix (Fig. 4A). Behavioral
measures are ordered based on ABCD’s classification of these
measures into cognition, personality, and mental health beha-
vioral domains, so we refer to this ordering as “hypothesis-
driven”. If a pair of behavioral measures exhibited a high value
(green) in the matrix (Fig. 4A), then this indicates that the two
behavioral measures are predicted by highly similar network
features.

The predictive-feature matrices were highly similar within each
behavioral domain (Fig. 4A). For each pair of behavioral
measures, we computed the proportion of network blocks for
which the predictive-network features exhibited consistent
directionality (positive or negative) across the pair of behavioral
measures (Supplementary Fig. 7). Among all predictive-feature
matrices, 49.3% of network blocks were positive, while 50.7% of
network blocks were negative, so the chance level of the
predictive-feature values having the same sign was 50.01%.
Within each behavioral domain, the proportion of consistent
predictive-network features across behavioral measures was
significantly greater than chance: 74% for cognition (p < 0.001),
58% for personality (p < 0.001), and 67% for mental health
(p < 0.001). Each within-domain proportion was also significantly
greater than the corresponding between-domain proportions
(p < 0.015). The exception was the relatively high between-
domain proportion for mental health and personality, consistent
with Fig. 4A.

Instead of ordering the behavioral measures in a hypothesis-
driven fashion (Fig. 4A), we also reordered the behavioral
measures by hierarchical clustering of the predictive-feature
matrices (Fig. 5A). The hierarchical clustering yielded three data-
driven behavioral clusters (Fig. 5A) that were highly similar to the
hypothesis-driven behavioral domains (Fig. 4A). The predictive-
feature matrices were again much more similar within each data-
driven behavioral domain.

Predictive brain-network features were similar across brain
states. Given that predictive-network features were similar within

a behavioral domain, the predictive-feature matrices were aver-
aged across behaviors, yielding a predictive-feature matrix for
each behavioral domain and each brain state (Fig. 6). The pre-
dictive features were similar across different brain states, but there
were a number of notable exceptions. For example, within the
somatomotor network, predictive-network features were negative
for cognition in the resting state, but positive for cognition in the
N-back condition. To quantify the degree of similarity in
predictive-network features across brain states, the 12 predictive-
feature matrices (Fig. 6) were correlated with each other, yielding
a 12 × 12 similarity matrix (Fig. 4B).

The predictive-feature matrices were similar across brain states
within each behavioral domain (Fig. 4B). Performing the same
analyses using the data-driven behavioral clusters yielded similar
results (Fig. 5B and Supplementary Fig. 8). For each pair of brain
states, we computed the proportion of network blocks for which
the predictive-network features exhibited consistent directionality
(positive or negative) across the pair of brain states. Within each
behavioral domain, the proportion of consistent predictive-
network features across brain states was significantly greater
than chance: 63% for cognition (p < 0.001), 70% for personality
(p < 0.001), and 68% for mental health (p < 0.001).

Overall, these results suggest that predictive-network features
were more similar within behavioral domains (cognition,
personality, and mental health) than across behavioral domains.
Furthermore, predictive-network features were similar across
brain states. Critically, the similarity in predictive-network
features cannot be completely explained by similarity among
the actual behavioral measures themselves (Supplementary Fig. 9).
For example, “lacking of planning” and “sensation seeking”
shared predictive features with cognitive measures (Fig. 5A),
although the behavioral measures themselves were more
correlated with other mental health and personality measures
(Supplementary Fig. 9). As another example, the average
correlations of predictive-network features within the cognition,
personality, and mental health domains were 0.68 ± 0.19 (mean ±
std), 0.21 ± 0.33, and 0.46 ± 0.27 respectively. On the other hand,
the average correlations among the raw behavioral scores with the
cognition, personality, and mental health domains were
0.29 ± 0.22, 0.17 ± 0.16, and 0.34 ± 0.27 respectively.

Predictive models and predictive-network features generalize
to other behavioral measures within the same behavioral
domain. Given that predictive-network features were similar
within behavioral domains, we further performed a cross-
behavior prediction analysis where each of the 31 significantly
predicted behaviors was predicted using the prediction models of
other behavioral measures from the same behavioral domain (or
different domains). We found that cross-behavior predictions for
all behavioral domains were significantly better than chance using
models from the same domain (p < 0.001 for all 3 behavioral
domains, Fig. 7A). Within-domain cognitive and mental health
models also predicted better than personality models applied to
either cognitive or mental health measures (p < 0.011). There was
no significant difference between other within-domain and
between-domain predictions.

In a second analysis, for each behavior, we selected the top
predictive features of other behavioral measures from the same
behavioral domain (or different domains). The top FC edges were
then aggregated and used to predict the behavior. As shown in
Fig. 7C, we found that top features from the same behavioral
domain significantly predicted cognition (p < 0.001), personality
(p= 0.002), and mental health (p < 0.001). When predicting
cognition, within-domain cognitive features performed better
than features from personality or mental health models
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(p < 0.001). There was no significant difference between other
within-domain and between-domain predictions.

Similar conclusions were obtained using data-driven behavioral
domains (Fig. 7B, D). We note that this analysis might
overestimate the domain specificity of feature/model transfer-
ability because the data-driven behavioral domains were defined
based on the predictive-feature matrices. However, we note that
the hypothesis-driven results might underestimate the potential
of feature/model transferability, so both hypothesis-driven and
data-driven results were shown for completeness.

Overall, we found that predictive models and predictive-network
features generalized to other behavioral measures within the same

behavioral domain. Within-domain generalizations were often
significantly better than between-domain generalizations.

Distinct brain-network features support the prediction of
cognition, personality, and mental health. Having established
that predictive-network features were similar within behavioral
domains and across brain states, we investigated the topography
of predictive-network features that were shared across states
within each behavioral domain. Predictive-feature matrices were
averaged within each hypothesis-driven behavioral domain,
yielding 12 predictive-feature matrices (one for each behavioral
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Fig. 4 Predictive-network features are similar within hypothesis-driven behavioral domains and across brain states. A Correlations of predictive-
feature matrices (Supplementary Figs. 3–6) across behavioral measures. The predictive-feature matrices were concatenated across brain states and
correlated across behavioral measures. If a pair of behavioral measures exhibited a high value (green), then this indicates that the two behavioral measures
are predicted by highly similar network features. B Correlations of predictive-feature matrices across brain states. Predictive-feature matrices were
averaged within each behavioral domain and correlated across brain states. The behavioral measures were ordered and categorized based on ABCD’s
classification of these measures into cognition, personality, and mental health behavioral domains, so we referred to this ordering as “hypothesis-driven”.
Supplementary Fig. 10 shows the analog of this figure, but without collapsing across either dimension of brain state or behavior. MID: monetary-incentive
delay; SST: stop-signal task.
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domain and each brain state, Fig. 6). To limit the number of
multiple comparisons, permutation tests were performed for each
within-network and between-network block by averaging
predictive-feature values within and between 18 networks (FDR
q < 0.05, Supplementary Fig. 12).

To examine predictive features common across brain states, we
averaged the predictive-feature matrices across all brain states,

considering only network blocks that were significant and
exhibited the same directionality across states (Fig. 8A). This
conjunction thus highlights predictive-network features that are
shared across brain states and across behavioral measures within
a behavioral domain. Figure 8B illustrates the connectivity
strength obtained from averaging within each significant block.
Figure 8C, D illustrate the predictability of each cortical region
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Fig. 5 Predictive-network features are similar within data-driven behavioral domains and across brain states. Both panels (A) and (B) are the same as
Fig. 4, except that behavioral measures are ordered and categorized based on the data-driven clusters of cognition, personality, and mental health. These
data-driven clusters were obtained by hierarchical clustering of the predictive-feature matrices (Supplementary Figs. 3–6) as indicated by the dendrogram
in panel A. Clustering was performed using hierarchical agglomerative average linkage (UPGMA) clustering as implemented in scipy 1.2.1153.
Supplementary Fig. 11 shows the analog of this figure, but without collapsing across either dimension of brain state or behavior. MID: monetary-incentive
delay; SST: stop-signal task.
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obtained by summing the rows of Fig. 8A for positive and
negative predictive-feature values separately (see subcortical
regions in Supplementary Fig. 13A).

Consistent with the results in previous sections (Figs. 5 and 6),
the patterns of predictive-network features were distinct across the
three behavioral domains (Fig. 8 and Supplementary Fig. 13A). Out
of the 171 unique blocks of large-scale network features (Fig. 8A),
15 included significant predictions for cognition, 25 for personality,
and 22 for mental health. Critically, cognition shared only 2 blocks
with personality and 1 block with mental health (<14%), suggestive
of largely distinct predictive networks. Mental health and
personality shared 8 blocks (~35%), consistent with greater
predictive-network similarity, despite general distinctiveness.

Cognitive performance of individual participants was predicted
by a distributed set of large-scale network features (Fig. 8A, B) with
default C, control A, somatomotor B, and salience/ventral attention

A networks being particularly prominent (Fig. 8C, D and
Supplementary Fig. 14). For example, greater connectivity of
somatomotor network B with subcortical and default network A
regions was predictive of higher cognitive scores (i.e., better
cognition). As another example, greater connectivity between
salience/ventral attention network A and default network C, as well
as lower connectivity between salience/ventral attention network A
and control networks, were predictive of better cognition.

Personality measures of individual participants were predicted
by a distributed set of large-scale network features (Fig. 8A, B)
with default A/B and dorsal attentional A/B networks being
particularly prominent (Fig. 8C, D and Supplementary Fig. 4).
For example, greater connectivity between default networks A/B
and dorsal attention networks A/B was predictive of greater
personality scores (i.e., greater impulsivity and sensitivity to
reward/punishment). On the other hand, lower connectivity
within default networks A/B was predictive of greater impulsivity-
related traits.

Mental health of individual participants was predicted by a
distributed set of large-scale network features (Fig. 8A, B) with
default A/B and control A networks being particularly prominent
(Fig. 8C, D and Supplementary Fig. 14). For example, greater
connectivity between default network B and control network A
was predictive of larger mental health scores (i.e., worse mental
health). On the other hand, lower connectivity within default
networks A/B was predictive of worse mental health.

As a control analysis, we utilized the previously derived data-
driven clusters of cognition, personality, and mental health
(Fig. 5) to perform the same analyses, yielding highly similar
results (Supplementary Figs. 13B, 15 and 16). Average correla-
tions between the hypothesis-driven and data-driven predictive-
feature matrices (before thresholding for significant network
blocks) were r= 0.99 (cognition), 0.84 (personality), and 0.90
(mental health).

Control analyses. We performed several additional control ana-
lyses to ensure robustness of our results. First, we regressed age
and sex (in addition to FD/DVARS) from the behavioral variables
before prediction, which only decreased the prediction perfor-
mance slightly (Supplementary Fig. 17).

Second, instead of multikernel FC prediction, we averaged
functional connectivity across all brain states26 and utilized the
resulting mean FC for kernel regression. We found that mean FC
yielded statistically worse prediction performance for cognition
compared with multikernel regression (Supplementary Fig. 18),
but not personality and mental health. Interestingly, mean FC
was also numerically (but not statistically) worse than n-back FC
for predicting cognition (r= 0.28 vs. r= 0.29). Overall, this
suggests that although multikernel approach might have benefited
from more data per participant, more data in itself did not
improve prediction performance. Instead, the multikernel
approach was able to make better use of more data across
different brain states to improve behavioral prediction.

Third, to ensure our results were robust to the regression
model, we also performed linear ridge regression. We obtained
similar prediction performance, but linear regression achieved
worse COD (Supplementary Fig. 19). Remarkably, the predictive-
feature matrices were highly similar for both linear regression and
kernel regression (average r= 0.99), suggesting that the
predictive-feature matrices are robust to the choice of regression
algorithm. We note that if we interpreted the regression weights
directly without Haufe model inversion, then the agreement
between kernel regression and linear regression “only” achieved
an average correlation of r= 0.66. This observation confirms the
importance of inverting the regression models56.
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Fig. 7 Predictive models and predictive-network features generalize to
other behavioral measures within the same behavioral domain. A Cross-
behavior predictive performance averaged within each behavioral domain
of cognition, personality, and mental health (MH) is shown in the first three
rows. Each behavioral measure was predicted by averaging predictive
models of other behavioral measures in the same domain (diagonal cells)
or different domains (off-diagonal cells). As a reference, average prediction
performance of behavioral measures (predicted better than chance) from
the original multikernel FC models (Fig. 3) is shown in the fourth row.
B Same as (A), but using data-driven behavioral domains (Fig. 6). C Cross-
behavior predictive performance averaged within each behavioral domain
of cognition, personality, and mental health (MH) is shown in the first three
rows. Each behavioral measure was predicted by averaging top predictive-
network features of other behavioral measures in the same domain
(diagonal cells) or different domains (off-diagonal cells). As a reference,
average prediction performance of behavioral measures (predicted better
than chance) from the original multikernel FC models (Fig. 3) is shown in
the fourth row. D Same as (C), but using data-driven behavioral domains.
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Fourth, many participants were excluded due to image-quality
issues (Fig. 1A). The resulting sample had a higher proportion of
female and White participants with higher family income than
excluded participants (Supplementary Table 3). Image-quality
issues were also correlated with various behavioral measures
(Supplementary Tables 4–7). To increase confidence that our

results were applicable to the broader population, we performed
three analyses. In the first analysis, we applied a bandstop filter to
remove respiratory pseudomotion, thus retaining 21.7% more
participants (N= 2262). In the second analysis, we additionally
loosened the image QC criteria, thus retaining double the
participants (N= 3744). In the third analysis, for each behavioral
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measure, we selected subsets of participants from the main
sample (N= 1858) that matched the age, sex, household income,
racial composition, and behavioral distributions of the full ABCD
sample, yielding an average of 921 participants (min= 563,
max= 1073) for each behavioral measure (Supplementary
Table 9). There was no statistical difference between the included
and excluded participants for the 5 characteristics (age, sex,
household income, racial composition, and behavioral distribu-
tions) for the 36 behavioral measures after correction for multiple
comparisons with FDR q < 0.05. By construction, these partici-
pants have low motion/imaging artifacts (since participants are a
subset of the main sample) and are representative of the entire
ABCD sample (due to our matching procedure). The predictive-
feature matrices remained highly similar to the original matrices:
r= 0.93 (first analysis, Supplementary Fig. 21), r= 0.85 (second
analysis, Supplementary Fig. 22), and r= 0.85 (third analysis,
Supplementary Fig. 23).

Lastly, we computed the predictive-feature matrices based on
the single-kernel regression models and found that the results
were highly similar to the predictive-feature matrices of the
multikernel regression model (average r= 0.95).

Discussion
In a large sample of typically developing children, we found that
compared with resting FC, task FC of certain tasks improves
prediction of cognition, but not (impulsivity-related) personality
or mental health. Integrating resting FC and task FC further
improves prediction of cognition and personality, but not mental
health. By considering a large number of measures across cog-
nition, personality, and mental health, we found that these
behavioral domains were predicted by largely distinct patterns of
brain-network features. However, within a behavioral domain
(e.g., cognition) and across brain states, the predictive-network
features were similar, suggesting the potential existence of shared
neural mechanisms explaining individual variation within each
behavioral domain.

Predictive brain-network features cluster together within
behavioral domains. Previous task-FC behavioral prediction
studies have typically focused on specific cognitive traits, such as
fluid intelligence test performance23, attention25 or reading
comprehension27. By exploring a wide range of behavioral mea-
sures, we gained insights into shared and unique predictive-
network features across traits within the same domain and across
domains, as well as across brain states (rest and task). While there
were differences among predictive-network features within a
behavioral domain (Supplementary Figs. 3–6), the similarity was
striking (Figs. 4 and 5). This was especially the case for the
cognitive domain (Figs. 4 and 5 and Supplementary Figs. 3–6).

Decades of studies, ranging from lesion to functional
neuroimaging studies, have suggested the existence of brain
networks that are specialized for specific cognitive functions57–61.

For example, language tasks activate a specific network of brain
regions62–64. Another example is the specific loss of episodic
memory but not language after medial temporal lobe lesions65,66.
Of course, the networks that preferentially underpin aspects of
behavior do not work in isolation, and many studies have also
emphasized information integration across specialized brain
networks40,42,67,68. Lesion studies have also suggested that
damage to connector hubs leads to deficits in multiple functional
domains69. Thus, while we did not expect predictive-network
features to be completely different across cognitive measures, we
did not anticipate such strong similarity.

Similarly, in the case of mental health measures, while
diagnostically distinct psychiatric disorders are likely the result
of differentially disrupted brain systems, there is significant
comorbidity among disorders and overlap in clinical
symptoms70–72. Certain brain circuits have also been dispropor-
tionately reported to be transdiagnostically aberrant across
multiple psychiatric and neurological disorders43,73–76. For
instance, there is evidence for the central role of frontoparietal
network disruptions across psychiatric diagnosis77,78. Therefore,
similarly to cognition, we did not expect predictive-network
features to be completely different across mental health measures,
but the degree of similarity was still surprising. These findings
underscore the importance of studying multiple facets of
psychopathology simultaneously to better characterize covaria-
tion among symptoms and to redefine psychiatric nosologies79,80.

One possibility is that the regression models might be
predicting a broad behavior rather than the specific behaviors
they were trained on. For example, in the case of cognition,
perhaps the network features were partially predicting the g
factor, a general cognitive ability that can account for half of the
variance of cognitive test scores81. In the case of mental health,
the network features might be partially predicting the p factor, a
general psychopathology factor that reflects individuals’ suscept-
ibility to develop psychopathologies82. The similarity in
predictive-network features across the personality measures was
less surprising since the personality measures we considered were
mostly impulsivity-related. Thus, the regression models might be
partially predicting an overall impulsivity trait83.

Indeed, behavioral measures are thought to be supported by a
combination of shared and distinct factors84–87. However, it is
unlikely that FC is equally sensitive to all behavioral factors. In
particular, FC might be more sensitive to certain shared and
distinct factors, while being insensitive to other shared and
distinct factors88. Given that the predictive-network features were
more strongly correlated (within a behavioral domain) than the
behavioral measures themselves, this suggests that the relative
contributions of shared FC-sensitive factors were larger than
shared non-FC-sensitive factors.

Distinct brain-network features support the prediction of
cognition, personality, and mental health. We found that cog-
nitive performance was predicted by distributed network features

Fig. 8 Brain-network features that support individual-level prediction of cognition, personality, and mental health. A Predictive-feature matrices
averaged across brain states, considering only within-network and between-network blocks that were significant across all four brain states (rest, MID,
SST, and N-back). B Predictive-network connections obtained by averaging the matrices in panel (A) within each between-network and within-network
block. C Positive predictive features obtained by summing positive predictive-feature values across the rows of panel (A). A higher value for a brain region
indicates that stronger connectivity yielded a higher prediction for the behavioral measure. D Negative predictive features obtained by summing negative
predictive-feature values across the rows of panel (A). A higher value for a brain region indicates that weaker connectivity yielded a greater prediction for
the behavioral measure. In both panels (C) and (D), the color of each parcel corresponds to the percentile of predictive-feature values among 400 parcels.
See Supplementary Fig. 13A for the subcortical maps. For visualization, the values within each predictive-feature matrix in panel A were divided by their
standard deviations across all entries in the predictive-feature matrix. The current figure utilized hypothesis-driven behavioral domains. Conclusions were
highly similar using data-driven behavioral clusters (Supplementary Figs. 15 and 16), as well as other control analyses (Supplementary Figs. 21–23).
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with default C, control A, salience/ventral attention A, and
somatomotor B networks being particularly prominent. The
overrepresentation of default, control, and salience/ventral
attention networks was consistent with previous studies24,25,89.
The prominent role of the somatomotor network was more
surprising, although somatomotor regions have been associated
with fluid intelligence test performance23, attention25, and general
cognitive dysfunction74.

Mental health measures were predicted by distributed network
features with default A/B and control A networks being
particularly prominent. Previous studies have linked the default
and control networks to multiple psychiatric disorders and
symptom profiles43,90,91. Interestingly, while the predictive-
network features for cognition and mental health both involved
the default network, different subnetworks were involved in the
two behavioral domains: default network C in cognition and
default networks B/C in mental health.

Finally, (impulsivity-related) personality measures were pre-
dicted by distributed network features with default A/B and
dorsal attention A/B networks being particularly prominent. Most
impulsivity studies have typically highlighted fronto-striatal
circuits92–96. However, very few studies have investigated
functional connectivity at the whole-brain level across all
networks and these studies only focused on adults97. Therefore,
our study complements the literature by providing evidence for
the importance of default and attentional networks in predicting
impulsivity in children.

Resting and task-network organization. A surprising result is
that the predictive-network features were similar across brain
states (rest, MID, SST, and N-back) for all behavioral domains,
particularly in the case of personality and mental health. On the
one hand, task-network reorganization has been shown to
influence cognitive performance32,98. On the other hand, our
results are consistent with studies showing that task states only
modestly influence functional connectivity28,29,99 with inter-
individual differences dominating task modulation34.

We note that a previous study27 suggested that the regression
models utilized different network features for prediction across
different brain states, while another study23 suggested that there
was substantial overlap in predictive-network features across
resting FC and task FC. These discrepancies might arise because
previous studies only interpreted the most salient edges selected
for prediction, which might yield unstable results. Here, we
followed the elegant approach of Haufe and colleagues (2014) to
invert the prediction models, leading to highly consistent
predictive-network features across two regression models (kernel
regression and linear regression). Omitting the inversion step
leads to weaker agreement between the two models.

Consistent with previous studies23,100,101, we found that task
FC outperforms resting FC for the prediction of cognitive
performance, at least in the case of N-back and MID. Although
resting FC was better than SST-FC for predicting cognition
(Fig. 2), we note that there was more resting-fMRI data than SST-
fMRI data, which might explain the gap in performance. Here, we
did not control for fMRI duration because our goal was to
maximize prediction performance and to quantitatively char-
acterize the predictive-network features. Similarly, the prediction
improvement from integrating information across brain states
(multikernel regression) partly comes from the use of more fMRI
data per child, but at least in the case of cognition, the
improvement was not entirely due to more data (Supplementary
Fig. 18).

Consistent with previous studies24,26,27, we found that combin-
ing resting FC and task FC improved prediction of cognition.

Extending upon this work, we demonstrated that combining
resting FC and task FC modestly improved prediction of
personality, but not mental health. We also found that regardless
of using resting FC, task FC, or both resting FC and task FC, greater
performance was achieved for predicting cognition than person-
ality or mental health. This is again consistent with previous studies
relating resting fMRI with interindividual variation in multiple
behavioral domains16,89,102,103.

Strengths and limitations. One strength of our study is the use of
a whole-brain connectomics approach to predict a wide range of
behavioral traits. Many neurodevelopmental studies have focused
on specific brain circuits104–111. Yet, the human brain comprises
functional modules that interact as a unified whole to support
behavior112–114. Therefore, whole-brain network-level approaches
could provide critical insights into neurodevelopment that might
be missed by studies focusing on specific networks. Our results
were also robust across brain states, across simple and more
advanced predictive algorithms, and across recruitment sites.

However, since the ABCD cohort comprises typically devel-
oping children, it is unclear how our results, especially those
pertaining to mental health, might generalize to groups with
clinical diagnoses. Furthermore, the cross-sectional nature of our
study and the limited age range of the participants prevented us
from thoroughly examining neurodevelopmental changes across
time or age. Whole-brain neurodevelopmental studies have
shown that functional networks become more distributed
throughout adolescence115–117. As such, it remains to be seen
how the predictive-network features from our study might be
similarly affected by the developmental process.

In our study, we used resting FC and task FC to jointly predict
behavioral measures. Therefore, a participant was included only if
the imaging data of every brain state survived QC. This resulted
in a much smaller sample size than if we analyzed each brain state
independently (118, Supplementary Fig. 24). The resulting main
sample (N= 1858) was also less representative of the full sample
in terms of age, sex, racial composition, and household income.
In a control analysis, we subsampled participants from the main
sample to match characteristics of the full sample, thus
simultaneously addressing issues about data quality and repre-
sentativeness of the sample. However, this control analysis further
reduced sample sizes. Thus, it remains an open question how to
maximize sample sizes, while maintaining data quality and
representativeness.

Furthermore, to match processing across resting and task
states, task activations were not regressed from the task-state data.
Therefore, the prediction improvement of certain task FC over
resting FC in the cognitive domain might be partially due to task
activation119. However, we note that a previous study has
suggested that task-induced changes in FC might predict
phenotypes independent of task activation120. Future work will
benefit from further differentiation of task activation from task-
induced FC changes.

Finally, although most behavioral measures were predicted
better than chance, the prediction accuracies were low, especially
for personality and mental health measures121. Further improve-
ment will be necessary for clinical utility. From the imaging
perspective, improved imaging acquisition and modeling, as well
as aggregation across larger sample size might improve prediction
performance122–124. From the behavioral perspective, improve-
ment might be achieved by using composite measures89 or more
innovative digital approaches allowing for greater sampling
frequency and thus better reliability125–127. Lastly, the use of
nonimaging features could further enrich our predictive
models128.
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Methods
Participants. We considered data from 11875 children from the ABCD 2.0.1
release. All data used in this paper were collected by the ABCD study. The Insti-
tutional Review Board (IRB) at the University of California, San Diego, approved
all aspects of the ABCD study129. Parents or guardians provided written consent,
while the child provided written assent130. After strict preprocessing quality control
(QC) and considering only participants with complete rest fMRI, task fMRI, and
behavioral data, our main analyses utilized 1858 unrelated children (Fig. 1A). See
further details below.

Imaging acquisition and processing. Images were acquired across 21 sites in the
United States with harmonized imaging protocols for GE, Philips, and Siemens
scanners131. We used structural T1, resting fMRI, and task fMRI from three tasks:
monetary-incentive delay (MID), N-back, and stop-signal task (SST). For each
participant, there were four resting-fMRI runs. Each resting-fMRI run was 300-secs
long. For each participant, there were two runs for each fMRI task. Each MID run
was 322.4-secs long. Each N-back run was 289.6-secs long. Each SST run was
349.6-secs long. See Supplemental Methods S1 for details.

Minimally preprocessed T1 data were used132. The structural data were further
processed using FreeSurfer 5.3.0133–138, which generated accurate cortical surface
meshes for each individual. Individuals’ cortical surface meshes were registered to a
common spherical coordinate system135,136. Individuals who did not pass recon-all
QC132 were removed.

Minimally preprocessed fMRI data132 were further processed with the following
steps: (1) removal of initial frames, number of frames removed depended on the
type of scanner;132 and (2) alignment with the T1 images using boundary-based
registration139 with FsFast (http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast).
Functional runs with boundary-based registration (BBR) costs greater than 0.6
were excluded. Framewise displacement (FD)140 and voxel-wise differentiated
signal variance (DVARS)141 were computed using fsl_motion_outliers. Volumes
with FD > 0.3 mm or DVARS > 50, along with one volume before and two volumes
after, were marked as outliers and subsequently censored. Uncensored segments of
data containing fewer than five contiguous volumes were also censored16,142.
Functional runs with over half of their volumes censored and/or max FD > 5mm
were removed. We also excluded individuals who did not have at least 4 min for
each fMRI state (rest, MID, N-back, and SST) from further analysis.
Supplementary Fig. 20 shows the distribution of censored frames and runs.

The following nuisance covariates were regressed out of the fMRI time series:
global signal, six motion correction parameters, averaged ventricular signal,
averaged white matter signal, and their temporal derivatives (18 regressors in total).
Regression coefficients were estimated from the noncensored volumes. We chose to
regress the global signal because we were interested in behavioral prediction and
global signal regression has been shown to improve behavioral prediction
performance23,143. The brain scans were interpolated across censored frames using
least-squares spectral estimation144, band-pass filtered (0.009 Hz ≤ f ≤ 0.08 Hz), and
projected onto FreeSurfer fsaverage6 surface space and smoothed using a 6-mm
full-width half-maximum kernel.

Functional connectivity. We used a whole-brain parcellation comprising 400
cortical regions of interest (ROIs)52 (Fig. 1B) and 19 subcortical ROIs53 (Fig. 1C).
For each participant and each fMRI run, functional connectivity (FC) was com-
puted as Pearson’s correlations between the average time series of each pair of
ROIs. FC matrices were averaged across runs from each state, yielding a 419 × 419
FC matrix for each fMRI state (rest, MID, N-back, and SST). We note that cor-
relation values were converted to z-scores using Fisher’s r-to-z transformation
prior to averaging and converted back to correlation values after averaging. Cen-
sored frames were ignored when computing FC. To match processing across
resting and task states, task activations were not regressed from the task-state data.

Behavioral data. We analyzed data from all available dimensional
neurocognitive47 and mental health48 assessments, yielding 16 cognitive, 11 mental
health, and 9 impulsivity-related personality measures. The cognitive measures
were vocabulary, attention, working memory, executive function, processing speed,
episodic memory, reading, fluid cognition, crystallized cognition, overall cognition,
short delay recall, long delay recall, fluid intelligence, visuospatial accuracy,
visuospatial reaction time, and visuospatial efficiency. The mental health measures
were anxious depressed, withdrawn depressed, somatic complaints, social pro-
blems, thought problems, attention problems, rule-breaking behavior, aggressive
behavior, total psychosis symptoms, psychosis severity, and mania. The
impulsivity-related personality measures were negative urgency, lack of planning,
sensation seeking, positive urgency, lack of perseverance, behavioral inhibition,
reward responsiveness, drive, and fun seeking. See Supplemental Methods S2 for
more details.

Participants who did not have all behavioral measures were excluded from
further analysis. As recommended by the ABCD consortium, individuals from
Philips scanners were also excluded due to incorrect preprocessing. Finally, by
excluding siblings, the main analysis utilized data from 1858 unrelated children
(Fig. 1A). For these 1858 children, the length of fMRI data remaining after

censoring was 897 ± 232 secs (mean ± std) for resting state, 531 ± 107 secs for MID,
579 ± 126 secs for SST, and 482 ± 86 secs for N-back.

Supplementary Table 3 shows the demographic information of included and
excluded participants. Supplementary Table 4 shows the means and standard
deviations of the behavioral measures of included and excluded participants.
Supplementary Tables 5–7 show the correlation between QC measures and
behavioral scores in the included participants. Consistent with previous studies145,
there were associations between behavioral measures and various QC measures.
For example, participants with worse cognition had lower-quality data.

Single fMRI-state prediction. We used kernel ridge regression to predict each
behavioral measure based on resting FC, MID-FC, N-back FC, and SST-FC,
separately. We chose kernel regression because of its strong prediction perfor-
mance in resting-FC-based behavioral prediction54. Briefly, let yi and FCi be the
behavioral measure and FC of training individual i. Let yt and FCt be the beha-
vioral measure and FC of a test individual. Then, kernel regression would predict
the test individual’s behavior as the weighted average of the training individuals’
behavior, i.e., yt � ∑i2training setSimilarity FCi; FCt

� �
yi, where Similarity FCi; FCt

� �

was defined as the Pearson’s correlation between FCi and FCt . Thus, kernel
regression assumed that individuals with more similar FC exhibit more similar
behavior. To reduce overfitting, an l2-regularization term was included16,54,143.
Details of this approach can be found elsewhere16,54,143.

Kernel regression was performed within an inner-loop (nested) cross-validation
procedure. More specifically, there were 22 ABCD sites. To reduce sample-size
variability across sites, we combined sites together to create 10 “site-clusters”, each
containing at least 150 individuals (Supplementary Table 8). Thus, participants
within a site are in the same site cluster.

We performed leave-3-site-clusters-out nested cross-validation for each
behavioral measure with 120 replications. For each fold, a different set of 3 site
clusters was chosen as the test set. Kernel ridge regression parameters were
estimated from the remaining 7 site clusters using cross-validation. For model
selection, the regularization parameter was estimated within the “inner-loop” of the
inner-loop (nested) cross-validation procedure. For model evaluation, the trained
kernel regression model was applied to all unseen participants from the test site
clusters.

Head motion (mean FD and DVARS) was regressed from each behavioral
measure before the cross-validation procedure. More specifically, regression
coefficients were estimated from the 7 training site clusters and applied to the 3 test
site clusters. This regression procedure was repeated for each split of the data into 7
training site clusters and 3 test site clusters.

Prediction performance was measured by correlating predicted and actual
measures14. When averaging prediction accuracies (correlations) across behavioral
measures, the correlations underwent Fisher-r-to-z transformation before
averaging and converted back to correlation values after averaging. We also
computed coefficients of determinations, which yielded similar conclusions.

Multistate prediction. To explore whether combining resting FC and task FC
would result in better prediction accuracy, we utilized FC matrices from all four
brain states (rest, MID, SST, and N-back) for prediction using a multikernel fra-
mework (Supplemental Methods S3). Similarly to single-kernel regression, multi-
kernel regression assumed that participants with similar FC exhibit similar
behavioral scores. However, instead of taking into account FC from one fMRI state,
here we utilized FC from all four fMRI states.

Statistical tests of prediction accuracy. To test whether a model achieved better-
than-chance accuracy, we performed permutation tests by shuffling behavioral
measures across participants within each site and repeating the entire leave-3-site-
clusters-out nested cross-validation procedure. To compare two models, a per-
mutation test was not valid, so the corrected resampled t-test was utilized146,147.
The resampled t-test corrected for the fact that accuracies of test folds were not
independent. The resampled t-test assumed that the performance difference
between two models was Gaussian distributed. This assumption was validated with
the Kolmogorov–Smirnov test. We corrected for multiple comparisons using FDR
(q < 0.05). All p-values were calculated as two-tailed p-values.

Model generalization across behaviors. We tested whether prediction models
could be generalized across behavioral measures. More specifically, for each of the
31 significantly predicted behavioral measures (Fig. 3), we averaged the predictions
of the multikernel FC models from all other behavioral measures from the same
behavioral domain (or different behavioral domain). The average prediction was
compared with the actual behavioral value to compute cross-behavior prediction
accuracy. For example, in the case of generalization within the same behavioral
domain, a participant’s fluid cognition was predicted as follows. The resting FC and
task FC of the participant were fed into the 15 multikernel predictive models (of
the other 15 cognitive measures), yielding 15 prediction values. These 15 prediction
values were averaged, yielding a final prediction of fluid cognition for the parti-
cipant. We emphasize that the average prediction did not include the target
behavioral variable and was performed independently for each of the 120 cross-
validation folds.
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Feature generalization across behaviors. We tested whether top predictive-
network features could be generalized across behavioral measures. More specifi-
cally, for each of the 31 significantly predicted behavioral measures, we averaged
the predictive-feature matrices across all other behavioral measures from the same
behavioral domain (or different behavioral domain) and across all brain states. The
top 10% of edges with the highest absolute values in the average predictive-feature
matrices were then selected. For each participant, an aggregate FC value was
computed as the average FC of selected edges with positive predictive-feature
values minus the average FC of selected edges with negative predictive-feature
values. The aggregate FC value was used as the prediction for the participant. The
prediction was compared with the actual behavioral value to compute cross-
behavior prediction performance. We note that scale differences between the
aggregate FC value and behavioral measures were not an issue since Pearson’s
correlation is invariant to scale. We emphasize that the selection procedure did not
include the target behavioral variable, was performed independently for each of the
120 cross-validation folds, and no test data was used for the selection.

Model interpretation. As can be seen, multikernel FC yielded the best prediction
performance. Models estimated for prediction can be challenging to interpret148.
Here, we utilized the approach from Haufe and colleagues (2014), yielding a
419 × 419 predictive-feature matrix for each FC state and each behavioral measure
(Supplemental Methods S4). A positive (or negative) predictive-feature value
indicates that higher FC was associated with predicting greater (or lower) beha-
vioral values.

To compare similarity between a given pair of predictive-feature matrices, we
computed the proportion of network blocks for which the predictive-network
features exhibited consistent directionality (positive or negative) between the pair
of predictive-feature matrices. More specifically, for each predictive-feature matrix,
predictive-feature values were averaged within and between 18 groups comprising
17 cortical networks and subcortical structures (Fig. 1B), yielding an
18 × 18 symmetric matrix. For each of 18 × 18 network blocks and a given pair of
predictive-feature matrices, the predictive-feature values were considered
consistent if they were both positive or both negative. Among all predictive-feature
matrices, 49.3% of network blocks were positive, while 50.7% of network blocks
were negative, so the chance level of the predictive-feature values having the same
sign was 50.01%. The proportion of consistent predictive-network blocks was
computed for each of 120 cross-validation folds. Statistical significance was tested
using the corrected resampled t-test against the chance level of 50.01%146,147.

The predictive-feature matrices were more similar among behavioral measures
within the same behavioral domain (cognition, mental health, and personality)
than across domains. Thus, we averaged the predictive-feature matrices within the
same behavioral domain (cognitive, mental health, and personality) considering
only behavioral measures that were successfully predicted by multikernel FC
regression. This yielded a 419 × 419 predictive-feature matrix for each fMRI state
and each behavioral domain.

Statistical significance of the predictive-feature values was tested using a
permutation test (2000 permutations). To limit the number of multiple
comparisons, tests were performed for each within-network and between-network
block by averaging predictive-feature values within and between 18 networks
(Fig. 8B, C). We corrected for multiple comparisons using FDR (q < 0.05).

Multiple-comparison correction. We performed FDR correction (q < 0.05) on all
statistical tests that did not involve predictive-feature matrices to determine which
behaviors were significantly predicted and would therefore be utilized in sub-
sequent analyses. There was a total of 105 tests and the p-value threshold was 0.041.
A separate FDR correction (q < 0.05) was performed on all tests involving
predictive-network features. There was a total of 4149 tests and the p-value
threshold was 0.029. FDR correction was also performed separately for Supple-
mentary Table 4 and Supplementary Table 9. Supplementary Table 10 provides
more details about the statistical tests performed. When reporting p-values, the
nominal p-values were reported.

Control analyses. Because the multikernel model contained more input data
compared with the single-kernel models, we explored the potential effect of the
amount of input data on model performance. To this end, we performed a single-
kernel ridge regression on a general functional connectivity matrix created by
averaging the functional connectivity across all fMRI conditions (rest+MID+N-
back+ SST) to predict behaviors, which we called Mean FC. We then compared
the performance of the Mean FC model with the best single-kernel fMRI model
(e.g., N-back only) and the multikernel model. To assess the impact of age and sex
on model performance, we performed kernel ridge regression to predict behaviors
after regressing out age and sex, in addition to head motion (mean FD and
DVARS).

In another set of three analyses, we investigated whether our results are robust
to the QC criteria. In the first analysis, we used the same QC thresholds as the
original preprocessing, but applied a bandstop filter (0.31–0.43 Hz) to remove
respiratory pseudomotion from the motion estimates149–151, yielding 21.7% more
participants (N= 2262). In the second analysis, in addition to respiratory
pseudomotion filtering, we loosened the motion thresholds, so only frames with

FD > 0.5 and DVARS > 75 were censored. We also loosened the boundary-based
registration (BBR) QC criterion, so only runs with BBR cost >0.7 were discarded.
The resulting sample size was doubled (N= 3744). In the third analysis, we
performed stratified subsampling to obtain subsets of participants from the main
sample (N= 1858) that matched the age, sex, household income, racial
composition, and behavioral distributions of the full ABCD sample. This procedure
was performed for each behavioral measure separately. Briefly, we divided each
characteristic (age, sex, household income, racial composition, and behavioral
distribution) into a number of bins. There were 2 bins for sexes, 5 bins for racial
groups, and 4 bins for income levels. In the case of age and behavioral measures,
the number of bins varied, depending on the behavioral measures. On average,
there were 2.14 bins for age (min= 2, max= 3, median= 2) and 3.64 bins for
behavioral measures (min= 3, max= 7, median= 3). For example, if there were 2
bins for age and 3 bins for a particular behavioral measure, then there were 2
(sex) × 5 (race) × 4 (income) × 2 (age) × 3 (behavior)= 240 bins. The target
percentage of participants in a bin was the percentage of participants from the full
sample in the bin. We also set a target number of participants M. For example,
suppose M= 1000, target percentage for a bin is 12% and there were 200 (of the
1858) participants in the bin. Then, we randomly selected 12% × 1000= 120
participants out of the 200 participants. The procedure was repeated for all bins.
However, the procedure might fail if M was too big, in which case, the target
number of participants for a bin was much greater than the subset of 1858
participants in the bin. In this scenario, we altered the number of bins and/or
change the target M. For all three analyses, we compared the predictive-feature
matrices with the matrices from the main analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The ABCD data are publicly available via the NIMH Data Archive (NDA). Processed
data from this study (including the predictive-network features and FC matrices) have
been uploaded to the NDA. Researchers with access to the ABCD data will be able to
download the data: https://nda.nih.gov/study.html?id=824. Source data are provided
with paper. Source data are provided with this paper.

Code availability
Preprocessing utilized previously published pipelines:16,143 https://github.com/
ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/CBIG_fMRI_
Preproc2016 Preprocessing code specific to this study can be found here: https://github.
com/ThomasYeoLab/ABCD_scripts Analysis code specific to this study was deposited in
Zenodo database under accession code 5908961. The code was reviewed by one co-
author (L.Q.R.O.) to reduce the chance of coding errors. The software dependencies were
Freesurfer (5.3.0), FSL (5.0.8), MATLAB (2018b), and Python (3.6). From time to time,
the code might be updated. The most updated version of the code can be found on
GitHub (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_
phenotypes/ChenTam2022_TRBPC)
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