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Interactive single-cell data analysis using Cellar
Euxhen Hasanaj 1, Jingtao Wang2, Arjun Sarathi3, Jun Ding 2✉ & Ziv Bar-Joseph 1,3✉

Cell type assignment is a major challenge for all types of high throughput single cell data. In

many cases such assignment requires the repeated manual use of external and com-

plementary data sources. To improve the ability to uniformly assign cell types across large

consortia, platforms and modalities, we developed Cellar, a software tool that provides

interactive support to all the different steps involved in the assignment and dataset com-

parison process. We discuss the different methods implemented by Cellar, how these can be

used with different data types, how to combine complementary data types and how to

analyze and visualize spatial data. We demonstrate the advantages of Cellar by using it to

annotate several HuBMAP datasets from multi-omics single-cell sequencing and spatial

proteomics studies. Cellar is open-source and includes several annotated HuBMAP datasets.
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A number of large consortia including the Human Bio-
Molecular Atlas Program (HuBMAP)1 are focused on
profiling tissues, organs, and the entire human body at the

single-cell level. These consortiums use several different tech-
nologies for studying the molecular composition of single cells
including single-cell RNA Sequencing, single-cell ATAC
Sequencing2, single-cell spatial transcriptomics3, and single-cell
spatial proteomics4. In addition to these large consortia, indivi-
dual labs also generate data using some or all of these modalities.

Over the last few years, a number of methods have been
developed for the assignment of cell types in single-cell data5–10.
In most cases, different groups from the same consortia, and even
the same group when processing multiple types of single-cell data,
rely on a different set of tools. This makes it hard to integrate and
compare data from these groups since researchers often use dif-
ferent assignment techniques, markers, and even cell-type naming
conventions.

To enable large-scale collaborations, integration, and compar-
isons across many different single-cell omics platforms and
modalities, we developed Cellar, an interactive and graphical cell-
type assignment web server. Cellar implements a comprehensive
set of methods, both existing and new, which cover all steps
involved in the cell-type assignment process. These include
methods for dimensionality reduction and representation, clus-
tering, reference-based alignment, identification of differentially
expressed genes, intersection with functional and marker sets,
tools for managing sessions and exporting results, as well as a
dual mode for analyzing and comparing two datasets simulta-
neously. As cell-type assignment often requires user input in the
form of domain knowledge, Cellar adopts a semi-automatic
solution that permits users to intervene and modify each pro-
cessing step as needed. To enable such interactive analysis, Cellar
provides methods for semi-supervised clustering and projection
of expression clusters in spatial single-cell images. Figure 1 pro-
vides an overview of Cellar’s workflow. Cellar was tested by
members of HuBMAP over the last year and used to annotate
several single-cell datasets from different organs, platforms, and
modalities.

Results
Analysis of scRNA-seq data. We used Cellar to analyze 11
HuBMAP seq datasets (10x genomics) with an average of 7500
cells from five different tissues (Kidney, Heart, Spleen, Thymus,
Lymph node)11, all of which are available in Cellar. Cellar first
performs quality control by removing unreliable cells and low-
count genes. Additional normalization and scaling is applied
based on user criteria. Cellar then clusters a lower-dimensional
representation of the data and further reduces the dimension for
visualization purposes. We demonstrate this basic pipeline by
analyzing a spleen dataset with 5273 cells (Cellar ID: HBMP3-
spleen-CC2). We used PCA, followed by UMAP12 for dimen-
sionality reduction and the Leiden algorithm13 for clustering to
obtain a total of 16 clusters (Supplementary Fig. 1a). For each
cluster, Cellar identified top differential genes. Using the top 500
differential genes, functional enrichment analysis (GO, KEGG14,
MSigDB15) identified cluster 0 as B-cells (for example, “B-Cell
Activation” (q value= 0) and “B-Cell Receptor Signaling Path-
way” (q value= 0) were the top categories for GO and KEGG,
respectively). This assignment is further supported by visualizing
the concurrent expression of two known B-cell markers CD79A
and TNFRSF13C16.

In addition to unsupervised clustering, Cellar also implements
methods for supervised assignment based on a reference dataset.
These can directly utilize the dual mode and other methods
implemented in Cellar. For example, this form of assignment can

be used in conjunction with Cellar’s semi-supervised clustering
option to correct noise during the label transfer process. To
illustrate such use, we applied Scanpy’s Ingest function17, which is
available in Cellar, to integrate two expert-annotated spleen
datasets (Cellar IDs: HBMP2-spleen-2 and HBMP3-spleen-CC3).
We used HBMP3-CC3 as ground truth and transferred labels
from it to HBMP2-2. We then compared the results of label
transfer with the ground truth annotations for HBMP2-2 and
observed an adjusted rand score (ARI) of 0.39. In contrast,
running Leiden clustering on HBMP2-2 leads to a much lower
ARI score of 0.27. We then refined the results of label transfer by
using a semi-supervised adaptation of Leiden where the least
noisy clusters were chosen as constraints and not allowed to
change during the iterations of the algorithm. This led to a much
better ARI score of 0.66 demonstrating the benefits of label
transfer and semi-supervised clustering. These results are shown
in Supplementary Fig. 2.

Analysis of scATAC-seq data. While scRNA-Seq is currently the
most widely used data modality, several other molecular data
types are also being profiled at the single-cell level. To illustrate
the use of Cellar for such data we used it to annotate scATAC-
seq2. Cellar can handle scATAC-seq data in two different ways:
cell-by-gene and cell-by-cistopic. The former is based on the open
chromatin accessibility associated with the nearby region of all
genes while the latter relies on cisTopic10 which uses Latent
Dirichlet Allocation18 to model cis-regulatory topics. The
resulting cell-by-gene or cell-by-cistopic matrix is used for
downstream analysis such as visualization and clustering. We
used Cellar to annotate a scATAC-seq dataset profiling Peripheral
Blood Mononuclear Cells19 (Cellar ID: PBMC 10k Cell-By-Gene)
using the cell-by-gene representation. Results are presented in
Supplementary Fig. 3. DE analysis for clusters 0 and 4 identified
the KLRD1 marker for natural killer (NK) cells20.

Analysis of spatial transcriptomics data (CODEX). In addition
to sequencing assays, recent imaging assays can also provide
information on the expression of genes or proteins at the single-
cell level. Cellar can be used to analyze such data by providing a
side-by-side view of the expression clusters and spatial organi-
zation. To illustrate this, we analyzed CO-Detection by indEXing
(CODEX)21 spatial proteomics data. We used a lymph node
dataset that contains 46,840 cells (Cellar ID: 19-003 lymph node
R2). The clustering results are shown in Fig. 2 along with the
corresponding tile for these cells with the projected cluster
annotations. Given the small number of proteins profiled in this
dataset (19), not all clusters could be assigned to unique types,
though several have been assigned based on DE gene analysis in
Cellar. Cellar matches the cell colors in the clustering and spatial
images, making it easier to identify specific organizational prin-
ciples and their relationship to the profiled cell types. The spatial
tile in Fig. 2 shows that B cells cluster tightly together and are
surrounded by T cells and other cell types in the lymph. The
B-Cell clusters also contain a subset of proliferating cells.

Joint analysis of multiple modalities. Finally, we used Cellar to
jointly analyze data from two different modalities. For this, we
used a SNARE-seq22 kidney dataset which profiled both the
transcriptome and chromatin accessibility of 31,758 cells (Cellar
IDs: kidney SNARE ATAC/RNA 20201005). Here we first ran
cisTopic on the chromatin modality and determine cluster
assignments by running Leiden on the inferred cis-regulatory
topics (Fig. 3a). We use these labels to visualize the expression
data in Fig. 3b. This can be easily achieved using Cellar’s dual
mode, which allows a cell ID-based label transfer from one
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Fig. 1 Cellar’s workflow. a–c Preprocessing (optional). Cellar can filter cells based on the number of expressed genes, and genes which are rarely
expressed. Next the input is normalized. d, e Dimensionality reduction and visualization. Several methods for dimensionality reduction are implemented as
part of Cellar. The reduced data is then visualized by running another (possibly the same) dimensionality reduction method. f–i Clustering. Cellar supports
several unsupervised and semi-supervised clustering methods. It also implements supervised label transfer methods. j–l Cell-type assignment. Cellar
enables the use of several functional annotation databases for the assignment of cell types.
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modality to the other. Cellar identified differential genes, and we
used these to map cell types. For example, cluster 1 was assigned
based on both known markers (SLC5A12, p-value= 0) and GO
term analysis (“Apical Plasma Membrane”, p value= 1e-4),
which signify the presence of Proximal Tubule Cells23,24.

Discussion
To conclude, Cellar is an easy-to-use, interactive, and compre-
hensive software tool for the assignment of cell types in single-cell

studies. Cellar is written in Python using the Dash framework and
includes efficient operations and data structures for dealing with
large datasets. These include using the Annotated Data object17 in
memory-mapping mode which allows the analysis of large data-
sets by using little system memory, approximate nearest neigh-
bors based on faiss25 to speed up neighbors graph construction
for Leiden clustering, as well as several interactive components for
maximum flexibility. Cellar supports several types of molecular
sequencing and imaging data and implements several popular

0
1
2 lymphocyte of B lineage
3 endothelial cell
4 CD4-positive T cell
5
6 cytotoxic T cell
7 proliferating T cell
8
9

a b

UMAP 1

U
M

A
P 

2

Fig. 2 CODEX data analysis in Cellar. (ID: 19-003 lymph node R2) (a) UMAP visual representation of a lymph node CODEX dataset with 46,840 cells,
clustered via Leiden. b Projection of the assignments on the spatial CODEX image that can be visualized side by side in Cellar. Cluster assignments were
copied from (a). Not all clusters could be assigned to unique cell types given that only a few ten protein levels are measured, though several have been
assigned based on differential gene analysis in Cellar. The B-Cell clusters are surrounded by T-cells and other cells types in the lymph. The B cell clusters
also contain a subset of proliferating cells.
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Fig. 3 SNARE-seq data analysis in Cellar. (IDs: kidney SNARE ATAC/RNA 20201005) (a) UMAP plot of the chromatin modality for the kidney SNARE-
seq dataset with 31,758 cells. First, we obtain a cell-by-cistopic matrix by running cisTopic which is then used to define clusters via Leiden clustering.
b Corresponding UMAP plot of the expression matrix with cluster assignments copied from a. Cellar’s dual mode allows a cell ID based label transfer from
one modality to the other.
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methods for visualization, clustering, and analysis. Cellar has
already been used to annotate single-cell data from multiple
platforms and tissues. These annotated datasets (mostly from
HuBMAP) can serve as a reference for transferring labels to other
datasets. For tissues not currently supported by our HuBMAP
annotated datasets, Cellar provides several external functional
enrichment datasets that, combined with the user’s knowledge
about specific markers, help in assignment decisions. We hope
that Cellar will improve the accuracy and ease of cell-type
assignment in single-cell studies. A web server running Cellar can
be accessed at https://cellar.cmu.hubmapconsortium.org/app/
cellar.

Methods
Complete details on all the methods used to process, analyze, visualize and inte-
grate the data are available in Supporting Methods.

Preprocessing. Preprocessing of the data was done via scanpy17. For all scRNA-
seq data we filtered cells with less than 50 or more than 3000 expressed genes. We
also filtered genes expressed in less than 50 or more than 3000 cells. The data
matrix was then CPM total count normalized (total count= 1e5) and log1p-
transformed. Finally, we scale the data down to unit variance and zero-mean.

The PBMC scATAC-seq dataset was converted to a gene activity score matrix
by summing peaks which intersect the nearby region of all genes as listed in
GENCODE v3526. The gene ranges were extended with 5000 base pairs
downstream and 1000 base pairs upstream. The resulting cell by gene matrix was
then normalized and log1p-transformed as explained above.

We did not normalize any of the CODEX data.

Clustering, visualization, and functional analysis. scRNA-seq and gene activity
matrices were reduced to a 40 dimensional space via PCA. We used the PCA
implementation of the scikit-learn package with a randomized SVD solver. The
lymph node CODEX data was reduced via UMAP12 with 10 dimensions using the
Python package umap-learn. The embeddings were then used to construct an
approximate neighbors graph using faiss25 with 15 neighbors, and then clustered
using the Leiden community detection algorithm for graphs13 with a default
resolution of 1. Only for the lymph node CODEX data we used a smaller resolution
of 0.1 in order to obtain a reasonable number of clusters. All data was reduced from
these embeddings to 2 dimensions using UMAP for visualization purposes.

Differential gene expression analysis was performed with diffxpy (https://
github.com/theislab/diffxpy) by using a Welch’s t-test. The 500 DE genes with the
greatest fold-change values were selected for enrichment analysis via the package
gseapy (https://github.com/zqfang/GSEApy) which uses the GSEA method27. Only
for the CODEX data, where the number of channels was small (<20), we used all
differentially expressed proteins found.

Label transfer and semi-supervised clustering. Label transfer between HBMP2-
spleen-2 and HBMP3-spleen-CC3 was performed using scanpy’s Ingest (https://
scanpy.readthedocs.io/en/stable/generated/scanpy.tl.ingest.html). Ingest projects
the query dataset to a latent space fit on reference data using PCA with 40 com-
ponents. We only consider overlapping genes between the two datasets. Following
label transfer, we use semi-supervised Leiden (resolution= 1) to refine the cluster
assignments, where clusters 0, 4, 9, 10 were “frozen” (see Supplementary Fig. 2c for
a scatter plot of the aforementioned clusters). The ARI score was computed on
ground truth annotations assigned by a human expert. For the unconstrained
version of Leiden used in the experiment we also set a default resolution of 1.

Joint analysis and cisTopic. The SNARE-seq data was formed by combining four
separate kidney SNARE-seq datasets. We removed cells for which no annotations
were found. The chromatin modality was processed using cisTopic10 to discover 40
topics. This number was selected via cisTopic’s log-likelihood model selection
method. These topics were then treated as a reduced version of the data and used
for clustering and visualization in the same way as described earlier for scRNA-
seq data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data analyzed in this study are available for download from the application’s web
server as well as the HuBMAP portal at https://portal.hubmapconsortium.org with
access codes:
HBM468.VQQQ.574 [https://portal.hubmapconsortium.org/browse/dataset/

14946a8eb12f2d787302f818b72fdc4e], HBM536.GZQR.922 [https://portal.
hubmapconsortium.org/browse/dataset/35a639b983ff85728bdb3cbe0eac360a],

HBM279.SLFX.335 [https://portal.hubmapconsortium.org/browse/dataset/
3f678ab5cd7ed086ec0d2d4468fc5094], HBM695.NCKX.893 [https://portal.
hubmapconsortium.org/browse/dataset/800f1703d81373c58ca5ca0b76e52d79],
HBM684.ZPCL.638 [https://portal.hubmapconsortium.org/browse/dataset/
91a46cd9228c04e77df05536a036824b], HBM595.QDQD.996 [https://portal.
hubmapconsortium.org/browse/dataset/6ab211e1ca46633ceaeba0ae6f385538],
HBM327.JDHF.334 [https://portal.hubmapconsortium.org/browse/dataset/
bafcb8882be3c213101755a0468f3620], HBM476.NNFJ.275 [https://portal.
hubmapconsortium.org/browse/dataset/4a682d67bea887e5bb1ade2bd137489e],
HBM638.GFJG.839 [https://portal.hubmapconsortium.org/browse/dataset/
9ad464b54a0087db94bfca405d4ad968], HBM894.XCHW.375 [https://portal.
hubmapconsortium.org/browse/dataset/851d76f833dc8dc3debb8eb2d73d543b],
HBM437.KPNV.984 https://portal.hubmapconsortium.org/browse/dataset/
6d094503393d6d41b6193c9d10e33d9e, HBM439.NZNH.823 [https://portal.
hubmapconsortium.org/browse/dataset/65b92f0191dc73e9470f46ceb217054d]. We also
use public data from the 10xGenomics website with the id atac_v1_pbmc_10k [https://
www.10xgenomics.com/resources/datasets/10-k-peripheral-blood-mononuclear-cells-
pbm-cs-from-a-healthy-donor-1-standard-1-1-0]. See Supplementary Table 2 for a full
list of access codes and IDs.

Code availability
Code is available from the GitHub repository: https://github.com/euxhenh/cellar/28. Full
documentation is available at https://euxhenh.github.io/cellar/.
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