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Anti-drude metal of bosons
Guido Masella 1, Nikolay V. Prokof’ev 1,2 & Guido Pupillo 1✉

In the absence of frustration, interacting bosons in their ground state in one or two dimen-

sions exist either in the superfluid or insulating phases. Superfluidity corresponds to fric-

tionless flow of the matter field, and in optical conductivity is revealed through a distinct δ-

functional peak at zero frequency with the amplitude known as the Drude weight. This

characteristic low-frequency feature is instead absent in insulating phases, defined by zero

static optical conductivity. Here we demonstrate that bosonic particles in disordered one

dimensional chains can also exist in a conducting, non-superfluid, phase when their hopping

is of the dipolar type, often viewed as short-ranged in one dimension. This phase is char-

acterized by finite static optical conductivity, followed by a broad anti-Drude peak at finite

frequencies. Off-diagonal correlations are also unconventional: they feature an integrable

algebraic decay for arbitrarily large values of disorder. These results do not fit the description

of any known quantum phase, and strongly suggest the existence of an unusual conducting

state of bosonic matter in the ground state.
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Quantum phases of matter are distinguished by their static
and dynamical properties, quantified by correlation
functions. For interacting bosonic matter in one dimen-

sion, the superfluid phase is characterized by a non-integrable
algebraic decay of static one-body (off-diagonal) correlations as a
function of distance and by a δ-functional peak at zero frequency
in the optical conductivity, respectively. The latter is reflecting a
singular response to a weak externally applied field. A strong
enough disorder can induce a quantum phase transition from the
superfluid to an insulating phase, known as the Bose glass1. In
this phase, off-diagonal correlations decay exponentially with
distance and the optical conductivity starts from zero at zero
frequency, reflecting the absence of long-lived collective modes at
low energy. These two phases exhaust the known possibilities for
disordered bosons in one dimension in the absence of frustration,
whereby frustration we understand a situation when the path-
integral representation of quantum statistics in imaginary time is
not sign-positive. In this work, we provide numerical evidence for
the existence, in one-dimensional (d= 1) lattice systems, of a
disorder-induced phase that is neither superfluid nor insulating.
Despite featuring an algebraic decay of off-diagonal correlations,
it has zero superfluid density and its optical conductivity is finite
at zero frequency. The latter is followed by a broad peak at a finite
frequency of the order of the nearest-neighbor hopping energy.
Because of this characteristic “anti-Drude” behavior of optical
conductivity, with finite minimum instead of maximum at zero
frequency, we term this phase an anti-Drude metal of bosons
(aDMB).

The aDMB phase is a result of the interplay between interac-
tions, disorder, and particle hopping, which we choose to be of
the dipolar type. The latter is usually considered as short-ranged
in d= 12. For non-interacting models with short-range hopping,
the disorder is generally expected to localize all wave functions
exponentially (Anderson localization)3. However, recent theore-
tical works have demonstrated that single-particle states can
localize algebraically in the presence of couplings that decay with
distance as a power-law4–8. What happens in strongly interacting
systems remained an open question, and this work provides the
first answers with the discovery of the aDMB ground state.

Dipolar couplings have been already experimentally realized for
internal excitations of cold magnetic atoms9–14, Rydberg excited
atoms15–17, ions18,19, and molecules20. The propagation of exci-
tations with dipolar couplings in the presence of the disorder is
also highly relevant for a variety of solid-state systems, including
nuclear spins21, nitrogen-vacancy centers in diamonds22, or
two-level emitters placed near a photonic crystal waveguide23.

We note that the existence of a metallic bosonic phase has
been suggested previously24–26; e.g., in the context of finite-
temperature strange metal behavior of high-temperature
superconductors25,27 and as a possible ground state in lattice
models with multi-particle interactions26,28,29. However, up to
date, the existence of a metallic phase of bosons has not been
confirmed by exact methods in any physical system. Since fru-
strated spin systems featuring a variety of spin-liquid phases can
be always reformulated in terms of strongly interacting bosons,
we exclude frustrated models from this discussion.

Results
We consider the following Hamiltonian for hard-core bosons
confined to one-dimensional lattices

H ¼ �t∑
i<j

a3

jrijj3
byi bj þH:c:
h i

þ∑
i
ϵini; ðni ≤ 1Þ: ð1Þ

We employ standard notations for bosonic creation and
annihilation operators on site i and occupation numbers,

ni ¼ byi bi, that cannot exceed unity in the allowed Fock states.
The nearest-neighbor hopping amplitude, t, and the lattice spa-
cing, a, are taken as units of energy and length, respectively.
Hopping amplitudes between sites i and j decay with the distance
between them as r�3ij , and ϵi are random on-site energies uni-
formly distributed between −W and W. In spin language, Eq. (1)
is equivalent to an XY Hamiltonian with dipolar couplings,
which, in the absence of disorder, can be realized in experiments
with cold polar molecules20, trapped ions18,19, and Rydberg
atoms15,16,30 (the latter can also be disordered17). Recent theo-
retical works provide strong evidence that Eq. (1) supports a
many-body localized (MBL) phase at finite energy20,31–34. Our
result then implies that the MBL transition out of aDMB takes
place as the temperature is increased. In a system with an upper
bound on the maximal energy per particle, this result is not that
surprising35.

In the following, we determine the ground-state quantum
phases of Eq. (1) using large-scale path-integral quantum Monte
Carlo simulations based on the Worm algorithm36. Without loss
of generality, we focus on the particle density ρ= 1/2.

For nearest-neighbor hopping only, one-dimensional hard-core
bosons behave as spinless fermions and bosonic exchange has to
involve all particles in the liquid. A regular system would have
finite superfluid density, ρs, that characterizes the response to a
twisted boundary condition caused by an external vector potential
field. It can be conveniently computed by quantum Monte Carlo
methods, see Methods, through the statistics of winding numbers,
W, using the Pollock–Ceperley relation ρs / hWi237 (see Meth-
ods). However, it is well known that the superfluid density of this
system is immediately suppressed by any finite strength of dis-
order W, due to Anderson localization1. Dipolar hopping changes
this picture entirely, by allowing for pair-wise bosonic exchanges,
somewhat similar to soft-core particles. One then expects super-
fluidity to be robust against weak disorder, and, possibly, undergo
a quantum phase transition to a non-superfluid phase when
disorder exceeds some critical value Wc.

Figure 1 shows numerical results for the mean-square winding
number hW2i as a function of the disorder strength W for

Fig. 1 Mean-square winding numbers. hW2i as a function of the disorder
strength W for lattice sizes L= 64 (blue circles), 96 (orange squares),
128 (green diamonds), 192 (red hexagons), 256 (purple stars). Inset
highlights the area near the phase transition, showing crossing points
between the curves within the interval Wc= 1.00 ± 0.15; the curve
corresponding to the largest size (L= 256) is subtracted from all data for
clarity. Vertical error bars indicate the estimated uncertainty from the
Monte Carlo simulations and disorder-averages.
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different lattice sizes L. Mean-square winding number is expected
to be scale-invariant at a continuous phase transition, regardless
of the system dimension. This allows one to identify the critical
disorder strength Wc where superfluidity is lost by the crossing
point of the hW2i-vs-W curves for different values of L. Figure 1
shows that all sizes larger than L > 64 cross at Wc= 1.00 ± 0.15
(see Inset), signaling the transition from a superfluid phase for
W <Wc to a quantum phase that is not superfluid for W >Wc. In
the following, we focus on characterizing the properties of this
non-superfluid phase with W >Wc by studying its correlation
functions and optical conductivity.

The one-body density matrix Gð‘Þ ¼ hbyi biþ‘i is expected to
show a non-integrable algebraic decay with the distance ℓ for a
one-dimensional superfluid ground state, while in an insulating
phase it is expected to decay exponentially, e.g. in a crystalline
phase or a Bose glass. Figure 2 shows Gð‘Þ for the Hamiltonian
Eq. (1), for chosen values of the disorder strength W. In the

superfluid phase with W= 0.5 <Wc, we observe a slow algebraic
decay of Gð‘Þ, as expected. We find that an initial exponential
decay of Gð‘Þ is followed at large distances ℓ by an algebraic decay
in the non-superfluid phase for W >Wc that is well described by
the power-law dependence Gð‘Þ � 1=‘3. This behavior, which can
be justified using perturbative arguments4, is at odds with known
results for insulating many-body phases with short-range
hopping1, indicating that other physical properties may also be
unconventional. We thus proceed with analyzing the optical
conductivity of the non-superfluid phase at W >Wc.

The optical conductivity σ(ω) relates the current density J to
the strength of an externally applied electric field E as
JðωÞ ¼ σðωÞEðωÞ, with ω the field frequency. We obtain the
optical conductivity σ(ω) within the linear response theory by first
computing the current–current correlation function χð{ωnÞ ¼
hjðτÞjð0Þi{ωn

=L at Matsubara frequencies ωn= 2πnT using the
Worm algorithm, followed by its numerical analytic continuation
(see Methods). Here j is the lattice current operator defined as
j ¼ {t∑i < jrij½byi bj � byj bi�=r3ij.

Figure 3 shows typical examples of the optical conductivity,
averaged over a minimum of 384 disorder realizations, as a
function of frequency for two values of W >Wc deep in the non-
superfluid phase and different lattice sizes L. Consistently with
the absence of superfluidity, the figure shows that the char-
acteristic δ-functional peak at zero frequency peak in σ(ω≃ 0) is
absent. However, the numerical results also show two striking
features: (i) The zero-frequency response is finite and system size-
independent within the (relatively large) error bars; (ii) Unlike in
usual conductors featuring a Drude peak (maximum at ω= 0),
the optical conductivity has a minimum at zero frequency fol-
lowed by a large peak at ω≃ t, indicating strong response at
energies of the order of the nearest-neighbor hopping amplitude.
This peak broadens with increasing W, providing a large
response up to frequencies ω≃ 10t. Our results for the averaged
conductivity demonstrate the existence of a conducting, non-
superfluid phase of bosons in the ground state. This conducting
behavior is not due to well-defined delocalized quasiparticle states
as in a typical Drude-type metal; rather, it is an “anti-Drude
metal”, where the largest response occurs at a small but finite
frequency.

Figure 4a shows selected results for σ(ω) in the aDMB phase for
individual realizations of disorder, i.e., without averaging.
We find that at frequencies ω > t the optical conductivity behavior
is rather robust and sample-to-sample fluctuations are not

Fig. 2 Decay of the disorder-averaged one-body density matrix. Gð‘Þ as a
function of distance ℓ for system sizes L= 64 (blue solid lines), 128 (yellow
dashed lines), and 256 (green dotted lines), and values of the disorder
strength W= 0.5, 4.0, and 8.0 (top to bottom). Data were shown on the
doubly logarithmic scale. The gray dashed line corresponds to a power-law
fit 1/ℓα with α= 3.26(2) of the large distance behavior for L= 256 and
W= 8.0. Vertical error bars indicate the estimated uncertainty from the
Monte Carlo simulations and disorder-averages.

Fig. 3 Disorder-averaged optical conductivity. 〈σ(ω)〉 as a function of the frequency ω for a W= 4 and b W= 6, and for system sizes L= 64 (blue
circles), 128 (orange squares), and 256 (green diamonds). Data in the main plots were shown on the logarithmic scale for the frequency, highlighting
the behavior at small ω. Insets show data on a linear scale. Vertical error bars indicate uncertainty of the extracted optical conductivity as determined by
the analytic continuation procedure.
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substantial. The same cannot be said about the low-frequency
part that wildly fluctuates from sample to sample—whilst some of
the samples are metallic, the majority display an insulating
behavior (the data for individual realizations also have at least an
order of magnitude larger error bars, making low-frequency
results for σ(ω) less reliable). This suggests that static σ might not
be a self-averaging quantity in our system. These fluctuations will
be also reflected in similar fluctuations in experiments.

The discovery of the aDMB phase is particularly surprising as
the dipolar hopping term in Eq. (1) is usually considered to be
short-ranged in one dimension. Nevertheless, it leads to large
delocalized contributions to the current that can be visualized as
follows. The single-particle propagator Gτðr; r0Þ ¼ hbyr0 ðτÞbrð0Þi
encodes information for where a particle/hole injected into the

system at site r can go in time τ (for hard-core bosons points r
and r0 are connected by a trajectory). By setting τ= β/2 and taking
the limit β→∞ we gain insight into the properties of the ground-
state wave function. Since the current operator between distant sites
involves an additional power of distance we multiply Gβ

2
ðr; r0Þ by

jr � r0j to establish a quantitative measure for current contribu-
tions. Figure. 4b visualizes these contributions for a single con-
ducting realization when the initial point ri is chosen from the
condition of maximum for Gβ

2
ðri; riÞ. Data for the corresponding

system of free fermions is presented alongside the bosonic case for
comparison. The figure makes it clear that large current contribu-
tions are present over a wide range of distances of the order of ~L/4.

In summary, we have demonstrated that bosonic particles can
exist in an unusual metallic phase at zero temperature. It emerges
from the interplay between disorder, interactions, and dipolar
hopping that have already been realized in experiments with
Rydberg atoms, cold ions, and polar molecules. These results
open many new research directions. These include investigations
of other metallic phases that can exist in higher dimensions and
possible connections to the experimentally observed “bad metal”
states on the finite-temperature phase diagram of high-
temperature superconductors.

Methods
We perform quantum Monte Carlo simulations of Hamiltonian Eq. (1) in the path-
integral representation in the grand-canonical ensemble using the worm
algorithm36 for system sizes as large as L= 256 and temperatures as low as T/t= 1/
256. At half-filling, we shift disorder realizations to ensue that 〈Wi〉= μ= 0 for
each realization, with μ the chemical potential. The resulting density is then hρi ¼ 1

2
when averaged over the disorder realizations with tiny, i.e. 2.8% for L= 256 and
W= 6.0, sample-to-sample fluctuations.

In the presence of a constant vector potential Eq. (1) is modified by phase factors
in the hopping elements of the form tij ! e{ϕrij . An expansion of the phase factor
up to the second-order in ϕ leads to the current operator for the studied Hamil-
tonian

j ¼ {t∑
i<j

rij
jrijj3

byi bj � byj bi
h i

ð2Þ

along with the addition operator T that is required for a proper definition of the
current–current correlation function (see below)

T ¼ �t∑
i<j

r2ij
jrijj3

byi bj þ byj bi
h i

: ð3Þ

Fig. 4 Overview of individual disorder realizations. a Optical conductivity as a function of frequency for different disorder realizations (the black
continuous line is the average over all 384 disordered samples). b Correlation function jr G

τ¼β
2
ðri; ri þ rÞj dependence on distance r with ri being the location

of the Gβ
2
ðri; riÞ maximum. Data were reported for both the bosonic system (blue circles) and the corresponding system of free fermions (orange squares).

This plot visualizes dominant contributions to the current for a single disorder realization when the particle starts from point ri (see main text and
Methods). In both panels, data were shown for L= β= 64 andW= 6. Vertical error bars in b indicate the estimated uncertainty extracted from the Monte
Carlo simulations.

Fig. 5 Comparison of analytic continuation algorithms on disorder-
averaged data. Disorder-averaged optical conductivity 〈σ(ω)〉 as a function
of the frequency for different analytic continuation algorithms including,
consistent constraints (solid blue), and three different variants of the
maximum entropy method: historic (dashed yellow), classic (dash-dotted
green), and Bryan’s method (dotted red) [see ref. 41]. Data were shown for
L= β= 64 and W= 6. The average is taken over all 384 disordered
samples.
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The superfluid stiffness is, as usual, defined as the response of the free energy F
to a weak externally applied phase ϕ

ϒs ¼ L
∂2FðϕÞ

ϕ

����
ϕ¼0

; ð4Þ

which in quantum Monte Carlo calculations is directly computed as37,38

ϒs ¼
L
β
hW2i; ð5Þ

with W the path winding number. In the case of hopping connecting distant sites,
as in Eq. (1),W can be written asW ¼ N! � N ¼ ∑krk with N⇆ the number of
particle trajectories crossing the hypothetical boundary of the system in a given
direction, and with the sum going over all the hopping elements in a single
worldline configuration of the entire system (here, rk represents the displacement
between the sites connected by the k-th hopping event).

Current–current correlation functions. In the regime of weak field ϕ (linear
response) it is sufficient to look at the current–current correlation function

χð{ωnÞ ¼
hjðτÞjð0Þi{ωn

L
ð6Þ

at Matsubara frequencies ωn= 2πTn (n > 0). We compute it numerically and
perform an analytic continuation procedure to obtain the conductivity σ(ω). Here,

the subscript ıωn denotes that the Fourier transform is taken of the corresponding
correlation function 〈j(τ)j(0)〉 in imaginary time.

Path-integral representation of quantum statistics for the Hamiltonian Eq. (1)
allows one to sample Fourier components of this correlation function directly, and
collect statistics for different Matsubara frequencies by using the estimator
j∑k{rke

{ωnτk j2, where again the sum goes over all hopping transitions on the
system’s worldlines. For zero frequency ωn= 0, this estimator is equivalent to
measuring the winding number squared W2, while for large Matsubara frequencies
it approaches the constant value corresponding to the estimator for T . After
computing statistical averages, we subtract hT i from the data to obtain the
current–current correlation function. To suppress finite-size effects associated with
rare configurations with finite winding numbers, we restrict the sampling of the
correlation function χ(ıωn) to configurations W ¼ 0.

Analytic continuation. Here, we are interested in computing the optical con-
ductivity σ(ω), an observable that can be measured experimentally but is not readily
accessible by numerical techniques. By the dissipation-fluctuation theorem,

χð{ωnÞ ¼ �
2
π

Z 1
0

ω2

ω2
n þ ω2

σðωÞdω: ð7Þ

Finding σ(ω) is thus a standard ill-conditioned inverse problem when small
fluctuations of the input due to statistical noise in the Monte Carlo sampling lead
to large fluctuations in the output results. To solve this problem we use a method of
consistent constraints39,40. It allows us to restore the spectral density σ(ω) from the
corresponding correlation function χ(ıωn).

Fig. 6 Comparison of different analytic continuation algorithms for individual disorder realizations. Optical conductivity σ(ω) in a system with L= 64,
β= 64, and W= 6. Panels a and b correspond each to a different disorder realization. Different lines correspond to different algorithms including,
consistent constraints (solid blue), and three different maxent variants: historic (dashed yellow), classic (dash-dotted green), and Bryan’s method (dotted
red) [see ref. 41].

Fig. 7 Optical conductivity for the nearest-neighbor hopping case. Disorder-averaged optical conductivity 〈σ(ω)〉 as a function of frequency ω for
aW= 4 and bW= 6, for a system with nearest-neighbor only hopping. Data were shown for system sizes L= 64 (blue circles), 128 (orange squares), and
256 (green diamonds). Main plots show data on the logarithmic scale for the frequency, highlighting the behavior for small ω. Insets show data on a
linear scale.
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As a consistency check, we compare our results for the analytic continuation of
our data with a standard implementation41 of the maximum entropy method42.
We note that maxent suffers from numerical instabilities due to small errors on our
data in the Matsubara frequency domain and it is able to find acceptable solutions
only when artificially increasing the errors and using the solutions found with the
method of consistent constraints as the “default model”. The comparison is shown
in Fig. 5 in the case of the disorder-averaged conductivity and in Fig. 6 for single
disorder realizations. Here, three different solutions are shown for maxent (ME),
corresponding to the three different variations of the maximum entropy method
available in the implementation of ref. 41 (historic, classic, and Bryan’s method).
We see that, with the exception of the historic variant, all the solutions are
essentially identical to each other and our solution is accepted by maxent with little
or no modifications.

Conductivity in the nearest-neighbors hopping model. As a further check for
the consistency of the analytic continuation procedure, in Fig. 7 we show the
conductivity in the ground state of a system with short-range, nearest-neighbors
hopping in the presence of disorder described by the Hamiltonian

H ¼ �t ∑
hi;ji

byi bj þH:c:
h i

þ∑
i
ϵini: ð8Þ

For these models, due to the phenomenon of Anderson localization3, we expect
that the system is insulating at every finite disorder strength. From Fig. 7, it is clear
that our method reproduces the expected results, with σ(0)= 0, for example,
disorder strengths W/t= 4, 6.

Disorder-averaged single-particle propagator. The quantity jr � r0jGβ
2
ðr; r0Þ, as

shown in Fig. 4b of the main text, constitutes a qualitative measure for current
contributions and of long-range coherence in the system. Figure. 8 shows the same
quantity averaged over 128 disorder realizations for systems with L= β= 128
and W= 6. The average is carried by choosing, in each realization, the initial
point ri for which Gβ

2
ðri; riÞ is maximum. The figure shows clearly, also by direct

comparison with the same quantity computed for a system of non-interacting
fermions, that in the disorder-averaged picture bosons have much larger current
contributions, especially at large distances.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code for the numerical simulations is available from the corresponding author upon
reasonable request.
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