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A proteogenomic analysis of clear cell renal cell
carcinoma in a Chinese population
Yuanyuan Qu1,2,6, Jinwen Feng 1,6, Xiaohui Wu1,6, Lin Bai1,6, Wenhao Xu1,2,6, Lingli Zhu1,6, Yang Liu 1,

Fujiang Xu 1, Xuan Zhang1, Guojian Yang1, Jiacheng Lv1, Xiuping Chen1, Guo-Hai Shi1,2, Hong-Kai Wang1,2,

Da-Long Cao1,2, Hang Xiang1, Lingling Li1, Subei Tan 1, Hua-Lei Gan2,3, Meng-Hong Sun2,3, Jiange Qiu4,

Hailiang Zhang1,2✉, Jian-Yuan Zhao 1,5✉, Dingwei Ye1,2✉ & Chen Ding 1✉

Clear cell renal cell carcinoma (ccRCC) is a common and aggressive subtype of renal cancer.

Here we conduct a comprehensive proteogenomic analysis of 232 tumor and adjacent non-

tumor tissue pairs from Chinese ccRCC patients. By comparing with tumor adjacent tissues,

we find that ccRCC shows extensive metabolic dysregulation and an enhanced immune

response. Molecular subtyping classifies ccRCC tumors into three subtypes (GP1–3), among

which the most aggressive GP1 exhibits the strongest immune phenotype, increased

metastasis, and metabolic imbalance, linking the multi-omics-derived phenotypes to clinical

outcomes of ccRCC. Nicotinamide N-methyltransferase (NNMT), a one-carbon metabolic

enzyme, is identified as a potential marker of ccRCC and a drug target for GP1. We

demonstrate that NNMT induces DNA-dependent protein kinase catalytic subunit (DNA-

PKcs) homocysteinylation, increases DNA repair, and promotes ccRCC tumor growth. This

study provides insights into the biological underpinnings and prognosis assessment of ccRCC,

revealing targetable metabolic vulnerabilities.
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Renal cell carcinoma (RCC) is among the top 10 malignant
carcinomas1. Clear cell (cc)RCC, accounting for ~75% of
RCC cases, is an aggressive histological RCC subtype.

Various high-throughput genomics studies have revealed global
somatic alteration patterns in ccRCC and their association with
clinical outcomes2–4. Loss of chromosome 3p, resulting in inac-
tivation of various tumor suppressor genes (VHL, PBRM1, BAP1
and SETD2), has been defined as the earliest driver event in
ccRCC2,3. VHL is the substrate recognition component of an E3
ligase complex, regulating HIF1α and HIF2α by ubiquitin-
proteasome system. Loss of VHL leads to the aberrant accumu-
lation of HIF proteins, which in turn results in constitutive
activation of glycolysis and angiogenesis. However, apart from
VHL, function of other hot-spot genes on 3p were not fully
studied, which impede the understanding of the 3p loss in the
ccRCC.

Multiomics strategies encompassing genome and expression
profiling of multiple tumor types have elucidated novel molecular
subtypes and abnormally activated signaling pathways, as well as
potential therapeutic targets5–22. The Cancer Genome Atlas (TCGA)
and Clinical Proteomic Tumor Analysis Consortium (CPTAC) have
published landmark multiomics studies3,7, improving our cognition
of ccRCC. The TCGA study presented the most comprehensive
genomic analysis of ccRCC and demonstrated the association
between aggressive cancers and metabolic reprogramming3. The
CPTAC conducted an integrated proteogenomics analysis in 103
ccRCC cases, which revealed the tumor-specific proteomic/phos-
phoproteomic alterations and the immune signature of ccRCC7.
However, these previous ccRCC multiomics studies were mostly
based on patients in Western populations. More importantly, the
survival differences of RCC patients receiving targeted therapy
between races was reported23. In consideration of the ethnic and
geographic genetic differences between Western and Eastern
populations in ccRCC24,25, comprehensive proteogenomics studies
of ccRCC in Eastern populations are in urgent need. Moreover,
approximately 30% of early stage ccRCC patients eventually develop
recurrence or metastasis, which highlights the necessity and great
potential to explore the underlying molecular features of disease
progression and biomarkers for monitoring in early stage ccRCC
using multiomics data.

Metabolic reprogramming is a cancer hallmark and presents
opportunities for cancer diagnostics, prognostics, and therapeutics26,
which is also observed in ccRCC27. Morphologically, ccRCC cells
are lipid- and glycogen-laden, implicating altered fatty acid and
glucose metabolism in the development of ccRCC. In addition,
metabolic reprogramming in ccRCC was well studied at the levels of
metabolome and transcriptome3,28. The TCGA analysis of ccRCC
highlighted the prognostic values of the transcript levels of metabolic
enzymes3. However, it was reported that transcriptome and meta-
bolome showed discordance28. The recent CPTAC study also
reported the uncoupling of oxidative phosphorylation related
mRNA and protein expression in tumors7. As proteins are the direct
executors of metabolic reaction, these results indicated that it was
necessary to portray the metabolic reprogramming in ccRCC using
proteome data.

In this study, we conduct genomic and proteomic profiling of
232 paired tumor (T) and tumor adjacent (TA) samples of Chi-
nese ccRCC patients with a median follow-up of 85 months
(range, 3–138 months). We find that 3p loss and 12q gain are the
most important arm-level CNA events influence overall survival
(OS) and progression free survival (PFS), respectively. Moreover,
our study reveals two major features of ccRCC tumors, dysre-
gulated metabolism and immune, and corresponding aberrant
transcription factor (TF) activities. Integrated data analysis dis-
closes distinct proteomic subtypes of ccRCC, connecting the
genetic aberrations, proteomic features and clinical outcomes of

ccRCC. Further, we identify NNMT as biomarker for poor
prognosis, and verify that NNMT overexpression mediated
homocysteine metabolism dysregulation is a potential therapeutic
opportunity for renal cell carcinoma.

Results
Proteogenomic landscape of Chinese ccRCC. We collected 232
paired tumor and adjacent non-tumor tissues from Chinese
ccRCC patients (with an age range 17–84) based on strict criteria
(Supplementary Fig. 1a) and conducted proteogenomic analysis
(Fig. 1a). Clinicopathological indicators, including sex, clinical
manifestation, laterality, tumor size, chronic diseases status,
tumor node metastasis (TNM) stage, and International Society of
Urological Pathology (ISUP) grading classification are summar-
ized in Supplementary Data 1. Each tumor/adjacent sample was
checked by an expert pathologist to confirm the sample quality
according to the following standards: (1) histopathologically
defined ccRCC tumors; (2) tumor samples with tumor cell rate
(tumor purity) > 90%; (3) no tumor cells in the adjacent tissues
(Supplementary Fig. 1a). Freshly frozen tissues were used for
proteomics analysis and whole-exome sequencing (WES). WES
was conducted in 224 paired samples; samples from 8 patients
were excluded due to low DNA quality.

WES data of tumor adjacent tissues were used as a reference to
detect genetic variants in ccRCC. The mean sequencing coverage
in the hg38 reference genome was 120.5× for tumor tissues and
68.72× for adjacent tissues (Supplementary Data 1, Supplemen-
tary Fig. 1b). Among the 224 sample pairs, 10,475 non-silent
mutations in 6,875 genes and 1,203 silent mutations were
detected. VHL was the most frequently mutated gene in this
cohort (64.3%), followed by PBRM1 (24.5%), BAP1 (10.7%) and
SETD2 (8.9%) (Fig. 1b), consistent with previous studies2,3,24,25

(Fig. 1c). Interestingly, mutation frequencies of these genes
exhibited ethnic and geographic variations among the East
Asian2,24,29, TCGA3, and European25 cohorts. Specifically, VHL
(45.2–64.3% in East Asian vs. 46.2% in TCGA vs. 73.4% in
European) and SETD2 (8.0–12.2% in East Asian vs. 13.9% in
TCGA vs. 19.1% in European) had the highest mutation
frequency in the European cohort. In contrast, PBRM1
(24.5–34.2% in East Asian vs. 42.1% in TCGA vs. 39.4% in
European), andMTOR (4.5–6.6% in East Asian vs. 9.2% in TCGA
vs. 8.5% in European) had highest mutation frequencies in the
TCGA cohort (Fig. 1c). Mutational spectra revealed that C > T
transversion (27.0%) was the dominant mutation in the Chinese
and TCGA cohorts (Supplementary Fig. 1c). The frequency of
T > A transversions was higher in the Chinese cohort than in the
TCGA cohort (21.0% vs. 10.6%, Supplementary Fig. 1c). When
we decomposed the mutation spectra using the Catalogue of
Somatic Mutations in Cancer (COSMIC) database30, five single-
base substitution (SBS) signatures (SBS1, SBS5, SBS22, SBS40,
SBS52) were detected (Supplementary Fig. 1d). Signatures SBS1,
SBS5, and SBS40 were considered to be correlated with patient
age. SBS22 was associated with exposure to aristolochic acid
(AA), a Chinese herbal ingredient associated with renal injury
and ccRCC carcinogenesis24,25,31, corroborating that AA expo-
sure is a carcinogenic factor for Chinese ccRCC. Moreover,
patients with the AA signature showed higher mutational burden
(t test, p= 0.00028, Supplementary Fig. 1e), but no significant
difference on survival, compared with patients without AA
signature (Supplementary Fig. 1f).

For proteomic data analysis, Spearman’s correlation coefficient
was calculated for all quality control (QC) runs using HEK293T
cell samples (Supplementary Fig. 1g). The average correlation
coefficient of the QC samples was 0.95 (range, 0.82–0.99),
demonstrating consistent stability of the mass spectrometry (MS)
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Fig. 1 Proteogenomic Landscape of Chinese ccRCC. a Schematic representation of the multiomics analyses of ccRCC, including sample preparation,
protein identification, WES, and function verification. b Genomic profile and associated clinical features of 224 ccRCC patients. c Comparison of frequently
mutated genes among Chinese, Japanese, European, and TCGA cohorts. P values derived from two-sided Fisher’s exact test. d Overview of proteomic
profiles of pairwise ccRCC samples. The dashed curves fitted by lasso regression show the distribution of protein identifications. The shading that underlies
the lasso curves denotes the 95% confidence intervals. e The upper Venn diagram shows the overlap of proteins identified in tumors and adjacent normal
tissues. The lower Venn diagram shows that proteins identified in this study cover most of the proteins identified in the CPTAC ccRCC cohort.
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platform. The correlation coefficients of the 232 tumor and
adjacent samples were 0.35–0.89 (mean, 0.78) and 0.71–0.91
(mean, 0.84), respectively (Supplementary Fig. 1h, i). The lower
correlation values among tumor samples indicated a high level of
tumor heterogeneity. We identified 8,119–10,273 proteins in
each sample (Fig. 1d). Significantly more proteins were identified
in tumors (median, 9,608) than in paired adjacent tissues
(median, 8,807) (two-sided paired t test, p < 2.2e-16, Supple-
mentary Fig. 1j), indicating the complexity of tumor micro-
environment. In total, 16,915 proteins were detected in the 232
paired samples (Supplementary Fig. 1k), among which 14,159
proteins were in common between tumor and adjacent tissues,
whereas 1,606 and 1,150 proteins were detected specifically in
tumor and adjacent tissues, respectively (Fig. 1e). When we
compared our data with those of the CPTAC ccRCC study7,
10,581 proteins were found in both cohorts, whereas 6,332 and
774 proteins were detected specifically in the Chinese cohort and
the CPTAC cohort, respectively (Fig. 1e). Proteome quantifica-
tion was conducted using the iBAQ algorithm, followed by
normalization to fraction of total (FOT) as reported
previously32,33 (Supplementary Fig. 1l). In summary, this study
provided a comprehensive landscape of Chinese ccRCC at both
the genomic and the proteomic levels.

Genomic alterations and their proteomic consequences.
Somatic (S)CNAs in Chinese ccRCC were identified using GIS-
TIC. The most frequently arm-level deleted chromosomal regions
in our cohort were 3p (83%), 14q (44%), and 9q (25%), whereas
the most frequently arm-level amplified regions were 5q (49%),
7q (26%), 5p (24%), and 7p (24%) (Fig. 2a, Supplementary
Data 2), which is consistent with previous reports. SCNA profiles
were shown in Supplementary Fig. 2a; 3p 25.1 loss was found in
91% of tumors. We used Cox regression to identify associations
between arm-level CNAs and clinical outcomes (Fig. 2b). Loss of
3p was associated with better survival (hazard ratio [HR]= 0.47;
95% confidence interval [CI], 0.24–0.907; p= 0.021), whereas 9p
loss (HR= 2.2; 95%CI, 1.18–4.02; p= 0.0133), 9q loss (HR= 1.9;
95%CI, 1.01–3.45; p= 0.0472), 14q loss (HR= 1.9; 95%CI,
1.04–3.47; p= 0.0359), and 12q gain (HR= 2.2; 95%CI,
11.1–4.52; p= 0.0256) were associated with poorer survival
(Fig. 2b, Supplementary Data 2). Multivariate Cox regression
analysis of these CNA events showed that 3p loss was the most
significant events associated with overall survival (Supplementary
Data 2, Supplementary Fig. 2b). More interestingly, we found that
3p copy number (CN) was also associated with overall survival in
dosage (Fig. 2c). Based on 3p CN, we divided 3p loss ccRCC into
two groups, low burden (LB) and high burden (HB). LB 3p loss
tumors were significantly enriched in higher TNM stage, com-
paring with HB 3p loss tumors (Fisher’s exact test, p= 0.042,
Supplementary Fig. 2c). Consistently, HB 3p loss tumors had
better OS than LB 3p loss tumors, which also observed in the
TCGA cohort (Fig. 2d). In addition, BAP1 was mutated more
frequently in LB 3p loss tumors than in HB 3p loss tumors
(Fisher’s exact test, p= 0.024), whereas PBRM1 had a sig-
nificantly lower mutation frequency in LB 3p loss tumors than in
HB 3p loss tumors (Fisher’s exact test, p= 0.019, Supplementary
Fig. 2c). This phenomenon was also found in the TCGA dataset
(p < 0.05, Supplementary Data 2).

Genomic alterations that affect gene expression levels at the
same locus are said to act in cis, whereas an impact of another
locus is defined as a trans-effect10,19. Diagonal patterns in Fig. 2e
represent cis-effects of CNAs, and vertical patterns indicate trans-
effects. The CNAs with cis-effect were centered around 3q, 5q,
12p, and 12p, whereas those with trans-effect were centered
around 3p, 3q, 9p, 9q, 14p, and 14q (Fig. 2e). Among CNAs with

a strong trans-effect, 3p CN was negatively correlated with overall
survival (Fig. 2c).

We further investigated the dosage cascade regulation of 3p CN
in 3p loss ccRCC. The results of trans-effect analysis revealed that
67 proteins were positively correlated with 3p CN (Spearman’s
correlation, q < 0.05), converged on complement and coagulation
cascades (Supplementary Fig. 2d, Supplementary Data 2). Mean-
while, 1,343 proteins were negatively correlated with 3p CN,
enriched in pathways including glycolysis, metabolism of lipids
and signaling by receptor tyrosine kinases (Supplementary Fig. 2d,
Supplementary Data 2). Consistently, gene set enrichment
analysis (GSEA) revealed that gene sets related to complement
and coagulation cascades and epithelial mesenchymal transition
(EMT) were enriched in LB 3p loss tumors, and glycolysis/
gluconeogenesis was enriched in HB 3p loss tumors (Fig. 2f). To
further investigate the direct gene targets located at 3p, we
prioritized genes showed significant cis-effect in both this cohort
and the CPTAC cohort at proteome level and evaluated their
prognostic powers (Fig. 2g). Six genes (SLC4A7, PRKCD, CDCP1,
NBEAL2, HIGD1A, and STT3B) showed significant cis-cascade
regulation and correlation with survival (Fig. 2g). High expression
of SLC4A7 (Solute Carrier Family 4 Member 7) was associated
with poor survival in this cohort, which was also observed in the
TCGA cohort at mRNA level (Fig. 2h). SLC4A7, also known as
NBCn1, plays an important role in cellular net acid extrusion and
intracellular pH (pHi) balance. Previous study reported that
expression of SLC4A7 was sensitive to pHi decrease34. We
examined the correlation of SLC4A7 protein expression level with
lactate abundance across 317 cell lines from Cancer Cell Line
Encyclopedia (CCLE)35. The result showed a significant positive
correlation between SLC4A7 level and lactate abundance (Spear-
man’s correlation = 0.38, p= 7e-14, Fig. 2i), indicating the
importance of SLC4A7 to cellular pH homeostasis in tumor cells.

It was noted that 3p loss would lead to enhanced glycolysis
(Fig. 2f, Supplementary Fig. 2d) and more acidic waste product.
Combined with the impaired SLC4A7 expression, 3p loss ccRCC
tumors might have lower pHi. It was reported a decreased pHi
limited the capacities of proliferation, migration, and invasion of
tumors36. Consistently, EMT was enriched in the LB 3p loss
tumors (Fig. 2f). Moreover, we found that the activities of
SMAD3 and SMAD4 were decreased in the HB 3p loss group
than in the LB 3p loss groups (Fig. 2j). Moreover, SMAD3 and
SMAD4 activities, highly correlated with TGF-β signaling and
EMT, were negatively correlated the expressions of epithelial cell-
cell junction markers and positively corelated with the expres-
sions of mesenchymal proteins and migration associated proteins
(Fig. 2k), indicating the latent association of TGF-β–SMAD–EMT
axis in ccRCC. In conclusion, ccRCC with a higher degree of 3p
loss exhibited increased glycolysis and impeded net acid
extrusion, which might result in pHi decreased. The decreased
pHi in tumor cells might result in the suppression of EMT by the
TGF-β–SMAD–EMT axis, which led to good prognosis for
patients (Fig. 2l).

Disease progression-associated Proteogenomic alterations in
ccRCC. To further identify associations between arm-level CNAs
and disease progression, univariate analysis of PFS was performed
by Cox regression method. We found that gains of chromosome
7q, and 12q, losses of 8p, 9p, and 9q were associated with poorer
PFS (Fig. 3a, Supplementary Data 2). The results of Cox regres-
sion multivariate analysis further revealed 12q gain was the most
significant event associated with PFS (Fig. 3b, Supplementary
Data 2).

We identified a cis-cascade of Nucleosome Assembly Protein 1
Like 1 (NAP1L1) at 12q, which was also observed in the CPTAC
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KIRC cohort (Spearman’s correlation < 0.05, Fig. 3c) and the
TCGA cohort (Supplementary Fig. 3a). Moreover, higher expres-
sion of NAP1L1 was associated with shorter PFS in both this
study (log-rank test, p= 0.00047, Fig. 3d) and the TCGA cohort
(Supplementary Fig. 3b). NAP1L1 were reported to promote cell
proliferation by inhibiting the expression of CDKN1C37. Con-
sistently, we observed the negative correlation of NAP1L1 and

CDKN1C in both our cohort and the CPTAC cohort (Fig. 3e). To
further confirm the relationship of NAP1L1 and cell proliferation,
we correlated NAP1L1 expression levels with multi-gene pro-
liferation scores (MGPS)38. The result showed that NAP1L1 levels
were positively correlated with MKI67 expression level and MGPS
(Fig. 3f, Supplementary Fig. 3c, d). In addition, we found high-
proliferation tumors (IHC [immunohistochemistry], MKI67
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positive ≥10%)39 expressed more NAP1L1 than low-proliferation
tumors (IHC, MKI67 positive < 10%) (Fig. 3g). More interestingly,
NAP1L1 levels were positively correlated with levels of multiple
cancer stem cell (CSC) markers (Fig. 3e), indicating high
expression of NAP1L1 might be associated with ccRCC
dedifferentiation. In conclusion, we supposed that 12q gain
increased NAP1L1 expression and further promoted cell prolif-
eration, resulting in rapid progression of disease (Fig. 3h). To
optimize treatment options for these patients, we correlated the
well-established mRNA signatures Angiogenesis, T-effector, and
Myeloid inflammation40 with NAP1L1 levels using TCGA mRNA
data. We found that tumor T-effector scores were positively
correlated with NAP1L1 levels (Supplementary Fig. 3f). Moreover,
we found that tumors with 12q gain had higher T-effector scores
while lower Angiogenesis scores (Supplementary Fig. 3g), indicat-
ing these patients might be more likely to benefit from anti-
angiogenesis combined with immune checkpoint blockade (ICB)
therapy rather than anti-angiogenesis therapy.

Although early stage (stage I&II) ccRCC patients who received
nephrectomy have a high 5-year survival rate of 95%, ~30% of
these patients eventually developed recurrence or metastasis41.
We found that 12q gains were enriched in short PFS group
(n= 38, PFS < 5 years, SP group) compared with long PFS group
(n= 149, PFS ≥ 5 years, LP group) (Fisher’s exact test, p= 0.031,
odds ratio = 3.27) (Fig. 3i). Consistently, NAP1L1 showed higher
expression in the SP group (Supplementary Fig. 3h). GSEA
showed that pathways related to immune response and oncogenic
signaling pathways, such as MTORC1 signaling, and MYC targets
were upregulated in SP group (Fig. 3j, k). On the contrary, cell
adhesion related pathways were upregulated in LP group (Fig. 3j,
k). Pathway scores of MTORC1 signaling and tight junction
showed corresponding differences between SP and LP groups and
significant association with PFS (Fig. 3l). In addition, among
proteins significantly upregulated in SP group (FC > 2, p < 0.05),
20 proteins which could be detected in plasma (annotated by the
human protein atlas [HPA] database42) were significantly
correlated with clinical outcomes (Fig. 3m). We used these 20
proteins to distinguish between SP and LP patients, which
achieved a high accuracy, with the area under the receiver
operating characteristic (AUROC) of 0.87 (Fig. 3n). The
robustness of these proteins for prognostic prediction needs to
be confirmed in further studies.

Proteomic alterations in ccRCC compared to adjacent tissues
revealing tumorigenic changes and biomarker candidates. To
obtain a general insight into the proteomic alterations in ccRCC
tumor tissues compared to adjacent tissues, 7,267 proteins
detected in >25% of the patients were further analyzed (Supple-
mentary Data 3). Principle component analysis (PCA) and
hierarchical clustering analysis revealed a clear distinction

between the proteomes of tumor and adjacent tissues (Fig. 4a,
Supplementary Fig. 4a). PCA distances among tumor tissues were
significantly lower than those among tumor adjacent tissues,
corroborating tumor heterogeneity. In total, 3,187 differentially
expressed proteins (DEPs) were identified in tumor tissues
compared with adjacent tissues (Benjamini–Hochberg-adjusted
p < 0.01, two-sided paired t test, FC > 2), including 1,719 down-
regulated and 1,468 upregulated proteins (Fig. 4b, Supplementary
Data 3). Previous studies revealed that ccRCC originated from the
proximal tubule epithelial cells21,28. We observed that eight
proximal tubule-specific proteins (GGT1, BHMT, LRP2, DPYS,
AGMAT, SLC22A8, SLC22A13, and HRSP12), annotated by the
HPA database42, were significantly downregulated in tumor tis-
sues (Supplementary Fig. 4b), revealing the loss of tissue identity
of ccRCC tumors. In addition, we found that patients with lower
expression of proximal tubule-specific proteins, GGT1 and
BHMT in tumors appeared to have poorer clinical outcomes (log-
rank test, p < 0.05) (Supplementary Fig. 4c).

We performed pathway enrichment analysis of the cellular
process alterations in ccRCC. Tumor-upregulated proteins sig-
nificantly converged on pathways including glycolysis/gluconeogen-
esis (e.g., HK2, PFKP, ALDOA, PGK1), interferon gamma
mediated signaling (e.g., OAS1, FCGR1A, TRIM5, GBP1), immune
response (e.g., IFITM3, CD40, HLA-DMA), antigen processing and
presentation (e.g., CANX, PSME2, B2M), ECM-receptor interaction
(e.g., COL2A1, VWF, LAMA4), NF-κB signaling (e.g., BCL2, LCK,
LYN, NFKB2), HIF-1 signaling (e.g., EGFR, FLT1, HK2, PDK1,
PIK3CD), and PI3K-AKT signaling (e.g., GYS2, ITGA5, PDK1,
PIK3CD, TCR2). Proteins, downregulated in tumor tissues, were
mainly involved in pathways related to kidney functions
(collecting duct acid secretion, and proximal tubule bicarbonate
reclamation), and PPAR signaling (e.g., ACOX2, FABP3, CPT2,
EHHADH, RXRA), citrate cycle (e.g., CS, FH, IDH2, ACO2,
SDHA), oxidative phosphorylation (e.g., ATPs, NDUFABs, NDs),
biosynthesis of amino acids (e.g., DDC, AFMID, PSAT1, GLS), fatty
acid degradation (e.g., HADH, EHHADH, ACAT1), anion
transmembrane transport (e.g., SLC22A6, ABCC2, SLC22A7), and
xenobiotic metabolic process (e.g., EPHX1, UGT1A9, BPHL)
(Fig. 4c).

Kidney is a metabolic organ. As ccRCC is characterized by
aberrant metabolic pathways that control energetics and
biosynthesis, it is important to learn how metabolic bioprocesses
are altered at the proteome level in ccRCC. To this end, we
evaluated the activities of metabolism-related pathways using
single sample (ss)GSEA43 (Supplementary Fig. 4d, Supplementary
Data 3). Glycogen metabolism, and glycolysis were upregulated in
tumor tissues. In contrast, most metabolic pathways, including
tricarboxylic acid (TCA) cycle, oxidative phosphorylation
(OXPHOS), amino acid metabolism, lipids metabolism, one-
carbon metabolism, and metabolism of vitamins and cofactors
were downregulated (Supplementary Fig. 4d). Correspondingly,

Fig. 2 Profiles of CNAs and Effects of CNA on Somatic Mutations, Proteome, and Overall survival. a Frequency of SCNAs. Copy number gains and
losses are indicated in red and blue, respectively. The dotted line indicates the frequency of arm-level CNA events. b, c Cox regression analysis of
significant arm-level CNA events and CN. d Kaplan–Meier curves of OS for patients with different 3p loss burden in the Chinese and TCGA cohorts (two-
sided log-rank test). e Correlations of CNA (x axes) with protein abundance (y axes). Significant (q < 0.01) positive (red) and negative (blue) correlations
are shown. f GSEA of patients with LB 3p loss (n= 93) compared to patients with HB 3p loss (n= 93). NES, normalized enrichment score. g Prioritizing
genes in chromosome 3p. Chromosome 3p gene encoded proteins, with prognostic values (HR > 1, p < 0.05), were annotated by red. h Kaplan–Meier
curves of PFS for patients with different SLC4A7 abundances in the Chinese and TCGA cohorts (two-sided log-rank test). i The correlation between
SLC4A7 protein expression and lactate abundance (two-sided Spearman’s correlation test) (n= 370). j Comparison of SMAD3 and SMAD4 activities
between LB 3p loss group (n= 93) and HB 3p loss group (n= 93). P values are derived from two-sided t test. Boxplots show the median (central line), the
25–75% interquartile range (IQR) (box limits), the ±1.5×IQR (whiskers). k Pathways and proteins, involved in EMT, significantly associated with SMAD3 or
SMAD4 activities. The left panel shows Spearman’s correlation between SMAD3 activities and pathway scores/protein abundances. l Proposed model of
the pH imbalance induced EMT impairment in 3p loss ccRCC.
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only 177 metabolism-related proteins were upregulated in tumor
tissues, comparing with 538 downregulated metabolism-related
proteins (Supplementary Data 3), consistent with previous studies
that ccRCC was characterized by downregulation of most
metabolic bioprocesses32,33.

Previous studies had disclosed the Warburg effect in ccRCC,
which was also observed in our data. The upregulated SLC2A1

(GLUT1) (T/TA= 9.49), HK2 (T/TA= 36.69), PFKP (T/TA=
15.97), PKM (T/TA= 4.08), and LDHA (T/TA= 8.58) suggested
the increased of glucose utilization for lactate fermentation in
ccRCC tumor vs. adjacent tissues (Fig. 4d, Supplementary Fig. 4e).
The “clear cell” morphology was a canonical phenotypic feature
of ccRCC, which was associated with lipid accumulation in the
cytosol. Our proteome data showed decreased levels of enzymes
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involved in β-oxidation (ECHS1, HADH, HADHA, EHHADH,
ACAT1) in ccRCC. In addition, ACLY, a key enzyme of de novo
fatty acid synthesis, was significantly upregulated in ccRCC
tumors (Fig. 4d, Supplementary Fig. 4e). Differences of these
enzymes between tumor and adjacent tissues indicated the
potential mechanism of lipid accumulation and “clear cell”
morphology in ccRCC.

More interestingly, we found distinct one-carbon metabolism
imbalance in ccRCC (Fig. 4d, e, Supplementary Fig. 4e). By
surveying the CPTAC data7, we found that uncoupling of mRNA
and protein level was not only observed in OXPHOS, but also in
one-carbon metabolism (Supplementary Fig. 4f). One-carbon
metabolism, which supports various bioprocesses, including
nucleotide biosynthesis, amino acid homeostasis, epigenetic
maintenance, and redox defense, plays central roles in carcino-
genesis and tumor progression37. Loss of SHMT1 (T/TA= 0.19)
and ALDH1L1 (T/TA= 0.22) would attenuate formate clearance.
Overexpression of MTHFD1L (T/TA= 4.37) and MTHFD2
(T/TA= 6.89, identified in 52 samples) might in turn result in
the increased formate generation (Fig. 4d and Supplementary
Fig. 4e). NNMT (T/TA= 17.37) and DNMT1 (T/TA= 3.97),
upstream enzymes of homocysteine (Hcy) metabolism, were
overexpressed in tumors, leading to enhanced Hcy generation.
Hcy can be removed through catabolic processes via different
enzymes, such as methionine synthase (MTR), betaine-Hcy S-
methyltransferase (BHMT, T/TA= 0.20; BHMT2, T/TA= 0.17),
and cystathionine-beta-synthase38. In tumor tissues, we observed
impairment of the cytosolic one-carbon cycle (ALDH1L,
MTHFD1, and MTHFR) (Fig. 4d and Supplementary Fig. 4e),
limiting generation of CH3-THF, coenzyme of MTR, which was
confirmed by the metabolome data28. Thus, the increased Hcy
production enzymes and decreased Hcy clearance enzymes
indicated the accumulation of Hcy in ccRCC, which was also
observed in the MSK ccRCC metabolite cohort28. To further
confirm this result, we examined the levels of Hcy metabolites in
tumor and adjacent tissues. Hcy was 2.7-fold more concentrated
in ccRCC tumors than in adjacent tissues (two-sided paired t test,
p= 1.9e-13) (Fig. 4f). More excitingly, by investigating the
enzymes involved in formate metabolism, we found that patients
with higher expression of ALDH1L1 and SHMT1 appeared to
have better prognostic outcomes, whereas patients with higher
expression of MTHFD1L appeared to have poorer prognostic
outcomes (log-rank test, p= 0.059, Fig. 4e). As for enzymes
involved in Hcy metabolism, higher expressions of NNMT and
DNMT1 were associated with poorer prognosis, whereas higher
expressions of BHMT and BHMT2 were associated with better
prognosis (log-rank test, p < 0.05, Fig. 4e). Together, our study
interrogated concrete protein expression alterations in one-
carbon metabolism in ccRCC, highlighting the significance of

one-carbon metabolism dysregulation during ccRCC pathogen-
esis and development.

A list of transcription factors are overactivated in most human
cancer cells, which makes them targets for the development of
anticancer drugs44. Among 3,187 DEPs between tumor and
adjacent tissues, we found 49 TFs showed increased expressions
in tumor tissues, and 9 TFs showed decreased expressions. To
further evaluate the differences of transcriptional factor activities
between ccRCC tumor and adjacent tissues, we performed
ssGSEA using TF target genes from the DoRothEA45 as the gene
sets (Supplementary Data 3). We found that STAT1, STAT2,
NKFB2 showed both increased protein expressions and activities
in ccRCC tumors, and HNF4A showed both decreased protein
expressions and activities (Fig. 4g). Higher expressions of STAT1
and STAT2 were associated with poorer survival (Fig. 4h). We
further analyzed the tumor-upregulated target proteins of STAT1
and STAT2, and found these target proteins were mainly
enriched in interferon gamma signaling, and response to immune
(Fig. 4i). The tumor-downregulated target proteins of HNF4A, a
key transcription factor that drives proximal tubule differentia-
tion, were enriched in proximal tubule bicarbonate reclamation,
anion transmembrane transport, and xenobiotic metabolic
process (Fig. 4i).

Deep proteogenomic characterization of ccRCC tumors and
adjacent tissues also provided a powerful dataset to nominate
candidate biomarkers. Using a stringent cutoff for quantitative
difference and consistency (T/TA > 10 in more than 80% of
paired samples), we identified 27 potential biomarkers upregu-
lated in tumor tissues (Fig. 4j). Among the 27 proteins, three
(FCGR1A, ITGAX, and MSR1) are cluster of differentiation (CD)
markers, three (NNMT, FCGR1A, and ALOX5) can be targeted
by FDA-approved drugs, eight (NNMT, CA9, SLC2A3, IL4I1,
INPP5D, PLIN2, ALOX5, and SLC16A3) are metabolism-related
proteins. Among the 26 proteins with IHC staining data in the
HPA dataset, we found that CA9, a common used renal caner
biomarker46,47, showed medium to strong tumor-specific staining
in only 50% renal cancer samples (Fig. 4k). NNMT, PLOD2,
HAPLN3, PLIN2, and SLC16A3 showed medium to strong
tumor-specific staining in more than 90% renal cancer samples,
indicating higher general applicability of these biomarkers
(Fig. 4k). Taken all together, the distinct and consistent
differences between ccRCC tumor and tumor adjacent might
have high potential utility in elucidation of mechanism, early
diagnosis, and prognosis stratification.

Proteomic subtypes of Chinese ccRCC. TNM staging of ccRCC
reflects tumor size, position, lymph node involvement, and
metastasis. ISUP grading of ccRCC is based on tumor differ-
entiation and morphology48. Both TNM staging and ISUP

Fig. 3 Proteomic Alterations in ccRCC Compared to Adjacent Tissues. a Cox regression analysis of significant arm-level CNA events for PFS.
b Kaplan–Meier curves of PFS for patients with or without 12q gain (two-sided log-rank test). c Cis-effect of 12q gain on NAP1L1 in this study and CPTAC
cohort. P values are derived from two-sided Spearman’s correlation test. d Kaplan–Meier curves of PFS for patients with different NAP1L1 abundances (two-
sided log-rank test). e Negative correlations between NAP1L1 and CDKN1C abundances in this study and CPTAC cohort. P values are derived from two-sided
Spearman’s correlation test. f Positive correlations between NAP1L1 abundances and MGPS scores in this study (two-sided Spearman’s correlation test).
g Comparison of NAP1L1 abundances between tumors with different MKI67 IHC results (MKI67 positive ≥ 10%, n= 44; MKI67 positive < 10%, n= 139).
P value is derived from two-sided t test. Boxplots show the median (central line), the 25–75% IQR (box limits), the ±1.5×IQR (whiskers). h Proposed model
explaining the 12q gain-induced disease progression in ccRCC. i Up, 12q gains were enriched in SP group compared with LP group. P value is derived from
two-sided Fisher’s exact test. Down, Kaplan–Meier curves of PFS for SP group and LP group (two-sided log-rank test). j GSEA of SP group patients compared
with LP group patients. NES, normalized enrichment score. k Enrichment plots of MTORC1 signaling in the SP group and tight junction in the LP group.
l Comparison of MTORC1 signaling and tight junction scores between the SP (n= 38) and LP (n= 149) groups and the associations of MTORC1 signaling
and tight junction scores with PFS. P values are derived from two-sided t test. Boxplots show the median (central line), the 25–75% IQR (box limits), the
±1.5×IQR (whiskers). m Heatmap of plasma proteins significantly upregulated in SP group than LP group. Higher expressions of these proteins were
associated with shorter PFS. n The area under the receiver operating characteristic (AUROC) of the 20 plasma proteins predictor.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29577-x

8 NATURE COMMUNICATIONS |         (2022) 13:2052 | https://doi.org/10.1038/s41467-022-29577-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


grading were associated with clinical outcomes in this cohort
(Supplementary Fig. 5a, b). We conducted separate differential
analyses to reveal proteomic differences in different stages and
grades. Compared with stages I&II ccRCC, stages III&IV ccRCC
displayed elevated expression of complement and coagulation
cascades (FGA, PLG), neutrophil degranulation (CEACAM8,
CD177), membrane trafficking (KIF2A, SRC), and translation

(EIF4E, EEF1A1) (Supplementary Fig. 5c, Supplementary Data 4).
Consistently, complement and coagulation cascades, neutrophil
degranulation, membrane trafficking, and translation were
upregulated in high-grade vs. low-grade tumors (Supplementary
Fig. 5d, Supplementary Data 4).

Given the inter-tumoral heterogeneity, it is important to
perform molecular subtyping. We employed consensus
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clustering49 to identify ccRCC proteomic subtypes. ccRCC was
classified into three subtypes, GP1, GP2 and GP3, comprising 55,
99, and 78 cases, respectively (Fig. 5a, Supplementary Fig. 5e, f).
Remarkably, the proteomic subtypes significantly differed in OS
(log-rank test, p < 0.001, Fig. 5b, c) and PFS (log-rank test,
p < 0.001, Supplementary Fig. 5g, h). Among the three subtypes,
GP1 showed a particularly high mortality risk (HR= 7.8; 95% CI,
4.33–14.1; p= 9.23e-12, Supplementary Data 1) and 80% GP1
cases eventually developed progressive disease (Supplementary
Fig. 5g). The results of multivariable analysis after adjusting for
TNM stage and ISUP grade authenticated subtype GP1 as an
independent prognostic factor (HR, 3.15; 95% CI, 1.59–6.21;
p= 9.6e-4; Supplementary Data 1). After patient stratification
according to TNM stage, proteomics subtypes were still
significantly associated with patient survival, regardless of tumor
stage (log-rank test, p < 0.0001), supporting the superior prog-
nostic power of our proteomic subtyping (Fig. 5c, Supplementary
Fig. 5h). To confirm the association between proteomic subtyping
and clinical outcomes, we extracted the 20 most representative
proteins of each proteome subtype in the Chinese ccRCC cohort
to classify CPTAC data7 into three subtypes (Supplementary
Fig. 6a, b). Consistently, CPTAC-GP1 was significantly associated
with poorer survival than CPTAC-GP2 and CPTAC-GP3 (log-
rank test, p= 0.001, Supplementary Fig. 6c), in line with the
survival differences among the three subtypes in the Chinese
cohort (Fig. 5b), indicating the robustness of proteomic subtyping
based on the Chinese ccRCC cohort.

When we separately decomposed the mutation spectra of the
three proteome subtypes, we found that 7 patients in GP1
contained SBS23 (Fig. 5d), which was not found in the overall
mutation signatures. Significant arm-level CNA events varied
among the three subtypes, reflecting profound genomic effects on
the ccRCC proteome. Multiple arm-level CNA events, including
8p loss, 9p loss, 9q loss, 18q loss, 12q gain, and 20q gain, were
aggregated in GP1 (Fisher’s exact test, p < 0.05, Fig. 5a, e),
accounting for 37.3%, 47.1%, 49.0%, 25.5%, 25.4%, and 31.4% of
GP1, respectively. Among these, 9p loss, 9q loss, and 12q gain
were risk factors for survival (Fig. 2b). BAP1 and ABCA13
mutations, which were associated with poor survival (Supple-
mentary Data 2) occurred more frequently in GP1, accounting for
23.5% and 9.8% of GP1, respectively (Fig. 5f). In contrast, PBRM1
mutations, mutually exclusive BAP1 mutations, were enriched in
GP2 (Fisher’s exact test, p= 0.038, Fig. 5f).

We used ESTIMATE50 to deconvolute tumor microenviron-
ment (TME) compositions (Supplementary Fig. 7a) and con-
ducted overrepresentation analysis of elevated proteins in each
subtype (Fig. 5g). In total, 641, 1,838, and 97 proteins were
upregulated in GP1, GP2, and GP3, respectively (Supplementary
Data 5). GP1 was characterized by a high degree of immune
infiltration (Kruskal–Wallis test, p= 7.9e-16, Supplementary

Fig. 7a), as indicated by the enrichment of multiple immune-
associated pathways, including innate immune system, comple-
ment and coagulation cascades, antigen processing-cross pre-
sentation, interferon signaling, and T cell receptor (TCR)
signaling (q < 0.05, Fig. 5g). Consistently, GP1 had the highest
immunosuppression, CD8 cluster, and MHC I antigen-presenting
machinery (APM) scores (Kruskal–Wallis test, p < 0.05, Supple-
mentary Fig. 7a). GP2 displayed high tumor purities
(Kruskal–Wallis test, p < 2.2e-16, Supplementary Fig. 7a) and
increased metabolism-related pathways, including the TCA cycle
and respiratory chain, amino acid metabolism, mitochondrial
translation, lipid metabolism, and glycolysis/gluconeogenesis
(q < 0.05, Fig. 5g). GP3 featured the highest stromal scores
(Kruskal–Wallis test, p < 2.2e-16, Supplementary Fig. 7a), corre-
sponding to upregulation of ECM-related pathways, including
ECM organization, collagen formation, elastic fiber formation,
and focal adhesion (q < 0.05, Fig. 5g). Classification of our
proteome data according to established CPTAC subtyping
signatures7 provided further support for the diverse character-
istics of the proteome subtypes in the Chinese ccRCC cohort.
Specifically, GP1 were mainly CD8+ inflamed tumors, GP2 were
mainly of the metabolic immune-desert subtype, and GP3 were
mainly CD8– inflamed tumors (Supplementary Fig. 7b). The
allocation of CPTAC subtypes in our data was also indicated by
the immune and stromal scores (Supplementary Fig. 7a, c).

Given that GP1 represented the most aggressive ccRCC
subtype, we investigated detailed molecular expression patterns
of GP1 by comparing proteins upregulated in GP1 with those in
GP2 and GP3 (FC > 2, p < 0.05, Fig. 5h). The molecular
characteristics of GP1 tumors were summarized into three
categories: immune, metastasis, and metabolic dysregulation.
Specifically, proteins involved in TCR signaling (e.g., CD8A,
ZAP70, LCK, SYK, PTPRC) and macrophage signatures (e.g.,
ITGAM, MSR1, FCGR1A, TLR2) were significantly upregulated
in GP1. CD163, a marker of tumor-associated macrophages51,52,
was also elevated in GP1 (FC= 2.55, p= 0.001). Additionally,
inflammasome components (PYCARD, CASP1, CASP4, NAIP,
NLRC4, IL18) and inflammation-related molecules (CRP,
ALOX5) were highly expressed in GP1. Correspondingly, GP1
had the highest immunosuppression scores among the three
subtypes (Kruskal–Wallis test, p < 0.0001, Supplementary Fig. 7a).
The metastatic potential of GP1 was reflected by the upregulation
of ECM remodeling (e.g., MMP9, SPARC, PLOD3, P4HB) and
cytoskeleton rearrangement (e.g., VTN, VIM, CFL1, ARPC2).
Moreover, GP1 displayed increased expression of angiogenic
features (e.g., ANGPTL4, EGFR, AAMP) and complement and
coagulation cascade components (e.g., C1, C7, C8, C9, PLG,
SERPINE1), which have been associated with aggravated tumor
invasion53,54. Metabolic dysregulation, including prominent
overactivation of the oxidative pentose phosphate (OxPPP)

Fig. 4 Proteomic Alterations in ccRCC Compared to Adjacent Tissues Reveal Tumorigenic Changes and Biomarker Candidates. a PCA of 7,267 proteins
in 232 paired tumor and adjacent tissue samples. Orange, tumor tissue; purple, tumor adjacent tissue. b Volcano plot showing DEPs (two-sided paired
t test, Benjamini–Hochberg-adjusted p value < 0.01, FC > 2) in tumor and adjacent tissues. Proteins that were significantly overexpressed in tumor/adjacent
tissues are presented with orange/purple filled scatters. c DEPs in tumors and adjacent tissues, and their associated biological pathways. d Dysregulation
of metabolic bioprocesses in ccRCC. Alterations of representative proteins depicted as log2 FC (T/TA) (n= 232). Boxplots show the median (central line),
the 25–75% IQR (box limits), the ±1.5×IQR (whiskers). e, Differentially expressed one-carbon metabolic enzymes between tumor and adjacent tissues
(two-sided t test) and their associations with clinical outcomes (two-sided log-rank test). f Hcy concentrations in tumor and adjacent tissues (n= 24).
P values are derived from two-sided paired t test. Data are shown as mean ± SD. g Transcription factors showed both increased/decreased protein
expressions and activities in ccRCC tumors. h The increased activity of STAT1 and STAT2 in ccRCC and their association with prognosis (two-sided log-
rank test). i Regulatory networks of the TFs and their downstream target proteins. j Abundance fold changes (FCs) for selected highly elevated proteins
annotated with potential clinical utilities (n= 232). Drug (FDA-approved drug target), CD marker, and enzyme were annotated by HPA. Metabolism
(metabolism-related protein) was annotated by Reactome. Boxplots show the median (central line), the 25–75% IQR (box limits), the min–max (whiskers).
k “HPA staining proportions” indicate the proportion of ccRCC sections staining positive for the specific marker in the HPA database.
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pathway (G6PD, PGD) and dysregulation of Hcy metabolism
(NNMT, DNMT1), was another characteristic of GP1 (Supple-
mentary Fig. 7d). In addition, we performed GSEA to screened
out the activated TFs in GP1, by using TF targets as gene sets
(Fig. 5h, i). Moreover, STAT1 and STAT2, which were defined as
ccRCC tumor activated TFs (Fig. 4g), were also significantly
upregulated in GP1 (p < 0.05, Supplementary Fig. 7e). TF

activities of STAT1 and STAT2, inferred by ssGSEA, further
supported this finding (Fig. 5j). As expected, higher STAT1 and
STAT2 activities were associated with poorer survival (Fig. 5k).
As STAT1/2 played important roles in immune responses, we
correlated STAT1/2 activities with immune infiltration in ccRCC.
We found that STAT1/2 activities, particularly STAT1 activity
(Spearman’s correlation, R= 0.78, p < 2.2e-16), were significantly
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correlated with immune scores in ccRCC (Fig. 5l, Supplementary
Fig. 7f), which indicated that activated STAT1 was an essential
cause of high immune infiltration in GP1 tumors. To further
ascertain the upstream triggers of STAT1, we calculated the
correlations between STAT1 activities and cytokine abundances
using CPTAC data (Fig. 5m). We found IFN-γ but not IFN-α/β
was extracellular signal initiator of STAT signaling (Fig. 5m).
Consistently, the defining pathway feature of STAT1/2 target
proteins, upregulated in GP1, was interferon gamma response
(Fig. 5n). The role of STAT1 in ccRCC was further probed by
using cell line perturbation experiments in the Genomics of Drug
Sensitivity in Cancer (GDSC) resource55. We found that higher
STAT1 abundances was correlated with higher drug sensitivity of
Ruxolitinib, a JAK-STAT signaling inhibitor (Fig. 5o).

Since GP1 patients had the poorest prognosis and were
supposed to be assigned into a clinically high-risk category, they
deserved to receive further therapy. As, enzymes, transporters,
TFs, nuclear receptors (NRs), and G protein-coupled receptors
(GPCRs) were common target for drugs, we further screened
therapeutic drug targets in GP1 upregulated proteins based on
protein annotation in HPA (Supplementary Fig. 7g). We
candidated 21 proteins as potential drug target for ccRCC
therapy (Fig. 5p, Supplementary Data 5). STAT1 was the only
targetable TF identified using this strategy. Moreover, NNMT, the
enzyme play an important role in one-carbon metabolism
imbalance in ccRCC, was also identified. In brief, we identified
three novel proteomic subtypes of Chinese ccRCC with distinct
molecular features that connect the proteomic, genomic, and
clinical features of ccRCC.

NNMT promotes cancer cell proliferation through Hcy accu-
mulation. We conducted supervised analysis to identify robust
and representative prognostic proteins, and we anticipated to
screen out drug targets (Fig. 5p). NNMT, an important
enzyme in Hcy metabolism, was overexpressed in ccRCC
tumors (Fig. 6a) and significantly associated with poor prog-
nosis (Fig. 6b). Furthermore, western blotting (Fig. 6c) and
immunohistochemistry (IHC) (Fig. 6d, Supplementary Fig. 8)
confirmed that NNMT was overexpressed in ccRCC. Histori-
cally, ccRCC has been considered resistant to conventional
chemo- and radiotherapy, indicating tolerance to genotoxic
stress. Moreover, ccRCC cells are able to proliferate rapidly in
a nutrient-depleted microenvironment27. Thus, we tested
whether high NNMT expression increased the viability of
ccRCC under various stresses. NNMT overexpression pro-
moted the proliferation of ACHN and 786-O cells and pro-
foundly enhanced cell proliferation during nutritional stress

or genotoxic stress (Fig. 6e, f). Nutritional and genotoxic
stresses induce DNA damage in cells. NNMT overexpression
reduced DNA damage in stressed ACHN, 786-O, and 769-P
cells as evidenced by the levels of γ-H2AX detected using
immunofluorescence staining (Fig. 6g) and western blotting
(Fig. 6h) and by DNA damage detection using the comet assay
(Fig. 6i), in cultured renal cancer cell lines. These results
indicated that NNMT overexpression may contribute to pro-
liferation promotion under stress. NNMT catalyzes methyl
transfer from S-adenosyl methionine (SAM) to nicotinamide
(NAM) and generates S-adenosyl homocysteine (SAH) and
1-methylenicotinamide (1MNA). Increased NNMT in cells
resulted in a decrease in SAM and increases in SAH and
1MNA (Fig. 6j). The level of Hcy, the hydrolysis product of
SAH, was also increased significantly (Fig. 6j). Supplementa-
tion of SAH or Hcy, but not supplementation of 1MNA or a
reduction in SAM through knockdown of MAT, reduced DNA
damage (Fig. 6k) and promoted cell proliferation under stress
(Fig. 6l). Furthermore, blockade of SAH hydrolysis by
knockdown of S-adenosylhomocysteine hydrolase (SAHH,
AHCY) in NNMT-overexpressing cells abrogated the DNA
damage-reducing effect of NNMT (Fig. 6m, n), suggesting that
Hcy, but not SAH, plays a role in the DNA repair- and
proliferation-promoting effects of NNMT.

Lysine homocysteinylation of DNA-PKcs enhances DNA
repair. When present at high levels, intracellular Hcy modifies
protein lysine residues, which results in protein lysine-
homocysteinylation in cells56. We observed increased protein
lysine-homocysteinylation (K-Hcy) levels in NNMT-overexpressing
(Fig. 7a) and SAH-supplemented cultured renal cancer-derived
ACHN, 786-O, 769-P, and A-498 cells (Fig. 7b). Meanwhile, Hcy
(Fig. 4f) and K-Hcy (Fig. 6c) levels were increased in ccRCC tumors
compared to adjacent tissues. In our previous cell-wide proteomics
screen for K-Hcy substrates in HEK293T cells, we observed that
DNA-PKcs, a protein required for the non-homologous end-joining
pathway of DNA repair, was heavily modified by K-Hcy56,57. In
ccRCC tumors, we validated that three different lysine residues
(K122, K712, and K902) were modified by K-Hcy (Fig. 7c), sug-
gesting that K-Hcy regulates DNA-PKcs-mediated DNA repair.
Among the three lysine residues in DNA-PKcs (K122, K712, and
K902) that were modified by homocysteinylation, K122 is located
within the interface between DNA-PKcs and KU70/KU80, while
K712, and K902 are located within the intramolecular interaction
region of DNA-PKcs58 (Fig. 7c). Proteins that physically interact
with methionyl-tRNA synthetase (MARS) are more prone to being
modified and regulated by K-Hcy56. Accordingly, an interaction

Fig. 5 Proteomic Subtypes of ccRCC and Associations with Genetic Features and Clinical Outcomes. a Relative abundances of upregulated proteins in
the three proteomic subtypes and associations of proteomic subtypes with multiple variables, including CPTAC subtype, TNM stage, ISUP grade, status of
progression and genetic features (Fisher’s exact test). b Kaplan–Meier curves of OS for the three subtypes (two-sided log-rank test). c Kaplan–Meier
curves of OS for subtypes GP1 and GP2&3 at different TNM stages (stage I&II vs. III&IV) (two-sided log-rank test). d Relative percentage of each mutation
signatures in the three subtypes. e Ternary plot showing the distribution of significant arm-level events in the three subtypes. f Genes with differential
mutation rates in each subtype (One-sided Fisher’s exact test). g Upregulated pathways enriched in the three subtypes. h Transcription factor activities
significantly upregulated in GP1 compared with GP2&3 by GSEA analysis. i GSEA plot showing the upregulated STAT1 and STAT2 activities of GP1 tumors.
j Comparison of ssGSEA inferred activities of STAT1 and STAT2 among three proteomic subtypes (GP1, n= 55; GP2, n= 99, GP3, n= 78). P values are
derived from Kruskal–Wallis test. Boxplots show the median (central line), the 25–75% IQR (box limits), the ±1.5×IQR (whiskers). k Kaplan–Meier curves
of OS for patients with different STAT1 and STAT2 activities (two-sided log-rank test). l STAT1 activities were significantly correlated with immune scores
(Two-sided Spearman’s correlation test). Shaded region indicates 95% confidence interval for the correlation.m Correlations between STAT1 activities and
cytokine abundances in the CPTAC cohort. n Left panel showing the IFN-γ-induced STAT signaling in GP1 ccRCC tumors. Right panel showing Cluster
diagram representing pathways enriched by significantly upregulated STAT1/2 targets in GP1 using Metascape (https://metascape.org/). The top 5
clusters by p value are highlighted. o STAT1 protein levels are correlated with response to Ruxolitinib across ccRCC cell lines from the GDSC2 (two-sided
Pearson’s correlation test). p Drug target candidates for ccRCC. Left, HPA annotations. Middle, protein abundance. Right, HR for OS of each protein, error
bars indicates 95% confidence interval for HR (tumor samples, n= 232).
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between DNA-PKcs and MARS was confirmed by co-
immunoprecipitation assays using either exogenous DNA-PKcs
and MARS in ACHN and 769-P cells (Supplementary Fig. 9a), or
endogenous DNA-PKcs and MARS in 786-O cells (Fig. 7d). Ele-
vated NNMT, SAH, Hcy, or MARS levels led to dose-dependent
increases of DNA-PKcs homocysteinylation in ACHN and 769-P
cells (Supplementary Fig. 9b–e). These results confirmed that DNA-

PKcs was subject to MARS-mediated K-Hcy modification.
Increased NNMT expression resulted in the activation of DNA-
PKcs as indicated by increased phosphorylation of DNA-PKcs and
its downstream target protein p53 (at Ser15) in ACHN and 769-P
cells (Fig. 7e). Moreover, supplementation of either SAH or Hcy or
overexpression of MARS induced elevated K-Hcy level of DNA-
PKcs and activated the DNA-PKcs pathway in ACHN and 769-P
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cells (Supplementary Fig. 9f–h). In contrast, reducing K-Hcy
modification through knockdown of NNMT, SAHH, or MARS
inhibited DNA-PKcs activity in ACHN and 769-P cells (Supple-
mentary Fig. 9i–k). Furthermore, phosphorylation levels of DNA-
PKcs and p53 were markedly increased in ccRCC tumors vs.
adjacent tissues (Fig. 6c). These results were consistent with the
comet assay results, which revealed that compared with adjacent
tissues, tumors exhibited decreased DNA damage (Fig. 7f) and
reduced γ-H2AX levels (Fig. 6c). The results also indicated that
DNA-PKcs is inactivated in ccRCC tumor adjacent tissues and that
NNMT-induced hyper lysine-homocysteinylation might promote
ccRCC by activating DNA-PKcs.

Lysine-homocysteinylation facilitates the formation of DNA-
PKcs complex. We next investigated the mechanism by which
lysine-homocysteinylation activates DNA-PKcs. DNA-PKcs–KU70/
KU80 interaction was significantly enhanced by increased cellular
K-Hcy levels induced by NNMT overexpression in ACHN and 769-
P cells (Fig. 7g, h). As a result, the activity of DNA-PKcs was
enhanced in NNMT-overexpressing cells as determined by mon-
itoring its kinase activity in phosphorylating its substrate p53
in vitro (Fig. 7i) and measuring ADP formation in an ADP-Glo-
DNA-PK assay (Fig. 7j). We validated that at increased levels,
K-Hcy activates DNA-PKcs, as determined by adding homocysteine
thiolactone (HTL) to the in vitro DNA-PKcs assay (Fig. 7k) and
measuring intracellular ADP formation in an ADP-Glo-DNA-PK
assay (Fig. 7l). Moreover, to mimic the bulky side chain effects of
K-Hcy56, we created two mutant DNA-PKcs constructs in which
either Lys122 within the KU70/KU80-binding interface or all three
modifiable lysine residues were mutated to tryptophan (“KW” and
“3KW” constructs, respectively). Relative to wild-type DNA-PKcs,
the mutant DNA-PKcs showed increased binding affinity to KU70/
KU80 (Fig. 7m, n) and enhanced DNA-PKcs activity, as determined
by an in vitro DNA-PKcs assay (Fig. 7o). In addition, increased
NNMT expression in 786-O and ACHN promoted xenograft
tumor growth in nude mice, especially in IR-treated cell xenografts,
whereas inhibition of K-Hcy by intraperitoneal injection of N-
acetyl-cysteine (NAC)56,57 delayed xenograft growth (Fig. 7p, q).
Together, these results confirmed that NNMT upregulation induces
hyper K-Hcy, which activates DNA-PKcs and promotes tumor
growth (Fig. 7r).

Discussion
Our comprehensive proteogenomic study in 232 ccRCC tumor
and tumor adjacent tissue pairs of Chinese patients provided
insights into ccRCC protein profiles and biology. The genomic
profile of ccRCC revealed the somatic mutations and CNAs in
Chinese ccRCC patients. Comparison of genome alterations in
Chinese and Western ccRCC cohorts emphasized the genetic
diversity across geographic regions and revealed features of
Chinese ccRCC. Loss of chromosome 3p has long been regarded

as the initial event of ccRCC59,60. Our study demonstrated that 3p
loss was associated with clinical outcomes in a dosage cascade
manner in ccRCC. This dosage cascade manner manifested as
downregulation of SLC4A7, a transporter regulating cell pH
balance, in 3p loss tumors. It was reported that increased pHi was
a permissive signal for cell proliferation and survival, facilitated
metabolic adaptation and tumor invasion36. Consistently, we
found that downregulated SLC4A7 decreased pHi and inhibited
EMT by reducing SMADs activities. These findings indicated the
pH regulation vulnerability in 3p loss ccRCC. Moreover, we
found the degree of 3p loss was associated with the frequencies of
driver mutations in BAP1 and PBRM1. Further studies to dissect
out the crosstalk between chromosome 3p loss and the driven
mutations in ccRCC will promisingly promote our cognitions for
the carcinogenesis and development of this disease. In addition,
our analysis revealed that chromosome 12q gain was the most
important CNA event driving disease progression, which was
associated with NAP1L1 amplification involved cell proliferation.
Consistently, we found that increased proliferation and decreased
cell adhesion were the common features of early stage ccRCC that
eventually developed relapse and metastasis.

Proteomic alterations in tumors compared to adjacent tissues
revealed two major features of ccRCC, broad metabolic dysre-
gulation and intensive immune response. Previous studies also
reported the metabolic dysregulation in ccRCC at transcriptome
and metabolome levels3,28. Our results revealed three major
metabolic imbalances in ccRCC, including energy metabolism,
lipid metabolism and one-carbon metabolism at proteome level.
These findings were consistent with the metabolomics data from
the MSK ccRCC cohort28. Despite enzyme levels could not
directly reflect the flux of metabolic reactions, the alterations of
metabolic enzymes reflected that cancer cells enabled themselves
to rapidly proliferate and survive in conditions of nutrient
depletion and hypoxia by reprogramming metabolism. Similarly,
metabolic reprogramming also indicated the vulnerability of
tumor metabolism, which provided more opportunities for
therapy. Further research of these concepts to nephrologists and
oncologists will guide clinical trials of therapeutics specifically
targeted to tumor metabolism, rather than generally toxic to all
proliferating cells. Such novel agents are highly likely to be more
effective and to have far fewer adverse effects than existing drugs.

Besides, we found that ccRCC showed intensive immune
response, which originated from highly activated STAT1 and
STAT2 in ccRCC tissues. Aberrant activities of STAT1 have been
implicated in cancer development61–63. Particularly in renal
carcinoma, increased STAT1 expression was associated with high
grade, later stage, large tumor size, and lymph node and distant
metastasis64,65. In our proteomic data, we constructed down-
stream regulatory target proteins of STAT1. The targets proteins
were mainly enriched in interferon gamma mediated signaling.
It’s worth noting that the target proteins FCGR1A and NNMT66,

Fig. 6 NNMT Promotes Cancer Cell Proliferation through Hcy Accumulation. a NNMT expression based on our proteomic data. P value is derived from
two-sided paired t test (n= 232). b Association between NNMT protein expression and OS (two-sided log-rank test). c Upper panel, representative
western blots of NNMT, MARS, K-Hcy, DNA-PKcs, DNA-PKcs (pS2056), p53, p53 (pS15) and γ-H2AX in tumor and tumor tissues. Lower panel, quantified
western blot results (n= 6). d Left panel, IHC results of NNMT expression in tumors and adjacent tissues (scale bars: 50 μm). Right panel, quantified IHC
results of 12 sample pairs. TA= tumor adjacent, T= tumor. Results for other samples are shown in Supplementary Fig. 8. e, f Cell proliferation associated
with various treatments (n= 5 repeats per group). g Representative plots of immunofluorescence staining of γ-H2AX in cells under various treatments
(scale bars: 20 μm). hWestern blot analysis of γ-H2AX and H2AX in cells under various treatments. i Comet assay of DNA damage levels in cells subjected
to various treatments. For each group, DNA damage levels in a total of 30 cells from five independent repeats were measured. j Relative metabolite levels
in cells subjected to various treatments. k Comet assay of DNA damage levels in cells subjected to various treatments. l Cell proliferation associated with
various treatments (n= 5 repeats per group). m Comet assay of DNA damage levels in cells subjected to various treatments. n Western blot analysis of
γ-H2AX and H2AX in cells under various treatments. Data are shown as mean ± SD in panels c–f, i–l. P values are derived from two-sided t test. Not
significant, ns.
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participated in interferon gamma mediated signaling and one-
carbon metabolism process, respectively. Notably, NNMT and
FCGR1A are potential drug targets for ccRCC therapy in
our data.

High immune response is not only the signature of ccRCC, but
also associated with more malignant tumors. GP1 exhibited a
dominant immune signature, with the highest CD8+ T cell

infiltration and immunosuppression scores (Supplementary
Fig. 7a), indicating adaptive immune resistance. We found that
IFN-γ-induced STAT signaling responsible for such TME, and
STAT1 was the core TF. In addition, GP1 showed higher APM
scores (Supplementary Fig. 7a), which reportedly are associated
with the immunogenicity of ccRCC tumors67. Therefore, we
hypothesized that GP1 patients might benefit from immune
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checkpoint inhibitor therapy. Ruxolitinib, targeting JAK-STAT
signaling, was commonly used to treat myelofibrosis68 showed
increased sensitivity in ccRCC tumors highly expressed STAT1,
suggesting that targeting JAK-STAT signaling might possess of
double effects, including inhibiting the tumor growth directly and
regulation immune response. It has great potential of targeting
JAK-STAT axis for ccRCC treatment beyond anti-VEGF agents.

For the targeted therapeutic strategy, we paid more attention to
GP1 patients because they had the poorest prognosis. Twenty
druggable candidates were screened out, mainly involving in
immune (CASP1, CYBB, F2, MPO, LYN, STAT1), metastasis
(P4HA1, P4HB, PLOD3), and metabolism (NAMPT, NNMT,
SLC16A3). SLC16A3 (MCT4) transport lactate out of the cell to
avoid glycolysis produced intracellular acidosis in ccRCC69.
Moreover, as mentioned above, we found that loss of chromo-
some 3p downregulated the expression of SLC4A7 in a cis-pat-
tern, which was also associated with net acid extrusion in ccRCC,
resulted better survival of patients. These results revealed that
ccRCC reprogramed metabolism to meet self-requirement, which
also provided the novel therapies. NNMT, a metabolic enzyme,
was identified as an important carcinogenic factor and drug
target. Some clinical studies using the candidate protein survey
strategy70–74 have reported that NNMT is overexpressed in var-
ious tumors, including lung, liver, bladder, colon, and kidney
cancers. One proteomics study revealed NNMT as a master
metabolic regulator of cancer-associated fibroblasts75. In cultured
cells, NNMT promotes cancer cell survival, proliferation, migra-
tion, and invasion70–74. However, the exact oncogenic role of
NNMT in ccRCC as well as its metabolic functions in cancer cells
have not been determined.

Our recent study demonstrated that Hcy can modify protein
lysine residues and turn the metabolic status to cell signaling in
colorectal cancer56. As NNMT is an upstream metabolic enzyme
in Hcy metabolism, we linked NNMT and Hcy in ccRCC
tumorigenesis and development. Mechanistically, NNMT over-
expression increases Hcy and K-Hcy modification in tumor cells
and promoted tumor proliferation. K-Hcy modification of DNA-
PKcs, enhancing DNA-PKcs–KU70/KU80 interaction, and finally
activates DNA-PK complex. Xenograft experiments revealed that
NNMT overexpression empowered the resistance to radiation
therapy in renal cell carcinoma. Inhibiting K-Hcy modification by
NAC rescued the injuring effect of radiation on tumor. The
current study suggested that the NNMT–K-Hcy–DNA-PKcs axis
can partially explain the radiotherapy resistance of ccRCC and be
considered a potential therapeutic target.

In summary, our study provided a comprehensive proteoge-
nomic landscape of Chinese ccRCC. The dominant pathways that
were altered in the ccRCC proteome subtypes revealed the
potential molecular mechanism underlying clinical phenotypes
and outcomes. We identified a potential druggable protein,
NNMT, and demonstrated the value of this multiomics approach.

We believe that this study provides valuable information
regarding ccRCC biology and paves the way to novel therapeutic
strategies.

Methods
Clinical sample collection. The study was compliant with the ethical standards of
Helsinki Declaration II and was approved by the institutional review board of
FUSCC (050432-4-1212B). Written informed consent was obtained from each
patient before any study-specific investigation was conducted.

We screened 1,556 consecutive patients who underwent radical or partial
nephrectomy for the treatment of renal tumors at the Department of Urology of
Fudan University Shanghai Cancer Center (FUSCC, Shanghai, China) from
January 2007 to March 2014. Electronic medical records were screened
retrospectively. In total, 232 eligible ccRCC patients who had undergone radical
nephrectomy at the FUSCC were consecutively enrolled. Median follow-up was
85 months (range, 3–138 months). At the last follow-up, 79 patients (34.1%) had
progressive disease and 49 patients (21.1%) had died of ccRCC. Clinicopathological
indicators, including sex, clinical manifestation, laterality, tumor size, chronic
diseases status, TNM stage, and ISUP grading classification are summarized in
Supplementary Data 1. Tumor and adjacent non-tumor tissue samples were
collected during surgery and are available from the FUSCC tissue bank. Tumor and
paired tumor adjacent tissues (collected > 2 cm from the tumor margin) were
collected within 30 min after resection, immediately transferred into sterile freezing
vials and snap frozen in liquid nitrogen, cut into ~0.5cm3 pieces under −40 °C,
then split and stored at −80 °C until being used. The histologic sections were
obtained from top and bottom portions of tumor/adjacent tissues and Hematoxylin
and eosin (H&E)-stained for review. Each tumor/adjacent sample was checked by
an expert pathologist to confirm the sample quality according to the following
standards: (1) histopathologically defined ccRCC tumors; (2) tumor samples with
tumor cell rate (tumor purity) > 90%; 3) no tumor cells in the adjacent tissues.
H&E-stained slides of tumor and tumor adjacent tissues were uploaded to Figshare
(https://doi.org/10.6084/m9.figshare.17206589).

Among the 1,324 excluded patients, 161 patients were diagnosed with benign
renal tumor, 118 with urinary tract carcinoma, 326 with non-clear cell RCC, and 89
with other simultaneous or heterochronous malignancies. Further, 577 patients
(mainly those who underwent partial nephrectomy) were excluded because of
unavailable adjacent normal tissues, and 53 samples failed to pass pathological
quality check, such as tumor cell rate < 90% (Supplementary Fig. 1a). All cases were
staged according to the 2010 American Joint Committee on Cancer TNM staging
system. H&E-stained sections were reviewed by an experienced genitourinary
pathologist to determine the ISUP grade, and frozen sections were reviewed to
determine the tumor cell rate of the ccRCC tissues.

DNA extraction and WES. WES was conducted at Life Healthcare Clinical
Laboratory (China). DNA isolated from fresh or frozen tumor tissue samples was
used for WES, and matched germline DNA was obtained from adjacent non-tumor
tissue samples. DNA was isolated from fresh tissues using DNeasy Blood & Tissue
Kit (Qiagen, 69504) according to the manufacturer’s instructions. Purified DNA
was quantified using a Qubit 3.0 Fluorometer (Life Technologies). For matched
germline and tumor tissues, 100 ng of DNA was sheared to 200–300-bp fragments
using a Covaris M220 system. Tumor and matched germline DNA libraries were
constructed using Accel-NGS 2 S HYB DNA LIBRARY KIT (Swift Biosciences,
23096) and Accel-NGS 2 S MID S1-S4 (Swift Biosciences, 279384). xGen Exome
Research Panel v1.0 (IDT, 1056115) and xGen Lockdown reagents (IDT, 1072281)
were used for exome enrichment. Dynabeads M-270 Streptavidin (Thermo, 65306)
was used for library purification, P5/P7 primers (Nanodigmbio, ND10010) and
HotStart ReadyMix (KAPA, KK2612) were used for library amplification. The
amplified libraries were purified using SPRISELECT (Beckman, B23319). DNA
quality was assessed using a Bioanalyzer High Sensitivity DNA Analysis kit (Agi-
lent Technologies, 5067-4626). Samples underwent paired-end sequencing on a
Nextseq CN500 platform (Illumina), with a 150-bp read length. The WES target

Fig. 7 Lysine Homocysteinylation of DNA-PKcs Increases Cell DNA Repair through Facilitating DNA-PK Complex Formation. a, b Comparison of K-Hcy
levels in cells subjected to various treatments. c Structure of DNA-PK complex. K-Hcy sites in DNA-PKcs protein were highlighted in red. d Co-
immunoprecipitation showing that endogenous DNA-PKcs interacts with endogenous MARS (n= 3 biological repeats). e Western blot analysis of K-Hcy
levels of DNA-PKcs, DNA-PKcs (pS2056), and p53 (Ser15) in cells subjected to various treatments. f Comet assay of DNA damage levels in ccRCC tumor
vs. adjacent normal tissues (n= 10). P value is derived from two-sided paired t test. g, h NNMT overexpression enhancess the interaction between
endogenous DNA-PKcs and endogenous KU70 or KU80 in ACHN and 769-P cells. i In vitro DNA-PKcs activity assayed by monitoring its kinase activity in
phosphorylating its substrate p53. j DNA-PKcs activity indicated by measuring ADP formation in an ADP-Glo-DNA-PK assay (n= 5 repeats per group).
P values are derived from two-sided t test. Data are shown as the mean ± SD. k HTL increases the in vitro DNA-PKcs activity. l DNA-PK activity under
different treatments (n= 5 repeats per group). P values are derived from two-sided t test. Data are shown as the mean ± SD.m, n DNA-PKcs KW and 3KW
mutants exhibit enhanced binding affinity for KU70 and KU80 compared to wild-type DNA-PKcs. o DNA-PKcs 3KW mutant exhibits enhanced kinase
activity. p, q Tumor size of cell xenografts under different treatments in normal and NAC-administered nude mice. r Model depicting NNMT-mediated
DNA repair and cell proliferation in ccRCC.
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region was 33M. A mean coverage of 100×, a capture rate of 95%, and a dup rate of
40% were achieved for tumor sequencing.

Somatic variant detection. Read-depth statistics were calculated using the Dep-
thOfCoverage function in the Genome Analysis Toolkit (GATK v3.8.1.0)76. Paired-
end reads in Fastq format were aligned to a reference human genome77 (UCSC
Genome Browser, hg38) using Burrows-Wheeler Aligner. Variant calling was
conducted following GATK best practices. Somatic single-nucleotide variations and
small insertions and deletions were detected using MuTect2 (GATK v4.1.2.0) and
were annotated using ANNOVAR78 based on UCSC known genes. Two longest
genes, TTN and MUC16, were excluded as they tended to acquire numerous
mutations by chance in large-scale genome/exome sequencing experiments. The
Maftools (v3.10) R package79 was used to display mutant genes with non-
synonymous mutations. MutSigCV80 was used to identify significantly mutated
genes with default parameters. Genes with Benjamini–Hochberg-adjusted p < 0.01
were identified as significantly mutated genes.

Mutation frequency variances across regions. TCGA ccRCC genome data were
downloaded from Xena81 and data for a European ccRCC cohort were obtained
from Scelo et al.25. Three East Asian ccRCC genomic cohorts were also
collected2,24,29. The top 10 most frequently mutated genes in our Chinese cohort
and other five cohorts were compared using Fisher’s exact test.

Mutual exclusivity and mutation co-occurrence analysis. Mutually exclusive or
co-occurring sets of genes were detected using the somaticInteractions function in
the Maftools R package, using pair-wise Fisher’s exact test to detect significant gene
pairs. p < 0.05 was used as a threshold for statistical significance.

Mutational signature. SBSs are defined as a replacement of a certain nucleotide
base. There are six possible substitutions: C > A, C > G, C > T, T > A, T > C, and
T > G. Considering the nucleotide context, these SBS classes can be further
expanded to 96 possible mutation types. The frequencies of the 96 mutation types
were estimated for each sample. The non-negative matrix factorization algorithm
of SigProfilerExtractor (v1.1)82 was used to estimate the minimal components that
could explain maximum variance among samples. De novo mutation signatures
were decomposed using COSMIC v330. After decomposing a matrix of the
96 substitution classes of the samples into five signatures, the contribution of each
signature in each sample was estimated.

CNA calling. CNAs were called following somatic CNA best practice, using the
Calculate Target Coverage function in GATK (v4.1.2.0). We applied Genomic
Identification of Significant Targets in Cancer (GISTIC2.0)83 to identify sig-
nificantly amplified or deleted focal-level and arm-level events, with q < 0.05
considered significant. The following parameters were used: amplification thresh-
old = 0.1; deletion threshold = 0.1; cap value = 1.5; broad length cutoff = 0.50;
remove X-chromosome = 0; confidence level = 0.90; join segment size = 4; arm-
level peel off = 1; maximum sample segments = 2,000; gene GISTIC= 1.

Protein extraction and trypsin digestion. Collected samples were washed three
times with phosphate buffer saline (PBS) buffer to remove blood and debris.
Samples were minced and lysed in lysis buffer (8 M urea, 100 mM Tris hydro-
chloride, pH 8.0) containing protease and phosphatase inhibitors (Thermo Sci-
entific) and then sonicated for 1 min (3 s on and 3 s off, amplitude 25%). The
lysates were centrifuged at 14,000 × g for 10 min and supernatants were collected as
whole-tissue extracts. Protein concentrations were determined by the Bradford
protein assay (TaKaRa, T9310A). Extracts (100 μg protein) were reduced with
10 mM dithiothreitol at 56 °C for 30 min and alkylated with 10 mM iodoacetamide
at room temperature in the dark for 30 min. The samples were digested with
trypsin using a filter-aided sample preparation method84. Tryptic peptides were
separated in a home-made reverse-phase C18 column. Peptides were eluted and
separated into nine fractions using an acetonitrile gradient (6%, 9%, 12%, 15%,
18%, 21%, 25%, 30%, and 35%) at pH 10. The nine fractions were pooled into three
fractions (6%+15%+25%; 9%+18%+30%; 12%+21%+35%), vacuum-dried
(Concentrator Plus, Eppendorf), and analyzed by liquid chromatography tandem
MS (LC-MS/MS).

LC-MS/MS. Samples were analyzed on a Q Exactive HF-X mass spectrometer
(Thermo Fisher Scientific) coupled with a high-performance liquid chromatograph
(EASY-nLC 1200 System, Thermo Fisher Scientific). Dried peptide samples were
dissolved in solvent A (0.1% formic acid in water) and loaded onto a trap column
(100 μm× 2 cm, home-made; particle size, 3 μm; pore size, 120 Å; SunChrom) with
a maximum pressure of 280 bar using solvent A, then separated on a home-made
150 μm× 12 cm silica microcolumn (particle size, 1.9 μm; pore size, 120 Å; Sun-
Chrom) with a gradient of 5–35% mobile phase B (acetonitrile and 0.1% formic
acid) at a flow rate of 600 nL/min for 75 min. MS analysis was conducted with one
full scan (300–1,400 m/z, R= 120,000 at 200 m/z) at an automatic gain control
target of 3e6 ions, followed by up to 20 data-dependent MS/MS scans with higher-
energy collision dissociation (target 5e4 ions, max injection time 20 ms, isolation

window 1.6 m/z, normalized collision energy of 27%). Detection was done using
Orbitrap (R= 7,500 at 200 m/z). Data were acquired using the Xcalibur software
v2.2 (Thermo Fischer Scientific).

MS platform QC and ccRCC proteome quality assessment. For QC of MS
performance, tryptic digests of HEK293T cell lysates were measured as a QC
standard every 2 days. The QC standard was made and run using the same method,
conditions, software, and parameters as those used for ccRCC samples. Pairwise
Spearman’s correlation coefficients were calculated using the R package corrplot
(v0.84)85 for all QC runs, and the results are shown in Supplementary Fig. 1g. The
average correlation coefficient among standards was 0.95, with a maximum of 0.82
and minimum of 0.99. Log10-transformed fractions of total (FOTs) for each
ccRCC sample (Supplementary Fig. 1h–i) were plotted to show consistency of data
quality. The Sva R package v3.34.086 was used to evaluate batch effects. We found
no significant batch effect in the proteome data. Moreover, PCA plots showed that
the batch effects were negligible for batch number, but significant for sample types
(Fig. 4a).

Proteome identification and quantification. Raw files were processed in
Firmiana33 and searched against the human National Center for Biotechnology
Information (NCBI) RefSeq protein database (updated on 04-07-2013, 32,015
entries) using the Mascot 2.4 search engine (Matrix Science Inc). Mass tolerances
were 20 ppm for precursor and 50 mmu for product ions. Up to two missed
cleavages were allowed. Cysteine carbamidomethylation was set as a fixed mod-
ification and methionine N-acetylation and oxidation as variable modifications.
Precursor ion score charges were limited to +2, +3, and +4. The data were also
searched against a decoy database so that protein identifications were accepted at
FDR of 1%. Label-free protein quantifications were calculated using a label-free,
intensity-based absolute quantification (iBAQ) approach32. Match between runs87

was used to improve parallelism between tumor/adjacent samples. We built a
dynamic regression function based on common peptides in tumor/adjacent sam-
ples. Based on the correlation value R2, Firmiana chooses a linear or quadratic
function for regression to calculate the retention time (RT) of corresponding
hidden peptides and checks the existence of the extracting ion current (XIC) based
on the m/z and calculated RT. The program determines the peak area values of
existing XICs. We calculated peak area values as parts of corresponding proteins.
Proteins with at least 1 unique peptide with a 1% FDR at the peptide level were
selected for further analysis. The FOT was used to represent the normalized
abundance of a particular protein across samples. FOT was defined as a protein’s
iBAQ divided by the total iBAQ of all proteins identified in each sample. FOT
values were multiplied by 105 for ease of presentation and missing values were
assigned 10–5. Proteome quantification matrix was deposited at Figshare (https://
doi.org/10.6084/m9.figshare.17206589).

Protein and pathway alterations in tumor vs. adjacent tissues. PCA was
conducted to visualize the separation of tumor and tumor-adjacent proteomes using
the R package factoextra v1.0.688. In total, 6,111 proteins identified in both > 25% of
tumor and tumor-adjacent samples were used for subsequent analysis. Volcano plots
were used to display DEPs in tumor and adjacent tissues by applying thresholds of
fold change > 2 and Benjamini–Hochberg-adjusted p < 0.01. Among the DEPs, 1,719
proteins were significantly upregulated and 1,468 proteins were significantly
downregulated in ccRCC tumor tissues. The DEPs were then subjected to KEGG
pathway enrichment analyses in DAVID89, with a p value cutoff of 0.05 (Supple-
mentary Data 3). Protein annotations and signature proteins of the nephrons
(including glomerulus, proximal tubule, distal tubule and collecting duct) were
obtained from the Human Protein Atlas database (https://www.proteinatlas.org/
humanproteome/tissue/kidney).

Estimate of tumor purity, immune, stromal scores. Tumor purity, immune, and
stromal scores were inferred using the R package ESTIMATE v1.0.1150. Although
the ESTIMATE algorithm was designed to analyze transcriptome data, some stu-
dies have used it for proteome analysis6,7. The results indicate the feasibility to
evaluate the engagement of each subtype of immune cells.

Inferring of APM, immunosuppression, CD8 cluster, and pathway scores and
TF activities. APM, immunosuppression, and CD8 cluster signatures were
obtained from previous reports67,90 and computed by ssGSEA43 using the R
package GSVA v1.34.091. Metabolic pathway scores and TF activities for 232 paired
ccRCC samples were also computed using the R package GSVA v1.34.091 (Sup-
plementary Data 3). KEGG and Reactome gene sets downloaded from the Mole-
cular Signatures Database (MSigDB v7.1, http://software.broadinstitute.org/gsea/
msigdb/index.jsp) were set as background. TF target were obtained from DoR-
othEA (v1.6.0)45.

GSEA. GSEA was conducted using the GSEA 4.0.3 software (http://software.
broadinstitute.org/gsea/index.jsp)92. KEGG, Reactome, and HALLMARK gene sets
downloaded from the MSigDB v7.1 were set as background. FDR < 0.05 was used
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as a cutoff. The normalized enrichment score was used to reflect the degree of
pathway overrepresentation.

Associations between clinical characteristics and the ccRCC proteome. Spe-
cific clinical information is presented in Supplementary Data 1. TNM stage- and
ISUP grade-specific proteins were screened out based on a fold change > 1.5 and
p < 0.05. Specific proteins of each TNM stage and ISUP grade were subjected to over-
representation analysis using ConsensusPathDB (http://cpdb.molgen.mpg.de/)93.
Clinical characteristics-associated pathways are listed in Supplementary Data 4.

Proteomic subtyping of ccRCC, and subtype features. Consensus clustering was
conducted using the R package ConsensusClusterPlus (v.1.52.0)94 using Pearson
correlation as the distance measure. The 1,000 proteins with the highest median
absolute deviation in tumor samples were used for k-means clustering with up to
five groups. Consensus matrices for k= 2, 3, 4, 5 clusters are shown in Supple-
mentary Fig. 5e–f. The consensus matrix for k= 3 showed clear separation among
clusters. The cumulative distribution function of the consensus matrix for each
k-value was also measured (Supplementary Fig. 5f). The relative change in area
under the cumulative distribution function curve increased by 33% from 2 clusters
to 3 clusters, whereas others exhibited no appreciable increase. Thus, proteome
clusters were defined using k-means consensus clustering with k= 3. Subtype-
specific upregulated proteins are: (1) detected in ≥ 25% tumor samples; (2)
expressed higher than other subtypes (FC > 2, two-sided t test, p < 0.05). Subtype-
specific upregulated proteins were further analyzed in ConsensusPathDB93. DEPs
of each subtype and relevant enriched pathways are listed in Supplementary Data 5.

Validation of proteomic subtyping performance. GSEA was conducted to
identify signature proteins of each proteomic subtype using GSEA v4.0.392, and the
20 proteins with the highest scores in each subtype were selected. Hierarchical
clustering of CPTAC ccRCC cohort7 (available follow-up is three years at present)
proteome data with signature proteins also classified the CPTAC cohort into three
subgroups with a similar survival curve in our population, with GP1 showing
distinctly worse survival than the other two subtypes (log-rank test, p= 0.001)
(Supplementary Fig. 6).

Correlations between subtypes and clinical features. To evaluate correlations
between proteomic subtypes and clinical features, Fisher’s exact test was conducted
on categorical variables, including driver gene mutations, significant arm-level
CNA events, age, sex, hypertension status, obesity status, cardiovascular and cer-
ebrovascular disease status, family history of cancer, TNM stage, ISUP grade, and
CPTAC subtype. Only variables that varied significantly among the three proteome
subtypes are shown in Fig. 5a. Scaled CPTAC ccRCC proteome data were used to
identify signature proteins of each subtype by GSEA. The 20 proteins with the
highest GSEA scores were selected as support vectors to build a support vector
machine classifier. Chinese ccRCC cohort was divided into four CPTAC subtype
using this classifier.

Effects of CNAs. Spearman’s correlations between CNA values (gene level) and
protein abundances were calculated using 14,538 genes quantified at both CNA
and proteome levels. CNAs with significant correlation with proteins were selected
based on FDR < 0.01. In total, 89,992 CNA and protein pairs showed significant
correlation. Correlations were visualized using the R package multiOmicsViz
(v1.10.0). Genomic alterations that affect gene expression at the same locus are said
to act in cis (diagonal patterns in Fig. 2a), whereas an impact of another locus is
defined as a trans-effect (vertical patterns in Fig. 2a).

Survival analysis. The Kaplan–Meier method was used for survival analyses, and
groups were compared using the log-rank test. The R survival package 3.2–395 and
survminer 0.4.8 were used for statistical tests and visualization. The HR was cal-
culated by Cox proportional hazards regression analysis. Variates with p < 0.05
were considered to significantly impact prognosis. OS was used as a primary
endpoint. Clinical and molecular variates with p < 0.05 in single variant analysis
were selected for Cox regression multivariate analysis (Supplementary Data 1).

Drug target analysis. Target proteins were selected based on three criteria: sig-
nificantly upregulated in tumor vs. adjacent (Benjamini–Hochberg-adjusted
p < 0.01, FC > 2), upregulated in GP1 compared to GP2&3 (p < 0.01, FC > 2), and
associated with poor prognosis (HR ≥ 2, p < 0.01). The proteins were mapped using
the HPA database (https://www.proteinatlas.org/). Druggable proteins are listed in
Supplementary Data 5.

Cell culture. Human HEK293T (ATCC, CRL-11268; RRID: CVCL_QW54), A-498
(ATCC, HTB-44; RRID: CVCL_1056) and ACHN (ATCC, CRL-1611; RRID:
CVCL_1067) cells were cultured in high-glucose Dulbecco’s modified Eagle’s
medium (DMEM; HyClone) supplemented with 10% fetal bovine serum (FBS;
Invitrogen), 100 units/mL penicillin (Invitrogen), and 100 μg/mL streptomycin
(Invitrogen). 769-P (ATCC, CRL-1933; RRID: CVCL_1050) and 786-O cells

(ATCC, CRL-1932; RRID: CVCL_1051) were maintained in RPMI 1640 medium
(Invitrogen) containing 10% FBS. Cells were incubated in 5% CO2 at 37 °C. Cells
were transfected using polyethylenimine (linear, 25 KDa) or Lipofectamine 2000
(Invitrogen). To generate a cell model of nutrition stress, ACHN and 786-O cells
were cultured in medium without serum and glucose for 12 h before the assays. To
generate a cell model of genotoxic stress, cultured cells were irradiated with 4 Gy
X-ray radiation using a linear accelerator (Oncor, Siemens) before the experiments.

Plasmid construction and transfection. Whole-length NNMT, MARS, KU70,
KU80, and p53 cDNA clones were purchased from Origene. A whole-length DNA-
PKcs cDNA clone was obtained from Prof. Yanhui Xu58. After confirming the
sequences by Sanger sequencing, DNA-PKcs, NNMT, and p53 were amplified and
subcloned into the NheI and EcoRI restriction sites of the pcDNA3.1-Flag vector,
using ClonExpress MultiS One Step Cloning Kit (#C113-02, Vazyme). KU70 and
KU80 were amplified and subcloned into the NheI and EcoRI restriction sites of
the pcDNA3.1-Myc vector using the same kit. DNA-PKcs mutants were generated
by site-directed mutagenesis using the MutanBEST kit (TaKaRa). The primers used
were as follows: NNMT: forward, 5′- ggg aga ccc aag ctg gct agc ATG GAA TCA
GGC TTC ACC TCC -3′, and reverse, 5′- tag tcc agt gtg gtg gaa ttc CAG GGG
TCT GCT CAG CTT CC -3′; p53: forward, 5′- ggg aga ccc aag ctg gct agc ATG
GAG GAG CCG CAG TCA G -3′, and reverse, 5′- tag tcc agt gtg gtg gaa ttc GTC
TGA GTC AGG CCC TTC TGT C -3′; KU70: forward, 5′- ggg aga ccc aag ctg gct
agc ATG TCA GGG TGG GAG TCA TAT TAC A -3′, and reverse, 5′- tag tcc agt
gtg gtg gaa ttc GTC CTG GAA GTG CTT GGT GAG G -3′; KU80: forward, 5′- ggg
aga ccc aag ctg gct agc ATG GTG CGG TCG GGG AAT -3′, and reverse, 5′- tag tcc
agt gtg gtg gaa ttc TAT CAT GTC CAA TAA ATC GTC CAC A -3′; DNA-PKcs:
forward, 5′- ggg aga ccc aag ctg gct agc ATG GCG GGC TCC GGA GCC G -3′, and
reverse, 5′- tag tcc agt gtg gtg gaa ttc CAT CCA GGG CTC CCA TCC T -3′; DNA-
PKcs K122W: forward, 5′- GA GCT GCT tgg TGT AAA ATT CCA GCC CTG
GAC C -3′, and reverse, 5′- TTT ACA cca AGC AGC TCT ATC TTT TGT ATA
AAC ACT G -3′; DNA-PKcs K712W: forward, 5′- AA TTT GGC tgg GAG GTG
GCA GTT AAA ATG AAG CA -3′, and reverse, 5′- CAC CTC cca GCC AAA TTT
CAC AAA TAA AGC AAA -3′; DNA-PKcs K902W: forward, 5′- A GAG ATG tgg
CCT GTC ATT TTC CTG GAT GTG TT -3′, and reverse, 5′- T GAC AGG cca
CAT CTC TCT AAA GGG CAC TGC AA -3′. For transient transfection, 1 μg of
each plasmid was transfected using Lipofectamine 2000 (Invitrogen) according to
the manufacturer’s instructions.

RNA interference. Synthetic oligos were used for siRNA-mediated silencing of
NNMT (5′-CCTCTCTGCTTGTGAATCCTT-3′), SAHH (5′-GTCAGGAGGGCAA-
CATCTTTG-3′), MARS (5′-GGACGGACCUGCUGCUGAATT-3′), and scramble
siRNA was used as a control. Cells were transfected with siRNAs using Lipofectamine
2000 according to the manufacturer’s protocol. Knockdown efficiency was verified by
qRT-PCR or western blotting.

Gene silencing and overexpression. For NNMT stable shRNA knockdown or
overexpression, cells were co-transfected with pCMV-VSV-G, pCMV-Gag-Pol, and
plasmids using the calcium phosphate method96. Transfected cells were cultured in
DMEM containing 10% FBS for 6 h. Twenty-four hours after transfection, culture
supernatant was collected and used for retrovirus preparation to infect cells at 10%
confluency in 90-mm-diameter dishes. Cells were re-infected 48 h after the initial
infection and selected using 5 μg/mL puromycin (Amresco). NNMT shRNA was
cloned into the AgeI and EcoRI restriction sites of the pMKO vector. NNMT was
subcloned into the BamHI and EcoRI restriction sites of the pBABE vector using
ClonExpress MultiS One Step Cloning Kit. The sequences of primers used were as
follows: shNNMT-Forward: 5′- CCG GCC TCT CTG CTT GTG AAT CCT TCT
CGA GAA GGA TTC ACA AGC AGA GAG GTT TTT G -3′, shNNMT-Reverse:
5′- AAT TCA AAA ACC TCT CTG CTT GTG AAT CCT TCT CGA GAA GGA
TTC ACA AGC AGA GAG G -3′; NNMT (pBABE): forward, 5′-ctc tag gcg ccg gcc
gga tcc ATG GAA TCA GGC TTC ACC TCC-3′, and reverse, 5′- ggt ctt ctc gtc cat
gaa ttc CAG GGG TCT GCT CAG CTT CC -3′.

Western Blot analysis. Cultured cells or cells from human ccRCC and matched
normal tissues were lysed with 0.5% NP-40 buffer containing 50 mM Tris-HCl (pH
7.5), 150 mM NaCl, 0.5% Nonidet P-40, and a mixture of protease inhibitors
(Sigma-Aldrich). After centrifugation at 13,800 × g and 4 °C for 15 min, super-
natants were collected for western blotting according to standard procedures.
Antibodies against DNA-PKcs (#38168, 1: 1000), phospho-Ser2056 DNA-PKcs
(#68716, 1: 1000), H2AX (#7631, 1: 1000), γ-H2AX (#9718, 1: 1000), p53 (#9282, 1:
1000), phospho-Ser15 p53 (#9284, 1: 1000), KU70 (#4103, 1: 1000), and KU80
(#2753, 1: 1000) were purchased from Cell Signaling Technology. Antibody against
NNMT was purchased from Abcam (#ab58743, 1: 1000). Antibody against Actin
was purchased from Genscript (#A00702, 1: 800). Anti-K-Hcy antibody (1: 1000)
was generated as described previously56. Chemiluminescence was measured on a
Typhoon FLA 9500 instrument (GE Healthcare).

IHC. We collected 12 samples (beyond 232 paired samples) for NNMT IHC
validation additionally. Sections of ccRCC and adjacent tissues were obtained from
formalin-fixed, paraffin-embedded tissue blocks (not enrolled in the
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proteogenomic cohort). Immunostaining was carried out as reported
previously97,98. Sections were stained using relevant antibodies and the Envision
detection kit (Dako). Immunostaining was quantified based on the number of
immunoreactive cells (quantity score) and the staining intensity (intensity score),
as reported97,98.

Metabolite quantification. Human tissues were homogenized in ice-cold phos-
phate-buffered saline (PBS) and centrifuged, and supernatants were collected for
Hcy quantification. Hcy concentrations were determined using an Axis Homo-
cysteine Enzyme Immunoassay Kit (Axis-Shield). To assay metabolite levels, cells
were harvested by PBS washing and denatured in pre-chilled 60% methanol (in
ddH2O, pre-cooled at −80 °C for 1–2 h). Cell lysates were centrifuged (10,000 × g)
at 4 °C for 5 min. Supernatants were vacuum-dried, re-dissolved in ddH2O, and
subjected to ultrafiltration on a polyvinylidene fluoride low protein binding
membrane (Millex-GV4 and Millex-HV4, Millipore). Metabolites were extracted
and Hcy was analyzed using LC-MS. SAM and SAH levels were detected using a
SAM & SAH ELISA Combo Kit (Cell Biolabs). 1-Methylnicotinamide was mea-
sured using a UHPLC-QTOF-MS System (Agilent Technologies, 1290 LC, 6550
MS) as described previously99. Each assay was repeated in triplicate, and means
were used for analysis.

Lysine-homocysteinylation site identification in ccRCC tissues. To identify
lysine-homocysteinylation sites in tissue samples, ccRCC tumor and non-tumor
tissues were ground in 0.5% NP-40 buffer, and supernatants were immunopreci-
pitated with anti-DNA-PKcs antibody and digested with trypsin. LC-MS/MS
experiments were conducted on an EASY-nLC100 chromatograph coupled with an
Orbitrap Elite (both from Thermo Fischer Scientific) equipped with an online
nano-electrospray ion source. Peptides were desalted and suspended in 10 μL
solvent A (solvent A: water with 0.1% formic acid; solvent B: acetonitrile with 0.1%
formic acid). Each sample was loaded onto a self-packed C18 column (100 μm×
2 cm, 5 μm particle size), with a flow rate of 5 μL/min for 5 min and subsequently
separated on the analytical column (C18, 75 μm× 20 cm) with a linear gradient
from 5% solvent B to 90% over 120 min. The column was re-equilibrated at initial
conditions for 15 min. The column flow rate was maintained at 200 nL/min. The
mass spectrometer was set as follows: ion-transfer capillary, 275 °C; spray voltage,
2 kV; and full MS range, 400–2,000 m/z. Full mass spectra were acquired at 60,000
resolution with a target ion setting of 106. One full MS scan was followed by 15 MS/
MS scans, and multistage activation was enabled. The dynamic exclusion function
was set as follows: repeat count, 2; repeat duration, 30 s; and exclusion
duration, 60 s.

DNA-PKcs in vitro kinase assay. In vitro DNA-PKcs kinase assays were con-
ducted as described previously58. In brief, 200 ng DNA-PKcs and 3 μg p53 were
incubated in a buffer containing 50 mM HEPES (pH 7.4), 100 mM KCl, 10 mM
MgCl2, 2 mM EGTA, 0.1 mM EDTA, and 1 mM ATP at 30 °C for 30 min. Y-shape
DNA and KU70/KU80 were added as indicated. Reactions were terminated by
addition of sodium dodecyl sulfate (SDS) sample loading buffer and boiling for
5 min. Samples were subjected to SDS-polyacrylamide gel electrophoresis and
immunoblotting using site-specific antibody against p53.

DNA-PK kinase assay. DNA-PKcs activity was measured using the ADP-
GloTM+DNA-PK kinase system (Promega, Cat#4107). Briefly, we isolated DNA-
PKcs protein from cells subjected to various treatments. To measure DNA-PKcs
activity, 1 μL 5% DMSO, 2 μL of enzyme, and 2 μL of substrate/ATP mix were
added to the wells of a 384-well plate. The plate was incubated at room temperature
for 60 min. Then, 5 μL of ADP-GloTM reagent was added and the plate was
incubated at room temperature for 40 min. Consequently, 10 μL of kinase detection
reagent was added and the plate was incubated at room temperature for 30 min.
Luminescence was recorded with an integration time of 0.5–1 s.

Cell proliferation assay. Cell proliferation was assessed using the Cell Counting
Kit-8 (Dojindo Laboratories). In brief, cells were seeded in a 96-well plate at 4 × 103

cells/well and allowed to adhere. Cell Counting Kit-8 solution (10 μL) was added to
each well, and the cells were incubated in 5% CO2 at 37 °C for 2 h. Cell pro-
liferation was determined by measuring the absorbance at 450 nm.

Comet assay. A Comet Assay Kit (Trevigen) was used to detect single- and
double-stranded DNA breaks in cultured cells and tissues. Slides were examined
under a Leica DMI 4000B epifluorescence microscope (425–500-nm excitation).
Comet slides were used for each condition. In normal cells, fluorescence is mostly
confined to the nucleus because intact DNA cannot migrate. In DNA-damaged
cells, DNA is denatured with an alkaline or neutral solution to detect single- or
double-stranded breaks, respectively; negatively charged DNA fragments are
released from the nucleus and migrate toward the anode.

In Vivo Xenograft studies. Four-to-six-week-old Balb/C nude male mice were
obtained from Shanghai SLAC Laboratory Animal Co., Ltd. All mice were housed on
a 12 h light/dark cycle at 25 °C. Control and NNMT-overexpressing ACHN and

786-O cell lines were subcutaneously transplanted into the left and right flanks of
each mouse. For the IR group, irradiated control and NNMT-overexpressing cells
were transplanted into the left and right flanks of each mouse. For the IR+NAC
group, irradiated control and NNMT-overexpressing cells were transplanted into the
left and right flanks of each mouse, and the mice were intraperitoneally injected with
NAC (500mg/kg) every other day. This study is under the guidelines of the Insti-
tutional Animal Care and Use Committee (IACUC), Fudan University. The max-
imal permitted tumor size is 20mm in an average diameter for mice, in accordance
with guidelines of IACUC. At the end of the experiment, following euthanasia,
tumors were excised, weighed, and imaged. All procedures were approved by
IACUC, Fudan University. Ethical review approval number 201802143 S was
obtained from the Department of experimental animal science, Fudan University.

Quantification and statistical analysis. Quantification methods and statistical
analysis methods for proteomic and integrated analyses were mainly described and
referenced in the respective Method Details subsections.

Additionally, standard statistical tests were used to analyze the clinical data,
including but not limited to Student’s t test, Fisher’s exact test, Kruskal–Wallis test,
log-rank test. Statistical significance was considered when p value < 0.05. To
account for multiple-testing, the p values were adjusted using the
Benjamini–Hochberg FDR correction. Kaplan–Meier plots (two-sided log-rank
test) were used to describe OS and PFS. Variables associated with overall survival
were identified using univariate Cox proportional hazards regression models.
Significant factors in univariate analysis were further subjected to a multivariate
Cox regression analysis. All the analyses of proteogenomic data were performed in
R and GraphPad Prism. For functional experiments, each was repeated at least
three times independently.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Proteome raw have been deposited to the ProteomeXchange Consortium (dataset
identifier: PXD030344) via the iProX partner repository (https://www.iprox.cn/)100

under Project ID: IPX0001962000. WES data files were deposited to NODE (https://
www.biosino.org/node) under Project ID: OEP000796 and the European Genome-
phenome Archive (EGA) under project ID EGAD00001008556. Data is available upon
request through EGA without any restrictions, and will be available permanently. EGA
access can be gained by contacting Jinwen Feng (jinwenf@fudan.edu.cn). Proteome
quantification matrix and H&E-stained section images of this study were deposited in
Figshare (https://doi.org/10.6084/m9.figshare.17206589). TCGA ccRCC data were
downloaded from Xena (https://xenabrowser.net/). CPTAC ccRCC could be accessed at
https://cptac-data-portal.georgetown.edu/study-summary/S044 and http://ccrcc.cptac-
data-view.org/. GDSC and CCLE data could be accessed DepMap data portal (https://
depmap.org/portal/). Source data are provided with this paper.
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