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NiH-catalysed proximal-selective hydroalkylation
of unactivated alkenes and the ligand effects on
regioselectivity
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Alkene hydrocarbonation reactions have been developed to supplement traditional

electrophile-nucleophile cross-coupling reactions. The branch-selective hydroalkylation

method applied to a broad range of unactivated alkenes remains challenging. Herein, we

report a NiH-catalysed proximal-selective hydroalkylation of unactivated alkenes to access β-
or γ-branched alkyl carboxylic acids and β-, γ- or δ-branched alkyl amines. A broad range of

alkyl iodides and bromides with different functional groups can be installed with excellent

regiocontrol and availability for site-selective late-stage functionalization of biorelevant

molecules. Under modified reaction conditions with NiCl2(PPh3)2 as the catalyst, migratory

hydroalkylation takes place to provide β- (rather than γ-) branched products. The keys to

success are the use of aminoquinoline and picolinamide as suitable directing groups and

combined experimental and computational studies of ligand effects on the regioselectivity

and detailed reaction mechanisms.
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The construction of molecular skeletons by C(sp3)-centred
coupling under mild conditions has been a goal in organic
synthesis chemistry for a long time1,2. Increasing the

number of saturated carbon centres is of positive significance to the
success of clinical drug research3. Traditional C(sp3)-centred cross-
coupling relies on alkyl metallic reagents4–6. However, commercial
approaches to access alkyl metallic reagents are limited. The pre-
paration of these reagents in the laboratory is time-consuming, and
the operation under anhydrous and anaerobic harsh conditions is
inconvenient7. In recent years, alkene hydrocarbonation reactions
have been developed to supplement traditional electrophile-
nucleophile cross-coupling reactions8,9. The in situ generation of a
catalytic organometallic intermediate from alkenes instead of a stoi-
chiometric metallic reagent to participate in C(sp3)-centred coupling
simplifies the synthesis steps and routes and improves the functional
group compatibility. Alkene hydroarylation(alkenylation) with simple
arenes (ArH), aryl electrophile (ArX), or aryl nucleophile (ArM)
delivered corresponding alkene addition products through various
mechanistic pathways10–18. Remarkable advances were achieved in
both linear- and branched-selective hydroarylations19–28. On the
other hand, alkene hydroalkylation, enabling the rapid construction
of alkyl-alkyl bonds, would broaden our horizon of retrosynthetic
analysis when facing the pervasive C(sp3)–C(sp3) bonds in organic
molecules1,2. Hydroalkylation of terminal alkenes has enjoyed
success10,21,29–36. Increasing attention has been given to the hydro-
alkylation of internal alkenes, especially nickel-hydride catalysed
processes (Fig. 1a). However, nickel-hydride migratory insertion is
sensitive to alkene substrates’ steric and electronic properties. The
rate of hydrometalation of unactivated internal alkenes is much
slower than that of terminal alkenes37–39. Chain-walking isomeriza-
tion often occurs in internal alkenes and causes linear-functionalized
products40,41. Another successful approach is the hydro-
functionalization of activated (conjugated) alkenes42. The Lewis basic
oxygen in the directing group or conjugated aryl or boryl group
effectively stabilizes the alkylnickel intermediate, obtaining α-
alkylated products with high regioselectivity43–46. A report on
NiH-catalysed hydroalkylation of α,β-unsaturated amides to access β-
alkylated products was also recently disclosed47. Despite the success
of linear-selective migratory hydroalkylation of internal alkenes and

α- or β-selective hydroalkylation of activated (conjugated) alkenes,
the branch-selective hydroalkylation method applied to a broad range
of unactivated alkenes remains challenging.

Amide-linked directing groups, such as aminoquinoline (AQ) and
picolinamide (PA), are widely used in palladium-catalysed C-H
functionalization48–52. In recent years, the directing group concept
has been transplanted to the research field of alkene
functionalizations53–56. Many functional groups, including boron,
amine, aryl, and alkyl groups, have been successfully installed into the
double bonds of unactivated alkenes using palladium or nickel
catalysts21,22,57–62. For example, Engle and co-workers63 and Koh
and co-workers64,65 independently reported the dicarbofunctionali-
zation of nonconjugated alkenes with aminoquinoline directing
groups. The directing group concept also opens up new directions for
the NiH-catalysed hydrofunctionalization of unactivated internal
alkenes15,23,66,67. Recently, Koh and co-workers made progress in
NiH-catalysed branch-selective hydroalkylation of unactivated
alkenes using the aminoquinoline directing auxiliary. Alkene migra-
tory hydroalkylation undergoes smoothly to access β-alkylated
amides with excellent regioselectivity68. From the perspective of the
previous literature, hydroalkylation of internal alkenes on a remote
position to functional units (rather than α- or β-alkylation) remains
challenging.

Herein, we report a NiH-catalysed proximal-selective hydro-
alkylation of unactivated alkenes to access β- or γ-branched alkyl
carboxylic acids and β-, γ- or δ-branched alkyl amines. Using
NiCl2(PPh3)2 as the catalyst, migratory hydroalkylation takes
place to provide β- (rather than γ-) branched products (Fig. 1b).
A preliminary result with moderate enantioselectivity demon-
strates that an asymmetric variant can be realized. The keys to
success are the application of aminoquinoline and picolinamide
as suitable directing groups and detailed studies of the ligand
effects and reaction mechanisms.

Results and discussion
Reaction discovery. We commenced this study with alkene 1a
and alkyl iodide 2a as the model substrates (Table 1). Amide-
directed proximal-selective hydroalkylation was efficiently
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Fig. 1 NiH-catalysed hydroalkylation of internal alkenes and their regioselectivities. a NiH-catalysed linear-, α- or β-selective (migratory) hydroalkylation
of internal alkenes. b Our strategy: directed NiH-catalysed proximal-selective hydroalkylation and migratory β-selective hydroalkylation. Bpin pinacol
borate, diglyme 2-methoxyethyl ether, MEA ethanolamine.
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performed using NiBr2(diglyme) as the catalyst, MEA as the
ligand, DEMS as the hydride source, KF as the base in a DMAc
solvent (entry 1), and desired product 4aa was obtained in 90%
GC (gas chromatography) yield, 87% isolated yield, and >20:1 r.r.
(regioisomeric ratio). NiBr2(DME) and Ni(acac)2 could be used
instead of NiBr2(diglyme) as catalysts (entries 2–3), but
NiCl2(PPh3)2, which would introduce a phosphine ligand into the
reaction system, led to a dramatic negative effect on regioselec-
tivity (entry 4). Oxygen-bearing silanes, such as (MeO)3SiH and
PMHS (entries 5–6), gave good yields; Ph2SiH2 also performed
well (entry 7), but the less electrophilic hydrosilane MeEt2SiH was
inefficient in this transformation (entry 8). KF turned out to be
the best base over the other bases (entries 9–12), such as Na2CO3,
CsF, NaHCO3, and K3PO4(H2O), because of its matched ability
to activate DEMS to form pentacoordinate hydrosilicate species.
We could regulate the reaction activity through the cross-
combination of different bases and silanes. This reaction is sen-
sitive to solvent identity (entries 13–17); an excellent yield was
obtained in DMF, which is an amide solvent (entry 13), while
poor results were obtained using MeCN, DCE, or toluene (entries
14–16), and disappointing regioselectivity was obtained when
using THF as the solvent (entry 17). Finally, this reaction was
completely shut down in the control experiment without a nickel
catalyst (entry 18).

Substrate scope. With appropriate reaction conditions in hand,
we sought to examine the substrate scope of this amide-directed
nickel-catalysed hydroalkylation. As summarized in Fig. 2, a wide

range of alkyl halides and alkenes was examined and provided
satisfying coupling yields (40–88%) and regioselectivities
(4.0:1~>20:1) in almost all cases. Both alkyl iodides 2a-2l, 2n, 2q-
2s and bromides 3a, 3m, 3o, 3p, and 3t were suitable substrates,
and 0.5 equiv NaI was added for the in situ generation of the
corresponding alkyl iodides from alkyl bromides. The β-branched
alkyl halides (2b and 2c) delivered products in slightly diminished
yields and equally good regioselectivities. Concerning alkenes,
both terminal (1a) and internal alkenes with differentiated steric
resistances (1b–1g, 1i–1l) could be used. The Z/E configuration of
the internal alkene would not affect the coupling yield or
regioselectivity (4ba). In addition, the trisubstituted alkene (1g),
which is difficult for nickel-hydride insertion, could be trans-
formed in a moderate yield. An interesting example was 4la. The
alkene substrate 1l with a potentially competitive activated
benzylic reaction site delivered the desired amide-directed γ-
alkylation product with high regioselectivity, indicating that the
aminoquinoline auxiliary displayed stronger directing ability
compared to an aromatic ring. In another example, the derivative
of but-3-enoic acid (1m) was selectively converted to the β-
branched product 4ma following proximal hydroalkylation
selectivity. Finally, picolinamide as an auxiliary also produced
gratifying proximal hydroalkylation results (β-alkylation product
4na, γ-alkylation product 4oa, and δ-alkylation product 4pa)
under standard conditions. However, the moderate regioisomeric
ratios (4.0:1~4.8:1) need further reaction condition optimization.
A variety of functional groups were well accommodated, such as
trifluoromethyl (4ad), ester (4ae), ether (4af, 4ag and 4ea), and
cyano (4ah, and 4ai) groups. Under mild reaction conditions,

Table 1 Optimization of the reaction conditions.

1a
1.0 equiv

2a
2.0 equiv

4aa

+

δ

standard conditions A
10% NiBr2(diglyme), 12% MEA

3.0 equiv DEMS, 3.0 equiv KF
0.2 M DMAc, 25 oC

I
AQ

O

AQ

O

γ

4aa'

N

N
H

O

(AQ)

Entry Variation from standard conditions A Yield/%a r.r.b

1 None 90 (87c) >20:1
2 NiBr2(DME) instead of NiBr2(diglyme) 85 18:1
3 Ni(acac)2 instead of NiBr2(diglyme) 79 14:1
4 NiCl2(PPh3)2 instead of NiBr2(diglyme) 48 1.1:1d

5 (MeO)3SiH instead of DEMS 80 5.4:1
6 PMHS instead of DEMS 77 18:1
7 Ph2SiH2 instead of DEMS 72 >20:1
8 MeEt2SiH instead of DEMS N.R. —
9 Na2CO3 instead of KF 80 3.5:1
10 CsF instead of KF 34 >20:1
11 NaHCO3 instead of KF 57 6.2:1
12 K3PO4(H2O) instead of KF 87 7.0:1
13 DMF instead of DMAc 81 17:1
14 MeCN instead of DMAc 25 12:1
15 DCE instead of DMAc 33 10:1
16 Toluene instead of DMAc 20 8.1:1
17 THF instead of DMAc 12 1.0:1
18 w/o NiBr2(diglyme) N.R. —

Reactions were carried out under an argon atmosphere. Conditions: 1a (0.10 mmol, 1.0 equiv), 2a (0.20mmol, 2.0 equiv), nickel catalyst (0.01 mmol, 10 mol%), MEA (0.012 mmol, 12 mol%), silane
(0.30mmol, 3.0 equiv), base (0.30mmol, 3.0 equiv), solvent (0.50mL, 0.2M), 12 h. Proximal-selective hydroalkylation product 4aa was obtained as the major regioisomer, and distal-selective
hydroalkylation product 4aa’ as the minor regioisomer; other regioisomers could hardly be detected.
DMF N,N-dimethylformamide, DME 1,2-dimethoxyethane, DCE 1,2-dichloroethane, THF tetrahydrofuran, acac acetylacetanoate, w/o without, N.R. no reaction.
aYields and regioisomeric ratios were determined by GC analysis with triphenylmethane as an internal standard. Total yield for the mixture of all regioisomers.
br.r. refers to the regioisomeric ratio, that of the major product to the sum of all other isomers.
cIsolated yield in parentheses.
dA large amount of β-selective product was observed by GC analysis.
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standard conditions A
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Fig. 2 Scope of proximal-selective hydroalkylation. Standard conditions A: alkene (0.20mmol, 1.0 equiv), alkyl halide (0.40mmol, 2.0 equiv),
NiBr2(diglyme) (0.02mmol, 10 mol%), MEA (0.024mmol, 12 mol%), DEMS (0.60mmol, 3.0 equiv), KF (0.60mmol, 3.0 equiv), DMAc (1.0 mL, 0.2M),
25 °C, 12 h, isolated yield. r.r. was determined by GC or 1H NMR analysis. r.r. refers to the regioisomeric ratio, that of the major product to the sum of all
other isomers. Proximal-selective hydroalkylation product was obtained as the major regioisomer, and distal-selective hydroalkylation product as the minor
regioisomer; other regioisomers could hardly be detected. aNaI (0.10 mmol, 0.5 equiv) was added. b40 °C. d.r. diastereomeric ratio, DG directing group.
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many sensitive functional groups could be tolerated, including
base-sensitive ketones (4aj and 4ak) and acid-sensitive tert-
butoxycarbonyl (4al) and propylidene (4ka) protecting groups.
Phosphonate (4am) and internal alkenyl groups (4an) were
compatible during the transformation. Heterocyclic compounds
such as thiophene (4ao), indole (4ap), tetrahydropyran (4ia), and
furan (4ja) posed no problems. Electrophilic aryl chloride (4aq)
and aryl bromide (4ar), as well as nucleophilic arylboronate (4as)
survived, providing the possibility for further transformation
through transition-metal-catalysed cross-coupling reactions.
Finally, this reaction could be conducted in the presence of an
unprotected hydroxyl group (4at), demonstrating its high degree
of compatibility with sensitive functional groups. We examined
several secondary and tertiary electrophiles (see Supplementary
Table 5 and Supplementary Fig. 20 for more details). For the
reaction using iodocyclohexane as an electrophile, the hydroalk-
ylation product was delivered in a 23% yield (2.4:1 r.r.) along with
the alkene protonation byproduct in a 38% yield; slight mod-
ification using (MeO)3SiH as hydride source gave out a 35% total
yield (1.9:1 r.r.). For the reaction using tertiary electrophiles, such
as 2-iodo-2-methylpropane, 2-bromo-2-methylpropane, and 1-
bromoadamantane, the desired hydroalkylation products were
not observed. In the example of trisubstituted alkene 4ga, a
secondary-primary C(sp3)-C(sp3) bond formed with a moderate
yield. However, the attempted construction of a tertiary-primary
C(sp3)-C(sp3) bond failed in the examination of 1,1-disubstituted
alkene and tetrasubstituted alkene (see Supplementary Fig. 21 for
more details). Therefore, this reaction might be sensitive to the
steric hindrance of both alkyl halides and alkene substrates.

Synthetic applications. We explored the usefulness of this
hydroalkylation reaction as an efficient method for the late-stage
modification of biorelevant molecules (Fig. 3a). Alkyl halides
derived from drug molecules and natural products, such as indo-
methacin, lithocholic acid, methylumbelliferone, and D-galacto-
pyranoside, underwent the hydroalkylation process smoothly with
high chemoselectivity and good yields. The tolerance of aryl
chloride, acetal groups, and unprotected alcohol hydroxyl groups
highlights the excellent compatibility with sensitive functional
groups. In a scale-up reaction (Fig. 3b), we achieved alkene
hydroalkylation product 4aa with a satisfactory 78% isolated yield
and 12:1 regioselectivity. Under mild nickel-catalysed conditions,
the directing amide group was transformed into a methyl ester
group to deliver the desired methyl carboxylate 5a in a 70% iso-
lated yield. After hydrolysis of 4aa in hydrochloric acid solution,
alkyl carboxylic acid 5b was obtained in a 73% isolated yield with
96% aminoquinoline recovered. The gram-scale reaction and
successful removal of the directing group highlight the practicality
of this nickel-catalysed alkyl-alkyl coupling reaction.

Mechanistic studies. We carried out a series of control and
mechanistic experiments to elucidate the reaction mechanism
(Fig. 4). In the radical clock experiment (Fig. 4a) using (bromo-
methyl)cyclopropane (3y) as an electrophile, coupling product 4ay
originating from the ring-opening of the cyclopropylmethyl radical
was detected. When 6-iodohex-1-ene (2z) was subjected to the
standard conditions, we observed that the expected ring-cyclized
product 4az originated from the cyclization of the 5-hexenyl radical.
These data support the radical nature of this reductive hydroalkyla-
tion reaction. In the isotope labelling experiment (Fig. 4b) with
Ph2SiD2 (97% deuterium content) under standard conditions, deu-
terium was incorporated exclusively at the terminal position with a
95% deuterium content, indicating that hydrogen is provided by
hydrosilane via the generation of NiH species. In addition, we
experimented with δ,δ-dideuterated alkene d2-1a. The δ-position

deuterium atoms in the dideuterated substrate remained intact, and
no H/D exchange was observed along the alkyl chain. Next, we
examined the influence of nitrogen-containing ligands on the cou-
pling yield and regioselectivity (Fig. 4c). This reaction could be
conducted in the absence of ethanolamine ligand or by using ethy-
lenediamine (L1), butylamine (L2), or aniline (L3) as the ligand.
However, diminished 5.3:1~7.8:1 regioisomeric ratios demonstrated
the significance of ethanolamine (MEA) in regulating the regios-
electivity. Moreover, bidentate bipyridine (L4) and tridentate ter-
pyridine (L5) ligands showed a conspicuous decline in coupling
efficiency and regioselectivity. This could be attributed to the exces-
sive occupation of the coordination space on the nickel centre. In a
preliminary experiment using chiral diamine ligand L6 (Fig. 4d), this
proximal-selective hydroalkylation reaction could be realized with
moderate enantioselectivity (see Supplementary Tables 2 and 3 for
more details). More efforts are needed to improve enantioselectivity.
Note that chiral diamine ligands, including but not limited to L6,
could be conveniently synthesized from the corresponding imines
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Fig. 4 Mechanistic studies. a Radical clock experiments. b Deuterium labelling experiments. c Effects of nitrogen-containing ligands. d Preliminary results
of asymmetric synthesis. e Effects of phosphine-containing ligands. f Migratory β-selective hydroalkylation. Standard conditions A: as shown in Fig. 2,
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internal standard. †GC yield with triphenylmethane as an internal standard. ¶Isolated yield in parentheses.
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using Tang and Xu’s method69. Inspired by the precedents of Koh
and others15,67,68, we focused our attention on investigating the
ligand effect of phosphine ligands (Fig. 4e). Both PPh3 and PMe3
altered the regioselectivity, and migratory β-alkylated amide (6aa)
was isolated as the main product. After performing systematic
screening of the influence of other reaction parameters, we deter-
mined that NiCl2(PPh3)2 as the catalyst, (MeO)3SiH as the hydride
source, KF as the base, and in DMAc solvent provided a moderate
50% GC yield and 42% isolated yield with an excellent 19:1 β-
alkylation selectivity (6aa). Representative substrates from the dif-
ferent dimensions of the directing group (6ra), chain length (6qa),
and an internal alkene with considerable steric hindrance (6ca)

smoothly underwent the desired migratory hydroalkylation,
demonstrating the generality and portability of the phosphine ligand-
dominated β-alkylation selectivity (Fig. 4f).

DFT calculations. Based on previous literature and our
experiments, we proposed two possible catalytic cycles for the
proximal-selectivity hydroalkylation of unactivated alkenes
(Fig. 5a)31,43–45,66,68,70. In the left catalytic cycle, Ni(I)X (A)
was generated as an initial catalyst under the reductive condi-
tions. Subsequently, Ni(I)X (A) was associated with an alkene
to form a chelated Ni(I) species (B) which reacted with silane to

Fig. 5 Proposed mechanism and DFT calculation details. a Proposed mechanism. b DFT calculations at the M06L-D3/6-311+G(d,p)-SDD-
SMD(DMA)//B3LYP-D3/6-31 G(d)-SMD(DMA) level of theory. Free energies are given in kcal/mol. c Optimized 3D structures of TS1, TS2,
TS3 and TS4.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29554-4 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1890 | https://doi.org/10.1038/s41467-022-29554-4 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


generate a crucial Ni(I)-H species (C). Then, the Ni(I)-H is
inserted into the C-C double bond via a six- or seven-
membered-ring mode, which controls alkylation position to
offer Ni(I) species D-1 or D-2. The resulting D-1 abstracted
halogen from an alkyl halide to form Ni(II) and an alkyl radical.
The alkyl radical was trapped to give Ni(III) species (F), which
underwent rapid reductive elimination to obtain the target
product and regenerate catalyst A. Another possible catalytic
cycle is shown on the right. Initially, Ni(I)X (A) reacted with an
alkyl halide through halide abstraction to afford Ni(II) (B’) and
an alkyl radical. Then, silane reacted with B’ to generate the
Ni(II)-H (C’), which chelated with an alkene to give Ni(II)
species (D’). D’ inserted into an alkene and captured the alkyl
radical, followed by reductive elimination to obtain the target
product (D’→ E’→ F). Preliminary DFT calculations indicate
that the migration insertion of the Ni(II)-H bond into the
terminal alkene group generating branched products via a six-
membered-ring mode (TS1 in Fig. 5b, barrier: 7.3 kcal/mol) is
remarkably more facile than that of the seven-membered-ring-
mode generating linear products (TS2, barrier: 16.2 kcal/mol).
This result correlates with the preferential hydrogen atom
incorporation on the terminal carbon atom observed experi-
mentally. By contrast, the linear migration insertion process
on Ni(I) system is excluded due to its high energy demands
(TS4, barrier: 25.4 kcal/mol). However, Ni(I)-catalysed six-
membered-ring migration insertion generating branched pro-
ducts is also possible under experimental conditions (TS3,
barrier: 15.3 kcal/mol). Optimized 3D structures of TS1, TS2,
TS3 and TS4 are shown in Fig. 5c. Totally, the energies for
migration insertion steps in Ni(II)-H pathway are lower than
that in Ni(I)-H pathway, but the possibility of Ni(I)-H pathway
could not be ruled out at this stage.

In summary, we describe a nickel-catalysed proximal-selective
hydroalkylation of unactivated alkenes to provide a retrosynthetic
method for valuable β- or γ-branched alkyl carboxylic acid and β-,
γ- or δ-branched alkyl amine building blocks. The sensible
employment of aminoquinoline and picolinamide as suitable
directing groups enables the hydroalkylation of both unactivated
terminal and internal alkenes. A broad range of alkyl iodides and
bromides with different functional groups can be installed with
excellent regiocontrol to be available for site-selective late-stage
functionalization of biorelevant molecules. Under modified reac-
tion conditions using NiCl2(PPh3)2 as the catalyst, migratory β-
selective hydroalkylation can also be realized. Mechanistic studies
and DFT calculations illuminate the ligand effects on regioselec-
tivity and the detailed reaction mechanism. Further efforts on the
catalytic asymmetric variant of this transformation are ongoing in
our laboratory.

Methods
General procedure for proximal-selective hydroalkylation of unactivated
alkenes. In air, a 10 mL Schlenk tube equipped with a stir bar was charged with
NiBr2(diglyme) (0.02 mmol, 10 mol%), KF (0.6 mmol, 3.0 equiv), alkene (0.2 mmol,
1.0 equiv), and alkyl halide (0.4 mmol, 2.0 equiv) (0.5 equiv NaI was added when
alkyl bromide was used). The Schlenk tube was evacuated and filled with argon
(three cycles). To these solids, a solution of ethanolamine (0.024 mmol, 12 mol%)
in anhydrous DMAc (1.0 mL) was added under an argon atmosphere. Then, DEMS
(0.6 mmol, 3.0 equiv) (if the alkene or alkyl halide was liquid, it was also added at
this time) was added under an argon atmosphere. The mixture was stirred at 25 °C
or 40 °C for 12 h, diluted with H2O followed by extraction with ethyl acetate, dried
with anhydrous Na2SO4 and concentrated in vacuo. The residue was purified by
column chromatography to produce the target product.

General procedure for migratory hydroalkylation of unactivated alkenes. In
air, a 10 mL Schlenk tube equipped with a stir bar was charged with NiCl2(PPh3)2
(0.02 mmol, 10 mol%), KF (0.6 mmol, 3.0 equiv), alkene (0.4 mmol, 2.0 equiv), and
alkyl halide (0.2 mmol, 1.0 equiv). The Schlenk tube was evacuated and filled with
argon (three cycles). To these solids, anhydrous DMAc (1.0 mL) was added under
an argon atmosphere. Then, (MeO)3SiH (0.6 mmol, 3.0 equiv) (if the alkene or

alkyl halide was liquid, it was also added at this time) was added under an argon
atmosphere. The mixture was stirred at 100 °C for 12 h, diluted with H2O followed
by extraction with ethyl acetate, dried with anhydrous Na2SO4 and concentrated in
vacuo. The residue was purified by column chromatography to produce the target
product.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and Supplementary Information files or from the corresponding author
upon request. The experimental procedures, computational results and characterization
of all new compounds are provided in the Supplementary Information.
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