
ARTICLE

Introducing principles of synaptic integration in the
optimization of deep neural networks
Giorgia Dellaferrera 1,2✉, Stanisław Woźniak 1, Giacomo Indiveri 2, Angeliki Pantazi1 &

Evangelos Eleftheriou1,3

Plasticity circuits in the brain are known to be influenced by the distribution of the synaptic

weights through the mechanisms of synaptic integration and local regulation of synaptic

strength. However, the complex interplay of stimulation-dependent plasticity with local

learning signals is disregarded by most of the artificial neural network training algorithms

devised so far. Here, we propose a novel biologically inspired optimizer for artificial and

spiking neural networks that incorporates key principles of synaptic plasticity observed in

cortical dendrites: GRAPES (Group Responsibility for Adjusting the Propagation of Error

Signals). GRAPES implements a weight-distribution-dependent modulation of the error signal

at each node of the network. We show that this biologically inspired mechanism leads to a

substantial improvement of the performance of artificial and spiking networks with feedfor-

ward, convolutional, and recurrent architectures, it mitigates catastrophic forgetting, and it is

optimally suited for dedicated hardware implementations. Overall, our work indicates that

reconciling neurophysiology insights with machine intelligence is key to boosting the per-

formance of neural networks.

https://doi.org/10.1038/s41467-022-29491-2 OPEN

1 IBM Research - Zurich, Rüschlikon, Switzerland. 2 Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland. 3Present address:
Axelera AI, High Tech Campus 5, 5656 AE Eindhoven, Netherlands. ✉email: gde@zurich.ibm.com

NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29491-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29491-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29491-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29491-2&domain=pdf
http://orcid.org/0000-0003-1029-6637
http://orcid.org/0000-0003-1029-6637
http://orcid.org/0000-0003-1029-6637
http://orcid.org/0000-0003-1029-6637
http://orcid.org/0000-0003-1029-6637
http://orcid.org/0000-0001-7282-3792
http://orcid.org/0000-0001-7282-3792
http://orcid.org/0000-0001-7282-3792
http://orcid.org/0000-0001-7282-3792
http://orcid.org/0000-0001-7282-3792
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
http://orcid.org/0000-0002-7109-1689
mailto:gde@zurich.ibm.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications

Artificial neural networks (ANNs) were first proposed in
the 1940s as simplified computational models of the
neural circuits of the mammalian brain1. With the

advances in computing power2, ANNs drifted away from the
neurobiological systems they were initially inspired from and
reoriented towards the development of computational techniques
currently employed in a wide spectrum of applications. Among
the variety of techniques proposed to train multi-layer neural
networks, the backpropagation (BP) algorithm3,4 has proven to
lead to an effective training scheme. Despite the impressive
progress of machine intelligence, the gap between the potential of
ANNs and the computational power of the brain remains to be
narrowed. Fundamental issues of ANNs, such as long training
time, catastrophic forgetting5, and inability to exploit increasing
network complexity6, need to be dealt with not only to approach
the human brain capabilities, but also to improve the perfor-
mance of daily used devices. For instance, reducing the training
time of online learning in robotic applications is crucial to ensure
a fast adaptation of the robotic agent to new contexts7 and to
reduce the energy costs associated with training. Several techni-
ques, such as batch normalization8, layer normalization9, and
weight normalization10, have been proposed to accelerate the
training of ANNs. Although successful in improving the con-
vergence rate, such methods are still far behind from the learning
capabilities of the biological brain.

The limitations of ANNs with respect to the brain can be
largely ascribed to the substantial simplification of their structure
and dynamics compared to the mammals’ neural circuits. Several
mechanisms of paramount importance for brain functioning,
including synaptic integration and local regulation of weight
strength, are typically not modeled in BP-based training of ANNs.
Overcoming this limitation could be key in bringing artificial
networks’ performance closer to animal intelligence11. Synaptic
integration is the process by which neurons combine the spike
trains received by thousands of presynaptic neurons prior to the
generation of action potentials (APs)12. The axonal APs are eli-
cited in the axon of the cell as a response to the input received
from the cell’s dendrites, and act as overall output signal of the
neuron. Experimental evidence has shown that, at least in
CA1 cells, input signals reaching the same postsynaptic cell from
different presynaptic neurons may interact with non-linear
dynamics, due to the active properties of the dendrites13,14.
Specifically, when strong depolarization occurs in a dendritic
branch, a dendritic AP is elicited in the region. The dendritic AP
boosts the amplitude of the sum of the excitatory postsynaptic
potentials (EPSPs) that generated it, thereby amplifying the
dendritic input before it reaches the soma to elicit an axonal AP.
The generation of a dendritic spike requires that enough pre-
synaptic cells spatially connected to the same branch are active
close in time with sufficient synaptic strength. As a consequence,
the ability of synaptic inputs to influence the output of the
postsynaptic neuron depends on their location within the den-
dritic tree. The differences between axonal and dendritic spikes
are discussed in ref. 13. The powerful computational abilities of
neurons are suggested to stem from the complex nonlinear
dynamics derived from dendritic spikes15. Figure 1a illustrates
such a mechanism and shows how the impact of each presynaptic
neuron depends also on the signals delivered to the same post-
synaptic neuron through other presynaptic connections. Thus,
the local weight distribution can be responsible of boosting the
input signal at specific nodes. Similarly to neurons in the brain,
nodes in ANNs receive inputs from many cells and produce a
single output. We can relate the activation of artificial nodes to
axonic APs, but there is no rigorous translation of the mechanism
of dendritic APs into the dynamics of point neurons. However,
dendritic spikes are strongly affected by the distribution of

synaptic strengths within dendritic branches. Similarly, the non-
linear dynamics of artificial nodes are affected by the weight
distribution of synapses incoming to a layer of nodes. Surpris-
ingly, in common training approaches for ANNs, a mechanism
taking into account the weight distribution for each node is
lacking.

Furthermore, synaptic plasticity in the brain is driven mainly
by local signals, such as the activity of neighboring neurons16.
The local interaction between synapses plays a crucial role in
regulating weight changes during learning. In this context, the
mechanism of heterosynaptic competition allows regulating
synapse growth by limiting the total strength of synapses con-
nected to the same pre- or postsynaptic neuron17. This phe-
nomenon occurs as a nonlinear competition across synapses at
each neuron. Specifically, as the summed weight of synapses into
(or out of) a neuron hits a threshold, all the incoming (or out-
going) synapses to that neuron undergo a slight heterosynaptic
long-term depression (“summed-weight limit rule”)18. Addi-
tionally, in the cortex, each neuron tends to target a specific firing
rate, and synaptic strengths are regulated to keep such rates
constant, despite input perturbation19. Synaptic scaling acts as a
global negative feedback control of synaptic strength, regulating
the weight changes based on the neural local activities20–22. These
homeostatic mechanisms are typically not modeled in the train-
ing of standard ANNs, which rely on global signals instead of
local information23,24. Indeed, the BP algorithm relies on the
simplified training strategy of assigning the error on a weight-by-
weight fashion. Each synaptic weight is updated based on its
individual contribution to the global output error of the network
as a response to a specific input sample. We refer to this input-
specific contribution as input-driven responsibility. Although
earlier works have attempted to encode metaplasticity (i.e., the
alteration of synaptic plasticity25) in the training of networks via
weight-dependent learning rules26–29, they invariably depend on
a modulation of the Hebbian learning rule rather than ANNs
training and do not account for the local weight distribution.
Some training strategies more biologically plausible than BP16,
such as the feedback alignment (FA) algorithm30 and its direct
and indirect feedback alignment (DFA, IFA) variants31, have been
proposed, yet they do not explicitly model the neural mechanisms
mentioned above.

Here, we make progress in reconciling neurophysiological
insights with machine intelligence by proposing a biologically
inspired optimizer that incorporates principles from biology,
including synaptic integration, heterosynaptic competition32, and
synaptic scaling19. Our approach achieves substantial benefits in
the training of fully connected neural networks (FCNNs), leading
to a systematically faster training convergence, higher inference
accuracy, and mitigation of catastrophic forgetting. Our novel
approach effectively boosts also the performance of convolutional
neural networks (CNNs) and spiking neural networks (SNNs)33

on temporal data. These results validate the hypothesis that
biologically inspired ANN and SNN models feature superior
performance in software simulations34, and provide guidelines for
designing a new generation of neuromorphic computing
technologies35.

Results
The GRAPES algorithm. The synaptic integration and the local
synaptic strength regulation mechanisms are complex processes
that depend on various factors, such as the large variability in size,
structure, excitability, intercellular distance, and temporal
dynamics of synapses and dendritic spines36. The simple point-
like structure of a synchronously operating ANN node does not
allow one to reproduce the rich dynamics enabled by the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2

2 NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

a

b

W3W2W1

x h1 h2 y

= strong connection

= weak connection

= high-importance
postsynaptic node

= low-importance
postsynaptic node

Synaptic
cleft

Synaptic
cleft

S

v

vi

su
m

iv

v vi

x

xi
xii

APi

iii

ii

vii

ix

viii

Dendritic
threshold

EP
SP

iv

EP
SP

EP
SP

time

time

time

time

xi

xii

su
m

EP
SP

x

EP
SP

EP
SP

time

time

time

time

ii

iii

su
m

EP
SP

i

EP
SP

EP
SP

time

time

time

time

viii

ix

su
m

EP
SP

vii

EP
SP

EP
SP

time

time

time

time

AP

Dendritic
threshold

Dendritic
threshold

Dendritic
threshold

= normalization of
importance vector

Fig. 1 Synaptic strength distribution in biological and artificial networks. a In biological synapses, during the process of synaptic integration, dendritic
spikes can enhance the impact of synchronous inputs from dendrites belonging to the same tree. Excitatory postsynaptic potentials (EPSPs) with the same
amplitude but different locations in a dendritic tree may lead to different responses. For example, dendrites i, iv, and viii send similar signals, but only the i
and iv contribute in driving an AP, since their respective branches receive sufficient further excitation from other connected dendrites. In the top image, the
postsynaptic neuron (dark blue) receives inputs mostly from dendrites generating strong EPSPs (orange) and only few generating weak EPSPs (yellow).
The bottom postsynaptic neuron (light blue) receives most inputs from weak-EPSPs dendrites. Because of such a dendritic distribution, the dark blue
neuron exhibits higher firing probability and thus its importance is higher with respect to the light blue neuron. b The structure of an FCNN is much simpler
than that of biological neurons with presynaptic connections arranged in dendritic trees. However, analogously to panel (a), the node importance of each
node arises from the distribution of the weight strength within each layer. The blue node has a high node importance since most of its incoming synapses are
strong. Conversely, the light blue node’s importance is lower, since the presynaptic population exhibits a weaker mean strength. The gray dotted lines
emanating from the neuron with the highest importance and arriving at the other nodes in the same layer represent a normalization effect, resembling the
winner-take-all competition based on the highest importance value.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2 ARTICLE

NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

neuronal complex morphology. Hence, a direct translation of the
mechanism of dendritic integration for ANNs is not straight-
forward. Here, we take inspiration from the nonlinear synaptic
dynamics and introduce a deep learning optimizer to boost the
training of FCNNs. Our goal is to present an effective algorithm,
inspired by biological mechanisms, and elucidate its potential
impact on the properties of ANNs. This novel approach can also
be easily applied to more biologically plausible neuronal models
such as SNNs. Our algorithm builds on three observations:

(i) In the brain, due to the spiking nature of the information, a
signal is propagated only if a postsynaptic neuron receives
enough input current from the presynaptic population to
elicit APs. In rate-based models of neural activity37, a
neuron with high firing rate is more likely to elicit high
activity in the downstream neurons than neurons with low
firing rate.

(ii) A single presynaptic neuron is responsible only for a
fraction of the driving force that leads the postsynaptic
neuron to fire. Hence, the impact of a presynaptic
neuron on the downstream layers depends also on all
the other presynaptic neurons connected to the same
postsynaptic cell.

(iii) If we neglect specific distributions of the inputs, the firing
probability of a postsynaptic neuron depends on the
average strength of the presynaptic connections. If the
average strength is high, the postsynaptic neuron is more
likely to reach the spiking threshold and thus to propagate
further the information encoded in the presynaptic
population. Therefore, the postsynaptic neuron and the
related presynaptic population have a high responsibility on
the network’s output and its potential error.

We refer to the intrinsic responsibility of the network as network-
driven responsibility, as opposed to the input-driven responsibility
mentioned above. Analogously, we introduce for ANNs the
notion of node importance stemming from the node responsibility
in propagating the information received from its presynaptic
population to the output layer. The concept of node importance
builds on the mechanism of dendritic integration in brain. In
biological neurons, the dynamics of dendritic spikes originate
from the spatial grouping of input cells based on the dendritic
branch they send their signal to. In FCNNs the presynaptic nodes
are connected to the postsynaptic nodes without being first
grouped into dendritic branches. However, such a simpler non-
dendritic morphology still offers the possibility to perform spatial
grouping of input nodes based on the postsynaptic layer. In
absence of dendritic branches, presynaptic cells can be grouped
based on point-like postsynaptic nodes rather than on the
dendritic branches of a single neuron. Consequently, while in
biological circuits the dendritic integration is related to boosting
input signals at the level of branches, the node importance in
FCNNs is related to signal modulation at the level of point-like
nodes. Therefore, the node importance is related to the average
strength of the synapses connected to such node. Figure 1b
illustrates the concept of node importance in an FCNN.

Based on these notions, we devised a novel algorithm, that we call
GRAPES (Group Responsibility for Adjusting the Propagation of
Error Signals). For simplicity, we begin by presenting the algorithm
as a modulation of the error propagation in a network trained with
BP and optimized with stochastic gradient descent (SGD). Next, we
demonstrate that GRAPES can be conveniently applied also to
other commonly used optimizers, such as Nesterov accelerated
gradient (NAG)38 and RMSprop39, to other more biologically
realistic training schemes, such as FA and DFA, and to networks
with the biologically realistic dynamics of spiking neurons.

The GRAPES algorithm modulates the error signal at each
synaptic weight based on two quantities: the node importance and
the local modulation factor. Mathematically, we define the node
importance of a given node n belonging to layer l as the sum of
the absolute strength over all weights of layer l whose
postsynaptic neuron is n

iln ¼ ∑
N

pre¼1
Wl

n;pre

�
�
�

�
�
�; ð1Þ

where N is the number of incoming connections to node n. The
sum is performed over the absolute value of the parameters since
we consider the connection strength (i.e., how much each weight
amplifies or attenuates an incoming signal) rather than its
excitatory or inhibitory nature. Alternatively, in specific cases
discussed further in the paper, the node importance may also be
obtained from the sum of the absolute strength of all weights of
layer l+ 1 outgoing from the same presynaptic neuron. We
remark that the importance defined in Eq. (1) depends only on
the intrinsic state of the network and not on the input value.
Therefore, in the initial phases of training, the importance is not
related to the task. However, as the network undergoes training,
the weight distribution becomes dependent on the task which the
network is trained on, and, consequently, the importance vector
evolves to be specific to the task.

The importance vector il for layer l contains the node
importance values for each postsynaptic node n in l. By
normalizing the importance vector by its maximal value,
multiplying it by 2, and lower-bounding by 1, we obtain the
local modulation vector

ml ¼ min 2
il

maxðilÞ ; 1
� �

; ð2Þ

whose elements are bounded in the range 1 ≤ml ≤ 2. Such an
interval has been defined on the basis of an empirical
optimization (see Supplementary Note 1). The nth local
modulation factor is the nth element of the resulting vector and
indicates the responsibility of the postsynaptic node n and its
associated connected weights on the output of the network. In
order to build the local modulation matrix Ml for layer l, the local
modulation vector is tiled as many times as the presynaptic
population size. Each element of the matrix is associated with one
synaptic weight of layer l. Therefore, by construction, the
modulation has the same value for all weights Wl

n;pre connected
to the same postsynaptic neuron n.

With these quantities at hand, in the local version of GRAPES,
we adjust the error signal in layer l through a Hadamard
multiplication of the weight-update matrix δWl

o computed with
the standard optimizer (e.g., SGD) with the local modulation
matrix Ml. The weight-change matrix, in which each row
corresponds to a post-synaptic node and each column to a pre-
synaptic node, is therefore modulated row-wise:

δWl
M ¼ δWl

o �Ml: ð3Þ
The main steps of the computation of the importance vector,
the local modulation vector, the matrix for a single hidden layer l,
and the update step of the local version of GRAPES are
summarized in Fig. 2a, b. The same concept of importance and
modulation as described for the fully connected models can be
applied to convolutional layers. In fully connected layers, the
computation of the importance relies on grouping the weights
(1D connections) based on the postsynaptic node. In convolu-
tional layers, we compute the importance of each 2D filter by
grouping the filters based on the postsynaptic maps. Supplemen-
tary Figure 1 shows a schematic of the main steps to compute the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2

4 NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

filter importance. The filter update is modulated accordingly as
described in Eq. (3).

In the propagating version of the algorithm, the modulation
factor is incorporated in the error signal of each layer and
propagated to the upstream layers, where it is incorporated in the
respective weight updates. In Fig. 2c we outline the algorithm for
the propagation of the modulation factor in a two-hidden layer
network. The propagating version provides the greatest benefits
in terms of classification accuracy and convergence speed
compared to the local version, as shown in the Supplementary
Table 2. Hence, the propagating version of the algorithm is the
default method adopted in the simulations. Finally, the weight
update obtained by applying the GRAPES modulation to SGD
can be expressed as:

Wlðt þ 1Þ ¼ WlðtÞ þ ηδWl
MðtÞ: ð4Þ

GRAPES does not change the computational complexity of SGD
and, since the modulation factor is computed only after the
parameter update (e.g., at the end of each batch), the additional
computations are negligible for large batch size.

By construction, the error signal modulation implemented in
GRAPES presents some analogies with the biological mechanisms
of heterosynaptic competition and synaptic scaling. Firstly, the
node importance is defined as the sum of the synaptic weights

connected to the same node. As in heterosynaptic competition,
the information on the total synaptic strength is used to modulate
the weight magnitude. However, while in heterosynaptic
competition the total synaptic weight is used to solely determine
depression by changing directly the weights18, in GRAPES the
total weight information is used to adjust the weight update,
hence leading to both strengthening or weakening of the
synapses. Secondly, by definition, the local modulation factor in
GRAPES is equal for all synapses incoming to the same node.
This leads back to synaptic scaling, in which a neuron-specific
multiplicative scaling factor adjusts the weights of the synapses
connected to the same neuron based on the local activity so that
the neuron maintains a target firing rate.

Figure 3a displays the evolution of the mean of the modulation
factor during training for each layer of a 10 hidden layer network.
The dynamics of the modulation factor are different for each
layer. The mean of the modulation factor exhibits the most
pronounced decay in the first three hidden layers, whereas it
either decreases very slowly or remains constant in the down-
stream hidden layers. In Fig. 3b, we show the distribution of the
modulation factors for each layer after training. In each layer, a
subset of the modulation factors is equal to 1, due to the lower
bounding operation in Eq. (2). The remaining values are
distributed with mean and variance specific to each layer.

= − ℎ ⟙

= ⊙(⟙)⊙ ()

c

a

| | | | | |

| | | | | |

| | | | | |

| | | | | |

+

+

+

+

+

+

+

+

=

=

=

=

= 2 , 1

= 2 , 1

= 2 , 1

= 2 , 1

= ⊙

po
st

pre

po
st

pre

Importance vector
of postsynaptic nodes

(level of nodes)

Local modulation
vector

(level of nodes)

Modulated weight update
(level of connections)

Local version

Local modulation
matrix

(level of connections)

x

h1

h2

y

= = (,)Update :

Example: SGD update

= ⊙ (⟙)⊙ ()Update :

Update :

Apply adjustment to feedback signal
(Propagating version)

*

target

= − ℎ ⟙

= − ⟙

+ 1 = + (t)

+ 1 = + (t)

+ 1 = + (t)

0

1

2
3

0

1

2
3

normalization of
importance vector

b

lower bounding on
importance vector

0

1

2
3importance of W1

importance of W2 modulation factor for W1

modulation factor for W2

Fig. 2 Computation of the modulation factor. a The computation of the importance vector for one hidden layer, based on the associated weight matrix, is
followed by the computation of the local modulation vector, based on the node importance. In the local version, GRAPES adjusts the weight update through
the Hadamard multiplication of the initial weight-update matrix δWl

o with the local modulating vector Ml. b Sketch illustrating the steps in computing the
modulation factor using the importance vector in the simple case of three postsynaptic nodes. c Algorithm for the propagation of the modulation factor to
the upstream layers in a two-hidden layer network. The activations in the network are computed as a1=W1x, h1= f(a1) and a2=W2h1, h2= f(a2), and the
network output as ay=W3h2, y= fy(ay). Note that δa2 is adjusted through the modulation matrix M2 and such adjustment also affects the upstream layer
since δa1 contains δa2.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2 ARTICLE

NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

Therefore, based solely on the current state of the network
weights, GRAPES offers a simple approach to modulate the error
signal at each synapse using node-specific factors whose temporal
evolution, mean and variance can be different for each hidden
layer. Note that, for some layers, the decrease of the modulation
factor with respect to its initial value (Fig. 3a) resembles a
learning rate decay scheme40. Compared to the classical learning-
rate-schedules, GRAPES provides two main advantages. First, to
apply a learning rate decay, a time-consuming search of the best
decay scheme and its hyperparameters is required for each
network setting and task. Instead, the spontaneous decay
provided by GRAPES (Fig. 3a) does not need to be optimized
in advance, thus allowing the modulation factor to naturally
adapt to different architectures and data sets. Furthermore, while
with the conventional learning-rate-schedule approach the
learning rate is equal for each parameter, GRAPES allows the
update step to be adjusted differently for each weight (Fig. 3b).
Specifically, we have shown in Fig. 3 that GRAPES implements a
dynamic learning schedule for each weight. We demonstrate the
stability of such a learning schedule by analytically proving the
convergence properties of GRAPES in Supplementary Note 2.

Simulation results on handwritten digit classification. To
illustrate the benefits of GRAPES on the training of ANNs, we
have enhanced the standard minibatch SGD by incorporating the
GRAPES modulation scheme, and are referring to it as
“GRAPES”. We initially compare the performance of GRAPES
against standard minibatch SGD, which from now on we will
simply call “SGD”, on the MNIST data set41.

To evaluate the convergence rate, we relied on a Michaelis
Menten-like equation42 and introduced the novel plateau
equation for learning curves:

accuracy ¼ max accuracy � epochs
slownessþ epochs

: ð5Þ

By fitting the test curve to this function, we can extract the
slowness parameter, which quantifies how fast the network
reduces the error during training. Mathematically, the slowness
value corresponds to the number of epochs necessary to reach
half of the maximum accuracy. Hence, the lower the slowness, the

faster the training. In our simulations, we perform the fit on the
first 100 epochs. The graphical representation of the plateau curve
is given in the Supplementary Fig. 2.

Figure 4a reports test curves and related slowness fits for
10 × 256 ReLU networks, trained on the MNIST data set. The red
and blue curves refer to GRAPES and SGD-based training
respectively, with the same learning rate η= 0.001. The testing
curve for the GRAPES model saturates at a substantially higher
accuracy plateau compared with those of the SGD models.
Furthermore, the test curve for GRAPES rises much earlier and in
a steeper manner—leading to a consistently smaller slowness
parameter—compared with the test curves of the networks
trained with SGD. This demonstrates that the key for improving
the convergence lies in the non-uniform modulation of the error
signal. Supplementary Table 3 shows that GRAPES exhibits the
described improvements in accuracy and convergence rate under
a wide range of network configurations.

Previous work in ref. 6 empirically showed that, as the number
of trainable parameters in deep neural networks increases, the
network performance initially improves and then saturates. We
demonstrated that GRAPES is affected by performance saturation
to a lesser extent than SGD. Figure 4b–d shows the accuracy
results for models with increasing layer size, together with the
corresponding slowness value. As the average of the modulation
factor is larger than one (see Fig. 3), one needs to ensure that the
training improvements are not solely due to a greater mean of the
learning rate. Therefore, for each layer size, we perform a fine-
grained learning rate search both for SGD and for GRAPES. We
vary the learning rate from η= 0.001 to η= 0.5. Note that a
further increase of the learning rate (η > 0.5) leads to instability
and deteriorated accuracy. Figure 4c shows that for each learning
rate and layer size pair GRAPES achieves better performance than
SGD, with the improvements becoming increasingly more
substantial as the learning rate is decreased. The optimal learning
rate is η= 0.1 for SGD and η= 0.05 for GRAPES. With such
values of η we draw a cross section of the bar plots along the
learning rate axis, as shown in Fig. 4b. We observe that for each
layer size GRAPES outperforms SGD in terms of final accuracy.
Moreover, the accuracy results indicate a rising trend for both
SGD and GRAPES as the network layer size increases.
Importantly, for GRAPES the rising trend saturates later than

b

a

Fig. 3 Dynamics of the modulation factor. a Mean and standard deviation dynamics of the modulation factors for a 10 × 256 tanh network, with 10%
dropout, trained with BP, SGD, and GRAPES modulation for 200 training epochs. The modulation factors are recorded for each layer every 10 epochs. b
Distribution of the modulation factors at the end of training.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2

6 NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

for SGD. Furthermore, as shown in the Supplementary Note 3, if
a learning rate smaller than the optimized one is used, GRAPES
shows a robust rising trend for different network depth and layer
sizes, whereas with SGD the accuracy either saturates or
deteriorates for increasing network complexity. In addition, as
shown in Fig. 4d, GRAPES exhibits a much faster convergence
compared with SGD. Unlike SGD, especially for small learning
rate values, GRAPES benefits from a greater network complexity
and converges even faster when deeper networks are used,
indicating that GRAPES enhances the most relevant weight
updates. Therefore, GRAPES not only improves the model
performance and scalability, but it also provides a useful tool to
mitigate issues such as lower accuracy and slower convergence
rate that arise when the learning rate is not carefully optimized.

Performance under various learning rules and data sets.
GRAPES can be combined with a wide range of momentum-
based optimizers (e.g., NAG, rmsprop) and credit assignment
strategies (e.g., FA, DFA, IFA). When combined with DFA, the
computation of the modulation factor requires a modification.
Since in DFA the propagation of the error occurs directly from
the output layer to each hidden layer, the dimensionality of the
error terms is different with respect to BP. Therefore, in order to
incorporate the modulation factor in the error term, we compute

the importance based on the presynaptic grouping

iln ¼ ∑
K

post¼1
Wlþ1

post;n

�
�
�

�
�
�; ð6Þ

where K is the number of outgoing connections from node n in
layer l. We point out that, while DFA solves the weight transport
problem31, the propagating version of GRAPES requires to pro-
pagate the modulation factors from the output to the input layer,
thereby still incurring in the weight transport requirement.

Figure 5 shows the improvements obtained by GRAPES in
terms of accuracy and convergence rate when applied to FA and
DFA over two data sets more challenging than MNIST: Fashion
MNIST43 and Extended MNIST44. We test networks with
increasing layer size and with varying learning rate. We
demonstrate that, when the optimal learning rate is used, for
each model size GRAPES yields a better accuracy than SGD.
Furthermore, similarly to BP, FA shows a rising trend of
performance for increasing layer sizes. However, this trend was
not observed with DFA. In terms of convergence rate, GRAPES
combined with FA strongly mitigates the degradation for small
learning rates. With DFA, GRAPES has a better slowness value
than SGD for almost all models, both for large and small learning
rates. Supplementary Table 4 shows that comparable improve-
ments in accuracy and slowness are obtained under a wide range

a b

c d

Fig. 4 GRAPES applied to BP on MNIST. Results of training fully connected models on MNIST with BP and SGD, with and without GRAPES. The red curves
and bars correspond to the networks trained with GRAPES, whereas the blue curves and bars to the networks trained with SGD. a Testing curve (dotted
line) and fit using the plateau function (solid line) for the 10 × 256 ReLU network, trained without dropout. The fit is performed on the initial 100 epochs of a
single trial. b Test accuracy of networks with four hidden layers as a function of the layer size. The learning rate is optimized separately for SGD and for
GRAPES. For different layer size, the optimal learning rate slightly varies. For most layer sizes the optimal learning rate is η= 0.1 for SGD and η= 0.05 for
GRAPES. Each curve is a cross section of the bar plot in panel c along the learning rate axis. c Test accuracy of networks with four hidden layers as a
function of the layer size and the learning rate, trained with 10% dropout. d Convergence rate of the models in (c). In panels c, d for visualization purposes
the bases of the SGD and GRAPES bars are slightly shifted from each other. The actual learning rates and layer sizes are the same for both and are reported
in the axes' labels. For panels b–d the accuracy for each run is computed as the mean of the test accuracy over the last 10 training epochs. The reported
result is the mean and standard deviation (error bars in b) over the accuracy of 10 independent runs.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2 ARTICLE

NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

of network settings. Furthermore, in Supplementary Tables 5–8
we report the performance of GRAPES applied on several feed-
forward models proposed in ref. 31 and ref. 45. These results
demonstrate that when GRAPES is applied on top of momentum-
based optimizers, in most cases it leads to better accuracy than
such optimizers in their original formulation.

Finally, we test the performance of the convolutional version of
GRAPES on residual networks46 trained on CIFAR-1047 and
CIFAR-10048. Specifically, we train a residual nine-layer archi-
tecture similar to49 with the Adam optimizer, with and without
GRAPES. Neither weight decay nor weight normalization is

applied. When GRAPES is used, the modulation is applied after
the batch normalization and the nonlinearity. The learning rate is
optimized separately for Adam and GRAPES (see Supplementary
Table 9). The results are reported in Table 1. The best accuracy
per dataset is reported in bold. Overall, GRAPES combined with
Adam outperforms the standard Adam optimizer also on a
residual architecture.

Mitigation of catastrophic forgetting. Catastrophic forgetting
refers to the phenomenon affecting neural networks by which the
process of learning a new task causes a sudden and dramatic
degradation of the knowledge previously acquired by the system5.
This represents a key limitation of ANNs, preventing the successful
reproduction of continual learning occurring in the human
brain50,51. Some of the most successful proposed approaches that
enable lifelong learning rely on replay. This scheme involves fine-
tuning models with old inputs52 or their related compressed
representations53. While replay is a biologically plausible mechan-
ism, its application to the training of ANNs introduces additional
computational steps and modifies the input sequence to include
information about previous instances. Here, we show that the
application of GRAPES mitigates, to a certain extent, the effects of
catastrophic forgetting in ANNs without introducing additional
steps or replaying data of previous instances.

a b

c d

Fig. 5 GRAPES applied to FA and DFA on Extended and Fashion MNIST. Test accuracy and convergence rate in terms of slowness value for three-hidden
layer ReLU networks, with 10% dropout, trained with FA on the Extended MNIST and DFA on the Fashion MNIST dataset, as a function of the layer size and
the learning rate. The slowness parameter is computed by fitting the initial 100 epochs. The accuracy for each run is computed as the mean of the test
accuracy over the last 10 training epochs. The reported result is the mean over the accuracy of ten independent runs. a Test accuracy and b convergence
rate for FA on Extended MNIST. c Test accuracy and d convergence rate for DFA on Fashion MNIST. For visualization purposes, the bases of the SGD and
GRAPES bars are slightly shifted from each other. The actual learning rates and layer sizes are the same for both and are reported in the axes' labels.

Table 1 Test accuracy on the CIFAR-10 and CIFAR-100
datasets for CNNs trained with BP and Adam, with and
without GRAPES modulation.

Optimizer CIFAR-10 CIFAR-100

Adam 84.78 ± 0.20 58.20 ± 0.39
Adam+ GRAPES 85.59 ± 0.17 58.85 ± 0.38

The network is a nine-layer residual architecture. The learning rate is decayed by 90% every 50
epochs and the initial learning rate is η = 1e − 2. The models are trained for 250 epochs. The
accuracy for each run is computed as the mean of the test accuracy over the last 10 training
epochs. The reported result is the mean and standard deviation over the accuracy of ten
independent runs. The bold font indicates the best performance for each dataset.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2

8 NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

f

dc

LE
AR

N
TA

SK
 1

LE
AR

N
TA

SK
 2

LE
AR

N
TA

SK
 3

LE
AR

N
TA

SK
 4

LE
AR

N
TA

SK
 5

-10.1%

-6.5%

-3.6%
-1.8%

LE
AR

N
TA

SK
 1

LE
AR

N
TA

SK
 2

LE
AR

N
TA

SK
 3

LE
AR

N
TA

SK
 4

LE
AR

N
TA

SK
 5

-8.0%

-4.9%
-2.8%
-1.4%

e

LE
AR

N
TA

SK
 1

LE
AR

N
TA

SK
 2

LE
AR

N
TA

SK
 3

LE
AR

N
TA

SK
 4

LE
AR

N
TA

SK
 1

LE
AR

N
TA

SK
 2

LE
AR

N
TA

SK
 3

LE
AR

N
TA

SK
 4

ba

-15.2%

-8.4%

-4.7%

-1.7%

-16.7%

-10.2%

-6.1%

-1.8%

Fig. 6 Mitigation of catastrophic forgetting. Following the protocol in ref. 54 for catastrophic forgetting, we train ReLU networks with SGD with and
without GRAPES on a sequence of tasks. Each task is defined by a random pattern of Np pixel permutations, which is applied to all MNIST train and test
images. The networks are trained sequentially on each task for Ne epochs. At the end of each training epoch, the networks are tested on both the task they
are being trained on as well as the tasks they have already learnt (e.g., while learning task 1 they are tested only on task 1, and while learning task 2 they are
tested on both task 2 and 1 to observe performance degradation on task 1). Panels a and b show the resulting test curves for 2 × 256 networks trained on
the Avalanche benchmark with Np= 28 × 28 permutations (i.e., no overlap between tasks) and Ne= 1 epoch per task. For the optimization, we used SGD
with momentum with default parameters. The results are mean and standard deviation over ten independent runs. Panels c and d show the resulting test
curves for 3 × 256 networks trained with Np= 600 permutations (i.e., small overlap between tasks) and Ne= 10 epochs per task. For the optimization, we
used SGD without momentum. Panels e and f report the per-task-future-accuracy (56) on unseen tasks obtained with the same task setup as in (c) and (d).
The tasks are defined by Np= 600 (panel e) and Np= 300 (panel f) pixel permutations, respectively. The networks are first trained on each task for
Ne= 10 epochs and then tested on all the unseen tasks (e.g., after learning task 1, the per-task-future-accuracy is reported for unseen tasks 2, 3, 4, 5).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2 ARTICLE

NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications

To analyze catastrophic forgetting in a sequence of supervised
learning tasks, we have adopted the protocol proposed in ref. 54.
For each task, we randomly generate a permutation pattern of a
fraction of image pixels and we apply it to all the training and
testing samples of the MNIST data set. We perform the training
sequentially for all tasks for a fixed number of epochs, and, after
each training epoch, we test the network performance on all the
previously learnt tasks. First, we follow the protocol for the
permuted MNIST proposed in the standardized benchmark
Avalanche55, which involves the permutation of all image pixels,
therefore no overlap is present among tasks (Fig. 6a, b). Then, we
use a custom task setup in which we regulate the fraction of

permuted pixels per task, thereby exploring how GRAPES can
exploit overlapping pixels among tasks. For each task, 600
random permutations are applied (see Fig. 6c, d). Both without
and with overlapping pixels between the tasks, we observe that,
compared with SGD, the drop in accuracy observed after learning
each new task is considerably reduced when GRAPES is applied.
In the latter case, the fraction of overlapping pixels among tasks
reduces the accuracy degradation and its variability across
different runs. Furthermore, the models, both with SGD and
GRAPES, are able to exploit information from previous tasks,
such that for each new task the test accuracy after one epoch is
higher than for the previous tasks. Such accuracy is always better

a

b

c

Fig. 7 Experiments with spiking neural networks. a Test accuracy for SNU and sSNU networks with three and two hidden layers, respectively. The results
are mean and standard deviation of the test accuracy after training over five independent runs. b Test curves for SNU 3 × 256 networks with decreasing
values for the learning rate η. Left hand-side: η= 0.01. Right hand-side: η= 0.001. The initial 100 training epochs are shown. c Test curves for sSNU
networks with increasing number of hidden layers. Left hand-side: 4 × 256 networks. Right hand-side: 6 × 256 networks. In (b) and (c) the curves
correspond to a single run.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2

10 NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

for GRAPES than for SGD. We used the same learning rate for
GRAPES and SGD (η= 0.001). If a larger learning rate is used,
the performance degradation of SGD with respect to GRAPES
further worsens (see Supplementary Fig. 3). We remark that the
average learning rate for GRAPES is higher than that of SGD, so
we could expect a higher performance degradation with respect to
SGD. However, the importance-based modulation of the updates
mitigates catastrophic forgetting more effectively than a uniform
change of the learning rate.

Furthermore, we analyzed the effect of GRAPES under a
second interesting aspect of incremental learning: the general-
ization to unseen tasks. Following the paradigm proposed in
ref. 56, we compute the per-task-future-accuracy, by testing the
model performance on tasks it has not been trained on yet. We
initially used the same protocol with 600 permutations as in
Fig. 6c, d, hence different tasks are only slightly correlated with
each other (the total number of pixels is 784). Figure 6e shows
that in most cases the networks trained with GRAPES show better
generalization capability on unseen permutations. The absolute
accuracy is, though, very low. Thus, we decreased the number of
permutations to 300, leading the tasks to have a stronger
correlation with each other. The results are reported in Fig. 6f.
We observe that both SGD and GRAPES achieve well above-
chance level accuracy. The generalization capability increases
with the number of tasks learnt. Consistently with the results
obtained with 600 permutations, GRAPES in most cases leads to
higher accuracy than SGD. Therefore, both in the case of almost
uncorrelated and partially correlated tasks, GRAPES proves to be
more effective in achieving knowledge transfer to future tasks
compared with SGD. We ascribe this remarkable result mainly to
two properties of GRAPES. First, GRAPES enhances the updates
related to a subset of parameters based on their importance. At
each new task, such subset may vary, thus the learning focuses on
different groups of synapses, thereby better-preserving knowledge
on the old tasks. Secondly, as shown in Supplementary Note 4,
the weights learnt with GRAPES are distributed with a larger
variance in comparison to the weights learnt with SGD. We
speculate that such a distribution might be more robust to
performance degradation when the network is trained on a
sequence of tasks.

Application of GRAPES to biologically inspired neural net-
works. SNNs are neural network models that attempt to mimic
the complex neuronal dynamics of the mammalian brain33.
Moreover, the development of SNNs is driven by the ultimate
goal to implement embedded neuromorphic circuits, with high
parallelism, low-power consumption, fast inference, event-driven
processing, and online learning57,58. Given its biological
inspiration, GRAPES holds great potential to boost the perfor-
mance of SNNs. We apply GRAPES on SNN architectures
implemented through the spiking neural unit (SNU) approach59,
which unifies SNNs with recurrent ANNs by abstracting the
dynamics of a LIF spiking neuron60 into a simple recurrent ANN
unit. SNUs may operate as SNNs, with a step function activation,
or as more conventional RNNs, with continuous activations. The
non-spiking variant is called soft SNU (sSNU).

We train both SNU and sSNU models on temporal data
derived from the MNIST data set. To that end, we encode the
MNIST handwritten digit examples into spikes using the rate
coding method as described in59. The depth of the network for
optimal performance is found to be three hidden layers for SNU,
and two hidden layers for sSNU. Figure 7a reports the accuracy
results. For both models, GRAPES surpasses the classification
accuracy obtained with SGD for different layer sizes. Further-
more, GRAPES renders the networks robust against

hyperparameter choice and model complexity. As can be seen
in Fig. 7b for SNUs, the convergence of SGD-based training is
heavily affected by changes in the magnitude of the learning rate
η. As η is decreased, the number of training epochs needed to
trigger efficient learning dramatically rises. When GRAPES is
introduced, the model reaches well above-chance performance in
only a few epochs. Furthermore, as illustrated for sSNUs in
Fig. 7c, SGD struggles in triggering learning of networks with
increasing depth, requiring almost 100 epochs to start effective
training of six hidden layer networks. GRAPES overcomes this
issue, by enabling the deep models to converge with a lower
number of epochs.

Discussion
Inspired by the biological mechanism of non-linear synaptic
integration and local synaptic strength regulation, we proposed
GRAPES (Group Responsibility for Adjusting the Propagation of
Error Signals), a novel optimizer for both ANN and SNN train-
ing. GRAPES relies on the novel concept of node importance,
which quantifies the responsibility of each node in the network, as
a function of the local weight distribution within a layer. Applied
to gradient-based optimization algorithms, GRAPES provides a
simple and efficient strategy to dynamically adjust the error signal
at each node and to enhance the updates of the most relevant
parameters. Compared with optimizers such as momentum, our
approach does not need to store parameters from previous steps,
avoiding additional memory penalty. This feature makes
GRAPES more biologically plausible than momentum-based
optimizers, as neural circuits cannot retain a substantial frac-
tion of information from previous states61.

We validated our approach with ANNs on five static data sets
(MNIST, CIFAR-10, CIFAR-100, Fashion MNIST and Extended
MNIST) and with SNNs on the temporal rate-coded MNIST. We
successfully applied GRAPES to different training methods for
supervised learning, namely BP, FA, and DFA, and to different
optimizers, i.e., SGD, RMSprop, and NAG. We demonstrated that
the proposed weight-based modulation leads to higher classifi-
cation accuracy and faster convergence rate both in ANNs and
SNNs. Next, we showed that GRAPES addresses major limita-
tions of ANNs, including mitigation of performance saturation
for increasing network complexity6 and catastrophic forgetting5.

We suggest that these properties stem from the fact that
GRAPES effectively combines in the error signal information
related to the response to the current input with information on
the internal state of the network, independent of the data sample.
Indeed, GRAPES enriches the synaptic updates based on the
input-driven responsibility with a modulation relying on the
network-driven responsibility, which indicates the potential
impact that a node would have on the network’s output, inde-
pendently on the input. Such a training strategy endows networks
trained with GRAPES with the ability to achieve convergence in a
lower number of epochs, as the training is not constrained to
information depending only on the presented training samples.
For the same reason, such networks present better generalization
capability than SGD both when tested on the learnt tasks and
when presented with unseen tasks in continual learning scenarios.
In this context, we identify parallelism with plasticity types in the
brain. The change in synaptic strength in response to neuronal
activity results from the interplay of two forms of plasticity:
homosynaptic and heterosynaptic. Homosynaptic plasticity
occurs at synapses active during the input induction, thus is
input-specific and associative, as the input-driven responsibility.
Instead, heterosynaptic plasticity concerns synapses that are not
activated by presynaptic activity and acts as an additional
mechanism to stabilize the networks after homosynaptic

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2 ARTICLE

NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 |www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications

changes62,63. Therefore, similarly to the network-driven respon-
sibility, heterosynaptic plasticity does not exhibit strict input
specificity.

Our algorithm appears to have certain similarity with existing
normalization schemes64 and the Winner-take-all computational
primitive65. However, as GRAPES relies on the concept of
network-driven responsibility, its main computations are based
on synaptic strength rather than on synaptic activity. In parti-
cular, the operations of summing the weight strength and the
normalization in Eq. (2) require that neurons communicate their
synaptic strength. We remark that the normalization operation is
introduced to project the importance vector into a meaningful
interval, in which values larger than 1 lead to enhancement of the
weight updates, and smaller than 1 imply weakening of the
updates. The same numerical results can be achieved by per-
forming the vector normalization by dividing by the mean of the
importance values (or the total sum of the importance values),
and later multiplying by 2 ´ meanðiÞ

maxðiÞ (resp. by 2´
sumðiÞ
maxðiÞ) rather than

2. Furthermore, previous work has contemplated the possibility
that neurons communicate synaptic strengths. For instance, in18,
the authors propose the summed-weight limit rule for hetero-
synaptic long-term depression: when the summed weight of
synapses into (or out of) a neuron exceeds a limit, all the
incoming (or outgoing) synapses to that neuron are weakened.
Such a mechanism implies that synapses communicate infor-
mation about the values of the synaptic weights to the post-
synaptic node, and such information is used to modulate the
synaptic weights in a non-local fashion. A second example is the
theory of retroaxonal signals and neural marketplace proposed
in66,67. Experimental evidence suggests that neurons are capable
of carrying retroaxonal signals through molecules known as
neurotrophic factors, which can encode information both on
synaptic strength and on its temporal derivative. Such informa-
tion is used to promote or hinder the consolidation of synaptic
weights’ changes. The theory of the neural marketplace builds on
the mechanism of retroaxonal signaling and proposes a model for
how networks of neurons in the brain self-organize into func-
tional networks. Both the neural marketplace theory and the
GRAPES algorithm rely on the propagation of information about
the weights and their changes, hence the two frameworks present
several analogies. First, the retroaxonal signals control the plas-
ticity of synapses by modulating the synaptic updates. Similarly,
the importance vector is used in GRAPES to modulate the weight
changes prescribed by BP. Secondly, the retroaxonal signals car-
rying information on weight strength and weight change travel
slowly; similarly, the information in GRAPES is only applied after
each batch. Third, both the information propagated through
neurotrophin and the importance in GRAPES do not depend on
gradients. Finally, the theory in67 introduces the concept of worth
of a cell, which measures the usefulness of the cell’s output, and is
defined as the worsening in network performance if the cell were
to die. A cell is inactivated if all its incoming connections are
zeroes, hence the worth of a cell is related to the strength of the
incoming synapses to the cell. Therefore, the worth can be related
to the concept of node importance in GRAPES. In conclusion, the
underlying ideas of GRAPES are inspired by the concepts of node
importance, error modulation, and communication of weight
strength, which are supported by experiments investigating the
role of dendritic integration, synaptic scaling and retroaxonal
signaling. While the biological inspiration is grounded on these
mechanisms, only the high-level concept of GRAPES-like plasti-
city modulation is compatible with plasticity modulation princi-
ples observed in neural circuits.

The benefits of GRAPES stem from the adjustment of the error
signal. The nonuniform distribution of the modulation factor,

combined with the propagation to upstream layers, allows
GRAPES to greatly enhance a subset of synaptic updates during
training. Hence, small groups of synapses are enabled to
strengthen or weaken to a much larger extent than with SGD.
From preliminary investigation, GRAPES appears to convey the
network weights toward more biologically plausible distribution,
specifically heavy-tailed distributions68–71. Additional details are
provided in Supplementary Note 4. We suggest that the proper-
ties exhibited by GRAPES could stem from such a weight dis-
tribution. Ongoing work in our group is currently seeking a more
comprehensive understanding of this phenomenon.

Remarkably, our results suggest that GRAPES offers a pro-
mising strategy for mitigating the performance degradation
caused by hardware-related constraints, such as noise and
reduced precision, as discussed in Supplementary Note 5. We
highlight that these constraints reflect biological circuits in many
aspects, as the synaptic transmission is affected by noise and the
neural signal is quantized. Interestingly, GRAPES retains many
similarities with biological processes. We, therefore, envision that
the biological mechanisms underlying GRAPES may play a cen-
tral role in overcoming the limitations associated with hardware-
related constraints. Furthermore, we suggest that such brain-
inspired features are at the origin of the benefits of GRAPES on
biologically-inspired models. Indeed, we have demonstrated that
GRAPES not only improves BP-based training of standard ANNs,
but additionally boosts substantially the performance of networks
trained with biologically plausible credit assignment strategies,
such as FA and DFA, and networks relying on the dynamics of
spiking neurons. Both the FA algorithms and the SNN models are
crucial steps towards bridging biological plausibility and machine
learning. However, at the present stage, they can only achieve a
limited performance compared to ANNs trained with BP58,72. For
instance, as shown in the Results section, both the FA and SNNs
approaches suffer from lower accuracy and convergence rate
compared with BP, and SNNs training is severely affected by
changes in network complexity and hyperparameters. Thanks to
an efficient modulation of the error signal which enhances the
updates of the most important parameters, GRAPES reduces the
impact of such limitations, thereby narrowing the gap between
the performance of bio-inspired algorithms and standard ANNs.

To conclude, our findings indicate that incorporating GRAPES
and, more generally, brain-inspired local factors in the optimi-
zation of neural networks paves the way for pivotal progress in
the performance of biologically inspired learning algorithms and
in the design of novel neuromorphic computing technologies.

Methods
MNIST data set. We train FCNNs with three and ten hidden layers, each con-
sisting of either 256 or 512 hidden nodes. The activation functions chosen for the
hidden layers are rectified linear unit (ReLU) or hyperbolic tangent (tanh). The
output activation is softmax with cross-entropy loss function. With ReLU hidden
nodes the weights are initialized according to73, with tanh units according to74. The
batch size is fixed to 64. The learning rate η is optimized for the different models,
separately for SGD and GRAPES, and is kept fixed during training. Supplementary
Table 10 reports the optimized learning rate as well as detailed simulation settings
for all simulations. We investigate the performance both without dropout75 and
with moderate dropout rates of 10 and 25%. We also show the accuracy
improvement of the models that are trained with an augmented version of the data
set, built by applying both affine and elastic deformation on the training set,
similarly as proposed in ref. 76. To compute the accuracy, we train the models on
the training set and after each epoch we test the performance on the test set.
Following the strategy in ref. 76, we report the best test accuracy throughout the
entire simulation. For all settings, we average the result over five independent runs.

Scalability to complex networks. We train networks with layer sizes ranging from
128 to 1024 and with depth from 2 to 12 hidden layers. Each network is trained
with ReLU, 10% dropout rate, and for 200 epochs. The learning rate is kept

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2

12 NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

constant to η= 0.001. As in the previous section, we report the best testing
accuracy obtained throughout the entire training, averaged over five runs.

Catastrophic forgetting. In the simulations based on the Avalanche library, the
networks, containing 2 × 256 ReLU hidden layers, are trained with momentum for
one epoch on each task. In our task setting, for each task, 600 random permuta-
tions are applied. We train 3 × 256 ReLU FCNN networks on the training samples
using shuffling and minibatch processing for a fixed number of epochs. We set the
number of training epochs per task to 10. In both settings, we use a constant
learning rate η= 0.001. We introduce a dropout rate of 10%. For all settings, we
average the result over five independent runs.

Spiking neural networks. We train SNU and sSNU networks on the rate-coded
MNIST data set. The dynamics of the units and the training protocol are the same
as described in ref. 59. The only difference with respect to the original SNU network
in ref. 59 is the introduction of a soft-reset to smoothen the training process of the
spiking units. We performed a grid-search for the hyperparameters. For the SNU
networks the optimal configuration is three-hidden layer and constant learning rate
η= 0.1. For sSNU models the optimal configuration is two-hidden layers with
constant η= 0.2. The networks are trained for 200 epochs. The number of steps of
input presentation is set to Ns= 20 during train and Ns= 300 during test. The
mean and standard deviation of the final accuracy are computed over 5 runs.

Programming. The learning experiments of the ANN simulations were run using
custom-built code in Python3 with the Numpy library. The SNU and sSNU-based
simulations were performed using the original TensorFlow code from the Sup-
plementary Material of59.

Data availability
The data sets used for the simulations are publicly available. Furthermore, source data are
provided with this paper.

Code availability
The program codes used for the numerical simulations are available at the repository
https://github.com/IBM/GRAPES77.

Received: 23 April 2021; Accepted: 15 March 2022;

References
1. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in

nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).
2. Thompson, N. C., Greenewald, K., Lee, K. & Manso, G. F. The computational

limits of deep learning. Preprint at https://arxiv.org/abs/2007.05558 (2020).
3. Rumelhart, D. E., Durbin, R., Golden, R. & Chauvin, Y. Backpropagation: The

Basic Theory 1–34 (L. Erlbaum Associates Inc., USA, 1995).
4. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw.

61, 85–117 (2015).
5. French, R. M. Catastrophic forgetting in connectionist networks. Trends Cogn.

Sci. 3, 128–135 (1999).
6. Ba, J. & Caruana, R. Do deep nets really need to be deep? In Advances in

Neural Information Processing Systems Vol. 27, 2654–2662 (Curran Associates,
Inc., 2014).

7. Polydoros, A. & Nalpantidis, L. Survey of model-based reinforcement
learning: Applications on robotics. J. Intell. Robotic Syst. 86, 153 (2017).

8. Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. Proceedings of the 32nd
International Conference on Machine Learning, vol. 37 of Proceedings of
Machine Learning Research, 448–456 (PMLR, Lille, France, 2015).

9. Ba, J. L., Kiros, J. R. & Hinton, G. E. Layer normalization. NIPS'2016 Deep
Learning Symposium (Curran Associates Inc., 2016).

10. Salimans, T. & Kingma, D. P. Weight normalization: A simple
reparameterization to accelerate training of deep neural networks. Advances in
Neural Information Processing Systems, vol. 29 (Curran Associates, Inc., 2016).

11. Richards, B. et al. A deep learning framework for neuroscience. Nat. Neurosci.
22, 1761–1770 (2019).

12. Williams, S. R. & Stuart, G. J. Synaptic Integration (American Cancer Society,
2001).

13. Etherington, S. J., Atkinson, S. E., Stuart, G. J. & Williams, S. R. Synaptic
integration. Encyclopedia of Life Sciences. 1–12 (Wiley Library, Chichester,
England, U.K., 2010).

14. Williams, S. & Atkinson, S. Dendritic synaptic integration in central neurons.
Curr. Biol.: CB 18, R1045–7 (2008).

15. Li, X., Luo, S. & Xue, F. Effects of synaptic integration on the dynamics and
computational performance of spiking neural network. Cogn. Neurodyn. 14,
347–357 (2020).

16. Whittington, J. & Bogacz, R. Theories of error back-propagation in the brain.
Trends Cogn. Sci. 23, 235–250 (2019).

17. Royer, S. & Paré, D. Conservation of total synaptic weight through balanced
synaptic depression and potentiation. Nature 422, 518–522 (2003).

18. Fiete, I. R., Senn, W., Wang, C. Z. H. & Hahnloser, R. H. R. Spike-time-
dependent plasticity and heterosynaptic competition organize networks to
produce long scale-free sequences of neural activity. Neuron 65, 563–576
(2010).

19. Turrigiano, G., Leslie, K., Desai, N., Rutherford, L. & Nelson, S. Activity-
dependent scaling of quantal amplitude in neocortical neurons. Nature 391,
892–6 (1998).

20. Turrigiano, G. The self-tuning neuron: Synaptic scaling of excitatory synapses.
Cell 135, 422–35 (2008).

21. Moulin, T. C., Rayêe, D., Williams, M. J. & Schiöth, H. B. The synaptic scaling
literature: A systematic review of methodologies and quality of reporting.
Front. Cell. Neurosci. 14, 164 (2020).

22. Ibata, K., Sun, Q. & Turrigiano, G. Rapid synaptic scaling induced by changes
in postsynaptic firing. Neuron 57, 819–826 (2008).

23. Nøkland, A. & Eidnes, L. H. Training neural networks with local error signals.
In Proceedings of the 36th International Conference on Machine Learning Vol.
97, 4839–4850 (2019).

24. Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T. & Lin, Z. Towards
biologically plausible deep learning. Preprint at https://arxiv.org/abs/
1502.04156 (2016).

25. Abraham, W. Metaplasticity: Tuning synapses and networks for plasticity.
Nat. Rev. Neurosci. 9, 387 (2008).

26. Pfeiffer, M., Nessler, B., Douglas, R. J. & Maass, W. Reward-modulated
Hebbian learning of decision making. Neural Comput. 22, 1399–1444 (2010).

27. Legenstein, R., Chase, S. M., Schwartz, A. B. & Maass, W. A reward-modulated
Hebbian learning rule can explain experimentally observed network
reorganization in a brain control task. J. Neurosci. 30, 8400–8410 (2010).

28. Frémaux, N., Sprekeler, H. & Gerstner, W. Functional requirements for
reward-modulated spike-timing-dependent plasticity. J. Neurosci. 30,
13326–13337 (2010).

29. Soltoggio, A. & Stanley, K. O. From modulated Hebbian plasticity to simple
behavior learning through noise and weight saturation. Neural Netw. 34,
28–41 (2012).

30. Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic
feedback weights support error backpropagation for deep learning. Nat.
Commun. 7, 13276 (2016).

31. Nokland, A. Direct feedback alignment provides learning in deep neural
networks. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, 1045–1053 (Curran Associates Inc.,
Red Hook, NY, USA, 2016).

32. Bailey, C., Giustetto, M., Huang, Y.-Y., Hawkins, R. & Kandel, E. Is
heterosynaptic modulation essential for stabilizing hebbian plasticity and
memory? Nat. Rev. Neurosci. 1, 11–20 (2000).

33. Ghosh-Dastidar, S. & Adeli, H. Spiking neural networks. Int. J. Neural Syst. 19,
295–308 (2009).

34. Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M. & Tolias, A. S. Engineering a less
artificial intelligence. Neuron 103, 967–979 (2019).

35. Chicca, E. & Indiveri, G. A recipe for creating ideal hybrid memristive-CMOS
neuromorphic processing systems. Appl. Phys. Lett. 116, 120501 (2020).

36. Spruston, N. Pyramidal neurons: Dendritic structure and synaptic integration.
Nat. Rev. Neurosci. 9, 206–21 (2008).

37. Brette, R. Philosophy of the spike: Rate-based vs. spike-based theories of the
brain. Front. Syst. Neurosci. 9, 151 (2015).

38. Nesterov, Y. A method for solving the convex programming problem with
convergence rate o(1/k2). Proc. USSR Acad. Sci. 269, 543–547 (1983).

39. Tieleman, T. & Hinton, G. Lecture 6.5—RmsProp: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning (2012).

40. Darken, C., Chang, J. & Moody, J. Learning rate schedules for faster stochastic
gradient search. In Neural Networks for Signal Processing II Proceedings of the
1992 IEEE Workshop 3–12 (IEEE, 1992).

41. LeCun, Y. & Cortes, C. MNIST handwritten digit database. http://
yann.lecun.com/exdb/mnist/ (2010).

42. Michaelis, L. & Menten, M. Kinetik der invertinwirkung. Biochem. Zeitung 49,
333–369 (1913).

43. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: A novel image dataset for
benchmarking machine learning algorithms. Preprint at https://arxiv.org/abs/
1708.07747 (2017).

44. Cohen, G., Afshar, S., Tapson, J. & van Schaik, A. Emnist: Extending mnist to
handwritten letters. In 2017 International Joint Conference on Neural
Networks (IJCNN) 2921–2926 (IEEE, 2017).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2 ARTICLE

NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 |www.nature.com/naturecommunications 13

https://github.com/IBM/GRAPES
https://arxiv.org/abs/2007.05558
https://arxiv.org/abs/1502.04156
https://arxiv.org/abs/1502.04156
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
www.nature.com/naturecommunications
www.nature.com/naturecommunications

45. Frenkel, C., Lefebvre, M. & Bol, D. Learning without feedback: Fixed random
learning signals allow for feedforward training of deep neural networks.
Frontiers in Neuroscience 15, 629892 (2021).

46. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 770–778 (IEEE, 2016).

47. Krizhevsky, A., Nair, V. & Hinton, G. Cifar-10 (Canadian institute for
advanced research, 2009) http://www.cs.toronto.edu/k̃riz/cifar.html.

48. Krizhevsky, A., Nair, V. & Hinton, G. Cifar-100 (Canadian institute for
advanced research, 2009) http://www.cs.toronto.edu/k̃riz/cifar.html.

49. M., W. cifar10-resnet. https://github.com/matthias-wright/cifar10-resnet
(2019).

50. Muñoz-Martín, I. et al. Unsupervised learning to overcome catastrophic
forgetting in neural networks. IEEE J. Exploratory Solid-State Comput. Devices
Circuits 5, 58–66 (2019).

51. Kemker, R., McClure, M., Abitino, A., Hayes, T. & Kanan, C. Measuring
catastrophic forgetting in neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence 32 (AAAI Press, 2018).

52. Castro, F. M., Marín-Jiménez, M. J., Guil, N., Schmid, C. & Alahari, K. End-to-
End Incremental Learning. In ECCV 2018 - European Conference on
Computer Vision (eds Ferrari, V., Hebert, M., Sminchisescu, C. & Weiss, Y.)
Vol. 11216, 241–257 (Springer, Munich, Germany, 2018).

53. Hayes, T. L., Kafle, K., Shrestha, R., Acharya, M. & Kanan, C. REMIND your
neural network to prevent catastrophic forgetting. European Conference on
Computer Vision - ECCV 2020 (Springer, 2020).

54. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks.
Proc. Natl Acad. Sci. USA 114, 3521–3526 (2017).

55. Lomonaco, V. et al. Avalanche: an end-to-end library for continual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 3600–3610 (IEEE, 2021).

56. Sodhani, S., Chandar, S. & Bengio, Y. Toward training recurrent neural
networks for lifelong learning. Neural Comput. 32, 1–35 (2020).

57. Carrillo, S. et al. Scalable hierarchical network-on-chip architecture for spiking
neural network hardware implementations. IEEE Trans. Parallel Distributed
Syst 24, 2451–2461 (2013).

58. Pfeiffer, M. & Pfeil, T. Deep learning with spiking neurons: Opportunities and
challenges. Front. Neurosci. 12, 774 (2018).

59. Wozniak, S., Pantazi, A., Bohnstingl, T. & Eleftheriou, E. Deep learning
incorporating biologically inspired neural dynamics and in-memory
computing. Nat. Mach. Intell. 2, 325–336 (2020).

60. Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition 3–27 (Cambridge
University Press, 2014).

61. Pehlevan, C. & Chklovskii, D. B. Neuroscience-inspired online unsupervised
learning algorithms: Artificial neural networks. IEEE Signal Process. Mag. 36,
88–96 (2019).

62. Chistiakova, M., Bannon, N. M., Bazhenov, M. & Volgushev, M.
Heterosynaptic plasticity: Multiple mechanisms and multiple roles.
Neuroscientist 20, 483–498 (2014).

63. Caya-Bissonnette, L. Heterosynaptic plasticity in cortical interneurons. J.
Neurosci. 40, 1793–1794 (2020).

64. Bird, A. D., Jedlicka, P. & Cuntz, H. Dendritic normalisation improves
learning in sparsely connected artificial neural networks. PLOS Computational
Biology 17, 1–24 (2021).

65. Kaski, S. & Kohonen, T. Winner-take-all networks for physiological models of
competitive learning. Neural Netw. 7, 973–984 (1994). Models of
Neurodynamics and Behavior.

66. Harris, K. D. Stability of the fittest: Organizing learning through retroaxonal
signals. Trends Neurosci. 31, 130–136 (2008).

67. Lewis, S. N. & Harris, K. D. The neural marketplace: I. General formalism and
linear theory. Preprint at bioRxiv https://doi.org/10.1101/013185 (2014).

68. Buzsáki, G. & Mizuseki, K. The log-dynamic brain: How skewed distributions
affect network operations. Nat. Rev. Neurosci. 15, 264–278 (2014).

69. Iyer, R., Menon, V., Buice, M., Koch, C. & Mihalas, S. The influence of
synaptic weight distribution on neuronal population dynamics. PLoS Comput.
Biol. 9, 1–16 (2013).

70. Teramae, J. & Fukai, T. Computational implications of lognormally
distributed synaptic weights. Proc. IEEE 102, 500–512 (2014).

71. Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly
nonrandom features of synaptic connectivity in local cortical circuits. PLoS
Biol. 3, e68 (2005).

72. Bartunov, S. et al. Assessing the scalability of biologically-motivated deep
learning algorithms and architectures. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS’18 9390–9400
(Curran Associates Inc., 2018).

73. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV) 1026–1034 (IEEE,
2015).

74. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics Vol. 9, 249–256 (PMLR,
2010).

75. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.
Improving neural networks by preventing co-adaptation of feature detectors.
Preprint at https://arxiv.org/abs/1207.0580 (2012).

76. Cireŧan, D. C., Meier, U., Gambardella, L. M. & Schmidhuber, J. Deep, big,
simple neural nets for handwritten digit recognition. Neural Comput. 22,
3207–3220 (2010).

77. Dellaferrera, G. Introducing principles of synaptic integration in the
optimization of deep neural networks. https://zenodo.org/badge/latestdoi/
437031807 (2022).

Acknowledgements
We thank the reviewers for their many insightful comments and suggestions. We thank
W. Senn, T. Bohnstingl, M. Dazzi, S. Nandakumar, A. Stanojevic, M. Pizzochero, L.
Petrini, S. Dellaferrera, and our colleagues at the IBM Neuromorphic Computing and IO
Links team for fruitful discussions. Figure 1 has been created with BioRender.com.

Author contributions
G.D. conceived the idea. G.D., S.W., G.I., A.P., and E.E. identified the properties of the
proposed algorithm in terms of error modulation, scalability, catastrophic forgetting, and
behavior under hardware constraints. G.D. designed and performed the simulations.
G.D., S.W., G.I., A.P., and E.E. analyzed the results. G.D. wrote the manuscript with input
from the other authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-29491-2.

Correspondence and requests for materials should be addressed to Giorgia Dellaferrera.

Peer review information Nature Communications thanks Thomas Pfeil, Ron Kemker,
and the other, anonymous, reviewer(s) for their contribution to the peer review of
this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29491-2

14 NATURE COMMUNICATIONS | (2022) 13:1885 | https://doi.org/10.1038/s41467-022-29491-2 | www.nature.com/naturecommunications

http://www.cs.toronto.edu/k�riz/cifar.html
http://www.cs.toronto.edu/k�riz/cifar.html
https://github.com/matthias-wright/cifar10-resnet
https://doi.org/10.1101/013185
https://arxiv.org/abs/1207.0580
https://zenodo.org/badge/latestdoi/437031807
https://zenodo.org/badge/latestdoi/437031807
https://doi.org/10.1038/s41467-022-29491-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Introducing principles of synaptic integration in the optimization of deep neural networks
	Results
	The GRAPES algorithm
	Simulation results on handwritten digit classification
	Performance under various learning rules and data sets
	Mitigation of catastrophic forgetting
	Application of GRAPES to biologically inspired neural networks

	Discussion
	Methods
	MNIST data set
	Scalability to complex networks
	Catastrophic forgetting
	Spiking neural networks
	Programming

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

