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Group testing via hypergraph factorization applied
to COVID-19
David Hong 1, Rounak Dey 2, Xihong Lin 2,3,4✉, Brian Cleary 4✉ & Edgar Dobriban1✉

Large scale screening is a critical tool in the life sciences, but is often limited by reagents,

samples, or cost. An important recent example is the challenge of achieving widespread

COVID-19 testing in the face of substantial resource constraints. To tackle this challenge,

screening methods must efficiently use testing resources. However, given the global nature of

the pandemic, they must also be simple (to aid implementation) and flexible (to be tailored

for each setting). Here we propose HYPER, a group testing method based on hypergraph

factorization. We provide theoretical characterizations under a general statistical model,

and carefully evaluate HYPER with alternatives proposed for COVID-19 under realistic

simulations of epidemic spread and viral kinetics. We find that HYPER matches or outper-

forms the alternatives across a broad range of testing-constrained environments, while

also being simpler and more flexible. We provide an online tool to aid lab implementation:

http://hyper.covid19-analysis.org.
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B iological screens that identify members of a large popula-
tion with a disease have become invaluable tools for disease
diagnosis and surveillance. When these screens are difficult

to conduct or resources are limited, finding an efficient way to
conduct the screen becomes critical. As such, widespread, scal-
able, and frequent testing is a defining challenge in combatting
COVID-19 in the face of local, national, and global resource
constraints. Pooled testing has recently arisen as a promising
efficient scientific solution to the world-wide challenge of
increasing COVID-19 testing capacity1–17, encouraged in part by
the finding that a single positive sample can be reliably detected
by RT-qPCR in large pools18.

The idea to test pools of samples dates back to the seminal
work of Dorfman19. Dorfman testing is a two-stage approach
where each individual is assigned to exactly one pool. In the first
stage, pools are tested and each negative test result for a pool is
applied to all its members. Only the remaining individuals (who
are considered putative positives) are then individually tested in
the second stage, which can greatly increase efficiency, depending
on the pool size and prevalence of positive members of the
population. A major strength of this approach is its simplicity
(and thus robustness) in laboratory implementation; pools are
easy to form and putative positives are simply the individuals in
positive pools. Indeed, several early proposals4–7 for COVID-19
pooled testing focus on Dorfman testing. However, it is well-
known that Dorfman testing can have sub-optimal efficiency9–12;
alternative designs use tests more efficiently and can thus screen
more individuals, especially in the face of significant resource
constraints.

There has been tremendous study and progress on pooled
testing (also called group testing or specimen pooling) in general.
Numerous works provide statistical20–24, combinatorial25–30, and
information theoretic31–44 perspectives, as well as software45,46 to
aid implementation, to name just a few. In addition, there has
been a lot of work on analyzing and optimizing these methods for
various constraints and evaluation criteria47–57, often in the low
prevalence regime. Broadly speaking, the approaches fall into
three categories: (i) one-stage (or nonadaptive) approaches that
identify positive individuals after only one round of pooled tests
by using pools with carefully designed overlaps; (ii) two-
stage56–59 approaches (like Dorfman testing) that perform a
first round of pooled tests to declare putative positives who are
then individually tested in the second round; and (iii) multi-
stage59,60 (or adaptive/hierarchical) approaches that perform
multiple rounds of pooled tests with pools chosen at each round
based on the previous rounds.

Many recent works8–10,12–16,61 focus on developing pooled
testing methods for COVID-19. We will focus here on one-stage
and two-stage approaches; multi-stage approaches can make
robust lab implementation more difficult and can take longer to
complete, which can make them less suitable for time-sensitive
public health settings like COVID-19 testing. A leading one-stage
method for COVID-19 is P-BEST8, which splits each of 384
individuals into 48 partially overlapping pools and is designed for
a prevalence around 1%. The pool assignments are based on a
Reed-Solomon error-correcting code that enables identification
from the single round of tests and provides robustness against,
e.g., independent PCR failures. Positive individuals are identified
by running a specialized decoding algorithm based on sparse
regression. A leading two-stage method is plate-based array
pooling9, which arranges individuals into either an 8 × 12 or
16 × 24 grid (corresponding to plate sizes common in laboratory
environments), then takes each column and each row to be a
pool, resulting in 20 pools for 96 individuals or 40 pools for 384
individuals, respectively. Each individual is split into two pools
and is a putative positive only if both the pools test positive. This

approach retains some of the simplicity of Dorfman testing, while
being potentially more efficient since individuals in only one
positive pool do not need to be tested in stage 2. Overall, these
pooling strategies can provide effective approaches for addressing
the urgent, global need for efficient screening.

However, given the global nature of the pandemic, there are a
wide variety of settings with differing needs and constraints, in
which the proposed combinatorial designs may have limited
utility11. P-BEST splits each sample into six pools, which can be
time-consuming and error-prone to execute by hand, making it
best-suited for well-resourced labs that have robotic-pipetting
platforms. The specialized decoding algorithm used by P-BEST
also adds complexity, making it more difficult to understand and
implement without prior experience and expertise. Moreover,
P-BEST and plate-based arrays (as well as many other proposed
designs) are somewhat rigid and can be nontrivial to adapt to
allow widely varying numbers of individuals screened per batch,
available test kits, or prevalence of positive results. For COVID-19
screening in resource-limited settings, adapting to these various
conditions is critical to achieving the greatest effectiveness11.
Therefore, for this (and other) applications of pooled screening,
there remains an outstanding need for a simple and flexible
method that can be robustly implemented in diverse environ-
ments (without special equipment or expertise) and that can
be easily tailored to optimize effectiveness (for diverse resource
constraints).

We propose HYPER, a two-stage pooled testing method based
on the combinatorics of hypergraph factorization. While the
underlying mathematics is sophisticated, the resulting pools are
simple to implement by hand (individuals are split at most three
ways), and putative positives can easily be identified with only
pencil and paper. We also provide an online tool (http://
hyper.covid19-analysis.org) to facilitate implementation. The
design accommodates any number of individuals while main-
taining balance and efficiency. We characterize its behavior under
a common statistical model and investigate its real-world
COVID-19 performance through realistic simulations that
model both viral kinetics and epidemic spread. HYPER outper-
forms both plate-based arrays and P-BEST in our experiments.
These methods are particular instances of general array-based
and code-based designs, so we also consider the broad classes of
balanced arrays and Reed-Solomon Kautz-Singleton (RS-KS)
code-based designs. In our experiments, HYPER also matches
or outperforms these broad classes even in the scenarios where
those classes excel in efficiency. For COVID-19 and beyond,
HYPER represents a valuable addition to the growing toolbox for
performing large-scale, pooled screens.

Results
The need for simple and flexible pooling designs that are
balanced. A pooling design is an assignment of each of n indi-
viduals (or more generally, samples) to one or several of m pools.
We seek a simple and flexible pooling design that is balanced in
the following natural ways (see the Supplementary Material for a
formal definition):

(i) All individuals are assigned to the same number q of pools;
we focus on q ≤ 3 to aid lab implementation.

(ii) The m pools are assigned as evenly as possible, i.e., the sizes
of the pools are as close as possible to equal.

(iii) The m
q

� �
possible pool combinations are assigned as evenly

as possible.

Similar but nonidentical balance conditions have been widely
studied in group testing (see the references above). The balance
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conditions we consider here come from various naturally-arising
real-life considerations that are especially relevant for COVID-19
testing. To begin, they all help make the pooling process more
consistent, making robust implementation and quality control
easier. For example, pool size determines how much volume to
pipette from each individual in the pool. Balanced assignment of
pools produces uniform pool sizes, making the volumes to pipette
consistent across the design. Combined with a uniform assign-
ment of all the individuals to q pools, this also makes the volume
needed from each individual consistent. Furthermore, a simple
way to reduce pipetting steps in practice is to first pool
individuals assigned to the same pool combination, then split
this combined sample into the assigned pools. Balanced assign-
ment of pool combinations makes the size of each of these
combined samples consistent. Put together, these various forms
of consistency simplify the pooling process and make it easier
to add checks along the way, both of which help make it less
error-prone.

Beyond making the pooling process more consistent, balance
may also help make the performance of designs more consistent.
For example, larger pools dilute positive samples more, which can
increase the risk of false negatives. Balancing the assignment of
pools can help make this reduction in sensitivity uniform across
individuals. This is important in real-world testing; all individuals
in the design should receive the same treatment. Similarly,
balancing the assignment of pool combinations can help make
efficiency more consistent by reducing the dependence of the
stage 2 workload on which pool combinations test positive. This
consistency in turn may help labs to plan so they can efficiently
allocate tests. We study how balance impacts the consistency of
both sensitivity and efficiency in more detail under the COVID-
19 model below.

To summarize, real-world testing has a need for simple and
flexible pooling designs that are also maximally balanced. Such
designs aid robust lab implementation and encourage consistent
performance across individuals. However, such designs turn
out to be nontrivial to develop, and existing designs do not
sufficiently address this aspect of real-world testing (see the
Supplementary Material for more discussion). This paper fills the
gap with HYPER, a simple and flexible method with maximally
balanced pooling designs.

HYPER pooling method. We propose HYPER, a two-stage
pooling strategy that uses maximally balanced pools. The first
stage consists of pooled testing to identify putative positives, and
the second stage consists of individually testing the putative
positives. Individuals are assigned to pools in the first stage by
cycling through a sequence of pool assignments obtained by
solving a mathematical problem called hypergraph factorization.
We explain the details here via a small example with n= 12
individuals each split into q= 2 out of m= 6 pools (Fig. 1).

The first step (Setup) is to obtain a sequence of pool
assignments (AB, CD, etc.) via hypergraph factorization. As
illustrated in Fig. 1, we think of the m pools (A-F) as vertices (i.e.,

the black labeled points) and the m
q

� �
possible pool assignments

(AB, AC, etc.) as hyperedges (i.e., the blue lines connecting q
vertices each). A set of hyperedges (taken with the set of vertices)
is called a hypergraph, and factorizing the hypergraph means
partitioning the hyperedges (i.e., pool assignments) into subsets
that each use all the vertices (i.e., pools) exactly once (see the
Supplementary Material for more detail). In our example, this
yields the five subsets shown as little hypergraphs within the circle
of pool assignments: {AB, CD, EF}, {BC, DF, AE}, and so on.
The setup step concludes by simply reading off the list to obtain

the sequence of pool assignments: AB, CD, EF, BC, and so on
until AC.

The next step (Stage 1) is pooled testing to identify putative
positives. First, place individuals in pools by cycling through the
sequence of pool assignments, i.e., individual 1 is placed in pools
A and B, individual 2 is placed in pools C and D, and so on. This
yields a pooling design that assigns the n= 12 individuals to
q= 2 of the m= 6 pools (which we denote as H12,6,2). We do not
use all 6

2

� � ¼ 15 pool assignments in the sequence here since there
are only 12 individuals. For more than 15 individuals, we would
simply cycle through the sequence again until all the individuals
were assigned. Next, we test the pools (pools B-D test positive in
our example), and from these results, we identify putative
positives in a process called decoding. For this step, HYPER uses
conservative decoding, in which an individual is declared putative
positive if it was in no negative pools. Namely, we eliminate all
individuals in negative pools; the remaining individuals (who are
in only positive pools) are the putative positives. Performing
this elimination process in our example yields putative positive
individuals 2, 4, and 7.

The final step (Stage 2) is individual testing of the putative
positives. In our example, this means performing individual tests
for individuals 2, 4, and 7. Individuals 4 and 7 test positive, so
HYPER concludes by declaring them positive and declaring
everyone else negative.

Note that the pooling design above is maximally balanced: each
individual is in two pools, each pool contains four individuals,
and each pool pair is assigned either once or never. Indeed,
HYPER guarantees this balance in general by exploiting the
properties of hypergraph factorization (see the Supplementary
Material). Note that the HYPER pooling design is also flexible: it
handles any number of individuals n by simply cycling through
the sequence obtained in the setup stage. Moreover, the
hypergraph factorization needed to obtain that sequence can be
efficiently constructed for q= 1 (for any m), for q= 2 (as long as
m is even), and for q= 3 (as long as m is a multiple of six and
m− 1 is a prime number); see the Supplementary Material for
details. This covers a very wide range of useful design parameters
(n,m, q), and we provide an online tool (available at http://
hyper.covid19-analysis.org) that generates pool assignments using
these constructions, simplifying lab implementation for HYPER.
The pools are also simple to implement in the lab and simple to
decode, and the decoder can also be extended to correct for some
false negatives (see the Supplementary Material). Table 1
summarizes these features of HYPER and compares with plate-
based arrays9 and P-BEST8, as well as two existing random
designs: random assignment11 (i.e., assign each individual to
q pools independently and uniformly at random) and double-
pooling62 (i.e., partition the individuals into m/2 pools twice).

Performance under a common statistical model. We study the
performance of HYPER under a common statistical model for
group testing19–24. In this model, each individual (or in general
contexts, each sample) is positive independently at random with
probability p (where p is the disease prevalence) and the tests have
independent errors. Namely, each test has a sensitivity of β and a
specificity of 1− α, i.e., it returns positive with probability β if it
contains a positive individual and returns negative with prob-
ability 1− α if it contains no positive individuals. This model
differs from the COVID-19 model we consider in the rest of the
paper, but is also important to study since the potential appli-
cations of HYPER extend beyond COVID-19. Throughout this
analysis, we further suppose that n is a multiple of m/q so that
the pools are perfectly balanced with k= nq/m individuals
per pool. Note that this is not a significant restriction; for the
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testing-constrained settings we are most interested in, the most
effective designs often have large n relative to m/q. Here, we
present our key results (see the Supplementary Material for
further details and derivations).

Our first result characterizes the expected number of tests EðTÞ
used by HYPER (including the tests from stage 2). In particular,
we have shown the following upper bound (which holds with

equality when n < m
q

� �
and q ≤ 2):

EðTÞ≤mþ n � 1� qp1 þ
q
2

� �
p2

h i
; ð1Þ

where p1= 1− β+ (β− α)rk, p2 ¼ p21 þ ðβ� αÞ2r2k�uð1� ruÞ,
r= 1− p, and u ¼ m�2

q�2

� �
� dn= m

q

� �
e. In fact, we have derived a

sharper (but more complicated) version of this bound valid for all
q using the Dawson-Sankoff inequality63,64 (see the Supplemen-
tary Material). We have also studied the overall accuracy of

HYPER. In particular, for q ≤ 2 and n≤ m
q

� �
, we have shown that

the overall sensitivity and specificity are as follows:

Sensitivity: PrðbXi ¼ 1jXi ¼ 1Þ ¼ βqþ1;

Specificity: PrðbXi ¼ 0jXi ¼ 0Þ ¼ 1� αγ;
ð2Þ

where Xi denotes the true status of individual i, bXi is the status
declared by HYPER, γ ¼ ½βþ ðα� βÞ � rk�1�q, and the probabil-
ities are with respect to the random test errors and the random
positivity of the other individuals. The corresponding false

Setup: factorize the hypergraph (for m=6 pools
with q=2 splits)

A

B

C

D

E

F

vertices : pools (A-F)

edges : all possible

individual pool

assignments

(AB,AC,...)

to obtain a sequence of individual pool assignments
(AB, CD, EF, BC, ...):

AB
CD

EF

BC

DF

AE
BDAFCE

BE

CF

AD

BF

DE
AC

1
indiv

2
indiv

...

Stage 1: pooled testing of the n=12 individuals.

Individual pool assignments obtained from setup

AB CD EF BC DF AE BD AF CE BE CF AD

Individual 1 2 3 4 5 6 7 8 9 10 11 12 Test

Pool A

Pool B

Pool C

Pool D

Pool E

Pool F

Decoding P P P

Conclusion: individuals 2, 4 and 7 are putative positives (P).

Stage 2: individual testing of the putative positives (P).

Individual 2 4 7

Test Result

Final conclusion: identify 4 and 7 as positive.

Example: n=12 individuals, m=6 pools, q=2 splits; individuals 4 and 7 are positive ( ). Online tool: http://hyper.covid19-analysis.org

Fig. 1 Illustration of HYPER. Stage 1 tests pools that are formed by cycling through a sequence of pool assignments generated via hypergraph factorization.
Putative positives are individuals that are not in any negative pools (decoding). Stage 2 tests the putative positives individually. In this example, n= 12
individuals (2 of whom are actual positives) are each split into q= 2 of m= 6 pools; three are decoded as putative positives and both positives are
successfully identified in stage 2.

Table 1 Comparison of various features of HYPER with existing methods.

Plate-based arrays9

HYPER 8 × 12 16 × 24 P-BEST8 Random assignment11 Double-pooling63

# individuals per batch (n) Any 96 384 384 Any Multiple of m/2
# pools (m) Variable 20 40 48 Any Even
# splits (q) ≤ 3 2 6 Any 2
# stages Two Two One Two Two
Max. balanced pools ✓ × ✓ ×w.h.p.a ✓
Max. balanced combinations ✓ ✓ ✓ ×w.h.p.a × w.h.p.a

Simple to implement by hand ✓ ✓ × ✓ ✓
Flexible/easily adapted ✓ × × ✓ ✓
Simple to decode by hand ✓ ✓ × ✓ ✓
Corrects false positive ✓ ✓ ✓ ✓ ✓
Corrects false negatives Optional × ✓ Optional ×

aWith high probability, i.e., probability of failure≫ 0.
In contrast to the existing methods, HYPER is simple to implement, flexible to adapt, and maximally balanced.
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negative and true positive probabilities (which can help guide
how one interprets statuses declared by HYPER) are as follows:

False negative probability: PrðXi ¼ 1jbXi ¼ 0Þ ¼ 1þ o 1�αγ
1�βqþ1

� ��1
;

True positive probability: PrðXi ¼ 1jbXi ¼ 1Þ ¼ 1þ o αγ
βqþ1

� ��1
;

ð3Þ
where o= (1− p)/p is the odds ratio of prevalence. We illustrate
some of these results with numerical simulations in Supple-
mentary Fig. 1a to f. Notably, the sensitivity of HYPER under
this model is independent of the pool sizes (in contrast to the
COVID-19 model below). While it is beyond our present scope
to do a thorough comparison, we note that corresponding
calculations of sensitivity and specificity under this model have
also been reported for array methods21. Note also that the
sensitivity of HYPER under this model may be improved via
error-correction of false negatives in stage 1 (see the Supple-
mentary Material). However, doing so can come at the cost of
efficiency, and analyzing this tradeoff is also beyond our
present scope.

Focusing on the noiseless setting, i.e., test sensitivity and
specificity close to 1 (α= 0, β= 1), enables some further
investigation. We first consider choosing optimal HYPER design
parameters for large batches (n→∞) with diminishing pre-
valence (p→ 0). In this regime, we show that the optimal number
of pools per individual m/n and the corresponding expected tests
per individual EðTÞ=n for HYPER with q= 2 are approximately
(Supplementary Fig. 1g, h)

m=n � 2p2=3 � p; EðTÞ=n � 3p2=3:

This improves upon Dorfman testing, for which the optimal
expected tests per individual is approximately EðTÞ=n � 2p1=2 in
this regime20, and it matches that of three-stage Dorfman
testing20,62. Designs with better efficiency in this regime are
available in the literature, but they typically rely on using multiple
stages10,20 or taking q much larger47–54, each of which is outside
our constraints (see the Supplementary Material for more
discussion).

In the context of widely-spread infectious disease, it is also
important to consider fixed (non-diminishing) prevalence p > 0,
i.e., the linear regime34–36. Recent works in this regime have
considered two problem formulations where group testing
increases efficiency. The first problem is to maximize efficiency
using any group testing method (i.e., any number of stages, any
decoder, etc.). The second problem adds some real-life constraints
by instead allowing only two-stage group testing methods with
conservative decoding36, such as array methods and HYPER. We
compared known lower bounds for these two problems with the
upper bound for HYPER given above, with m and q numerically
optimized for n= 6144 (Supplementary Fig. 2). As one
would naturally expect, better efficiency is achievable for problem
1, e.g., by using fully-adaptive methods35, since it is much less
constrained than problem 2. For problem 2, which incorporates
real-life constraints, HYPER appears to be somewhat close to
optimal.

To summarize, these results characterize the expected effi-
ciency and accuracy of HYPER under a standard statistical model.
The model captures important features of many applications
beyond COVID-19 testing and provides a useful setting to
evaluate HYPER. We found that for noiseless tests, the efficiency
of HYPER for diminishing prevalence is competitive with other
existing methods of comparable simplicity. For two-stage
conservative testing with non-diminishing prevalence, HYPER
appears to be somewhat close to optimal.

Performance under a COVID-19 model. We study the perfor-
mance of HYPER under the viral load based COVID-19 model of
Cleary and Hay et al.11 It simulates: (a) SARS-CoV-2 viral load
kinetics in infected individuals; (b) the dilution of viral loads
during pooling that may lead to false negatives; and (c) the
evolution of infection prevalence in a large population over time
during epidemic growth and decline. We focus here on a window
during which the infection prevalence (i.e., the percentage of
individuals with nonzero viral load) increases exponentially from
0.03% to 2.46% (days 40–90 in our simulation) and individual
testing has a sensitivity of roughly 85% (Fig. 2).

We compare q= 2 HYPER designs with Dorfman pooling (i.e.,
q= 1 HYPER designs) and two leading proposals: plate-based
arrays9 and P-BEST8. These methods use batches of n= 96
individuals (8 × 12 array; Fig. 2a) or n= 384 individuals (16 × 24
array and P-BEST; Fig. 2b). For each method, we consider the
efficiency relative to individual testing (i.e., the number of
individuals screened divided by the average number of tests used,
including any stage 2 tests) and the average sensitivity (i.e., the
percentage of positive individuals correctly identified) for each
day in the simulation.

For n= 96 (Fig. 2a), we compare the 8 × 12 array with a q= 2
HYPER design (H96,16,2) and a Dorfman design (H96,8,1), both
chosen to dilute samples a similar amount as the array and thus
have potentially similar sensitivity. Our simulation shows that all
three methods indeed have similar sensitivity, all roughly 10
percentage points lower than that of individual testing (Fig. 2a,
bottom panel) due to the dilution of viral loads below the limit of
detection in pooled testing. For much of the 50-day window, the
array is roughly 4.8 times more efficient than individual testing,
while H96,16,2 is roughly 6 times more efficient than individual
testing (Fig. 2a, top panel). In other words, H96,16,2 is 25% more
efficient than the array with essentially the same sensitivity. The
Dorfman design is initially even more efficient but its efficiency
significantly degrades with increasing prevalence; the q= 2
HYPER design is more efficient once the prevalence exceeds
roughly 1%.

For n= 384 (Fig. 2b), we compare the 16 × 24 array and
P-BEST with a q= 2 HYPER design (H384,32,2) and a Dorfman
design (H384,16,1), both again chosen to dilute samples a similar
amount as the array. The q= 2 HYPER design is again roughly
25% more efficient than the array design (Fig. 2b, top panel) while
having essentially equal sensitivity (Fig. 2b, bottom panel).
Likewise, it is again more efficient than the Dorfman design
once the prevalence exceeds roughly 0.2%. In contrast to these
two-stage methods, the one-stage approach of P-BEST has a
constant efficiency of 8 times individual testing (Fig. 2b, top
panel), but it significantly loses sensitivity around day 80 as
prevalence grows (Fig. 2b, bottom panel). This is because the
design and decoding algorithm are optimized for a prevalence
around 1% and performance degrades beyond this operating
point. For the two-stage methods, sensitivity instead increases.
Notably, error-correcting does not appear to effectively handle
the false negatives that arise here due to diluted viral loads falling
below the limit of detection. P-BEST is generally the least
sensitive among the pooling strategies.

Since the flexibility of HYPER allows for many designs, we next
compared different HYPER designs and their various tradeoffs.
Specifically, we considered various choices for the number of
pools (Fig. 2c, m= 32, 16, 12) and the number of splits (Fig. 2d,
q= 1, 2, 3). Similar to earlier studies of random assignment
designs11, the HYPER designs with a smaller number of pools m
are generally more efficient (especially when the prevalence is
small) but slightly less sensitive. Likewise, designs with a larger
number of splits q are more robust to increasing prevalence (they
do not lose as much efficiency) but they also tend to be less
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sensitive. Overall, more efficient designs tend to be less sensitive,
creating a trade-off that depends significantly on prevalence.

We also expanded the above comparisons in a few ways. First,
we considered HYPER designs that match the number of pools in
the plate-based arrays (Supplementary Fig. 3); these designs had
essentially the same efficiency as their plate-based array counter-
parts but slightly higher sensitivity. Similarly, we considered
HYPER designs that match the number of pools and the pool
sizes of P-BEST (Supplementary Fig. 4). Matching the number of
pools yielded similar efficiency to P-BEST at low prevalence but
better sensitivity, while matching the pool sizes yielded similar
sensitivity at low prevalence but better efficiency. We also
compared HYPER with additional methods, beginning with
balanced variants of the plate-based arrays (square arrays with
holes), random assignment11, and double-pooling62 (Supplemen-
tary Fig. 5). The balanced arrays have similar efficiency but

slightly higher sensitivity than their plate-based array counter-
parts, so HYPER is again roughly 25% more efficient but is now
slightly less sensitive. Random assignment and double-pooling
have similar average performance to their corresponding HYPER
designs. However, as discussed below, their performance can be
more inconsistent. Since plate-based arrays and P-BEST are
particular instances of general array-based and code-based
designs, we also considered more general balanced arrays (that
place multiple individuals in some array cells) and Reed-Solomon
Kautz-Singleton (RS-KS) code-based designs (Supplementary
Fig. 6). Compared to both these methods, HYPER had similar
or better performance, with greater improvements in efficiency
for more aggressive designs that use fewer pools and yielded
greater efficiency at low prevalence.

Finally, we investigated how the balance of HYPER designs
impacts the consistency of performance across individuals. In
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Fig. 2 Efficiency and sensitivity of pooled testing during a simulated epidemic. Average values of efficiency (relative to individual testing) and sensitivity
of a variety of pooling designs are shown for each day, with results averaged across 200,000 random trials. For sensitivity, raw averages are shown as dots
with degree-8 polynomial fits overlaid as curves; the curves for efficiency depict raw averages. During the days 40–90 (highlighted), the prevalence grows
exponentially from 0.03% to 2.46%. a, b Comparison of HYPER with alternative methods that use n= 96 individuals per batch (a) or n= 384 individuals
per batch (b). HYPER designs with q= 2 splits were chosen to have the same maximum pool sizes (nq/m= 12 for H96,16,2; nq/m= 24 for H384,32,2) as the
array designs. Dorfman designs (i.e., HYPER designs with q= 1) with matching pool sizes are also included. Sensitivity (bottom panels) depends heavily on
pool sizes, due to dilution of viral loads. c, d HYPER evaluated with varying numbers of pools (c, m= 32, 16, 12) and numbers of splits (d, q= 1, 2, 3). The
designs are affected by the increasing prevalence over time to varying degrees. As prevalence increases, efficiency decreases (as more stage 2 tests
become necessary), while sensitivity increases (as larger viral loads begin to rescue small viral loads that would have been missed). More efficient designs
tend to be less sensitive, creating a trade-off.
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particular, we studied how the sensitivity and efficiency achieved
for a single positive individual varies as a function of where that
individual is placed in the design (Supplementary Fig. 7). We
compared HYPER with random assignment, double-pooling,
consecutive pooling, lexicographic pooling, balanced arrays, and
RS-KS codes. Overall, the designs with balanced pools (double-
pooling, consecutive pooling, balanced arrays, RS-KS codes, and
HYPER) had uniform sensitivity. Designs with imbalanced pools
use varying volumes from each individual and dilute their viral
loads to varying degrees, which can result in uneven sensitivity.
Similarly, the designs with balanced pool combinations (lexico-
graphic pooling and HYPER) had uniform efficiency. Consecu-
tive pooling had uniform but lower efficiency; it uses only a subset
of the possible pool combinations but does so in a balanced way.
HYPER, which has perfectly balanced pools and pool combina-
tions, had uniform sensitivity and efficiency. Moreover, its
median efficiency (5.68 individuals/test) and median sensitivity
(74.4%) were generally among the best.

Choosing a pooling method given resource constraints. In
practice, decision makers must often choose a pooling method
given limited resources for daily testing and sample collection.
One approach is to maximize the number of individuals screened
per day, i.e., the number of individuals n per batch times the
number of batches b that can be run per day. However, while this
metric accounts for the impact of resource constraints, it does not
represent the actual number of infected individuals that the
population screen can identify. A very efficient method could
screen numerous individuals but still miss all the infected ones if
it is not also sensitive.

Thus, we instead consider maximizing the number of
individuals screened times the average sensitivity, i.e., an effective
number of individuals screened per day, which we call the
“effective screening capacity”. Specifically, we study the problem
of maximizing the effective screening capacity across days 40–90
of the above COVID-19 simulation (Fig. 2), given a range of
resource constraints (limited amount of sample collection and
testing). A nice property of the effective screening capacity is that
scaling it by prevalence measures the average number of infected
individuals per day that are identified by the screen. This makes it
especially meaningful to maximize in public health contexts,
where the goal may be to find and isolate as many infected
individuals as possible. Here, we compare HYPER (optimized
over a sweep of design parameters; Table 2) with individual
testing, plate-based arrays9 (optimized across the two configura-
tions), and P-BEST8. We will first consider a few specific
scenarios to understand the tradeoffs with each method, then
consider a larger grid to get a picture of the overall trends.

We first consider a testing-scarce setting (Fig. 3a) with an
average testing budget of 12 tests per day that is far outstripped by
an average sample collection budget of 3072 samples per day. In
this case, individual testing only screens 12 individuals and
achieves an effective screening capacity of 10.2 individuals
per day (the average sensitivity of individual testing is 84.8%
since some positive individuals have viral load below the limit of
detection). In contrast, the best HYPER design here (H192,6,2)
achieves an effective screening capacity of 122.2 individuals
per day, roughly 12 times that of individual testing. It does so by
pooling n= 192 individuals per batch into q= 2 of m= 6 pools
with an average of b ≈ 0.9 batches run per day (recall that some of
the testing budget is used by stage 2 tests). Both plate-based
arrays and P-BEST use more than 12 tests in a single run so do
not satisfy the testing constraints here.

As the testing budget grows to 24 then 48 tests (Fig. 3b, c) with
the sample budget unchanged, larger effective screening capacities

become possible by using larger designs, including the 8 × 12
array followed by the 16 × 24 array and P-BEST. HYPER adapts
to these settings as well, and the larger designs here are
accompanied with a larger number of splits q. HYPER remains
the most effective overall, achieving effective screening capacities
~15 times that of individual testing and ~3 times those of the
plate-based arrays and P-BEST.

When the testing budget grows to 768 tests per day (Fig. 3d),
i.e., one-fourth of the sample collection budget, the pooled testing
methods remain more effective than individual testing, but now
by less than 4 times. In this increasingly testing-rich regime,
P-BEST and the plate-based arrays are sample-constrained and
under-utilize testing resources. P-BEST uses only mb= 384 of the
768 available tests, since all 3072 available samples are tested after
b= 8 batches of n= 384 samples. The same is true for the 16 × 24
array design, although additional tests are used in stage 2. The
most effective HYPER design H6,1,1 corresponds to simple
Dorfman testing, uses roughly 508 tests in the first stage, and
achieves an effective screening capacity of 2375.1 individuals
per day.

Finally, we consider two settings well-suited for plate-based
arrays and P-BEST: 96 samples with 24 tests (Fig. 3e) for which
the 8 × 12 array is well-suited (recall that some of the testing
budget is used by stage 2 tests), and 384 samples with 48 tests
(Fig. 3f) for which the 16 × 24 array and P-BEST are well-suited.
Namely, these are settings where the sampling and testing
budgets are close to the number of individuals and tests used by
these designs. This can help them maximally utilize both the
testing and sample collection budgets, i.e., neither resource is
under-utilized. The plate-based arrays and P-BEST performed
similarly to HYPER in these favorable cases, but notably HYPER
remained slightly more effective: effective screening capacities of
74.1 vs. 71.1 for the first scenario and 265.5 vs. 262.2 for the
second scenario.

Expanding this analysis to a grid of sampling and testing
budgets gives a broad view of overall trends. We consider a sweep
with each resource budget ranging from 12 to 6144 (Fig. 3g). Note
first that for any given sample collection budget, the effective
screening capacity grows as the testing budget scales up until it
matches or outpaces sample collection. Individually testing all
samples collected is most effective from that point on. Likewise,
for any given testing budget, the effective screening capacity rises
as the sample collection budget grows, eventually reaching an
upper limit at which point testing becomes the limiting factor.
Overall, pooled testing increases this upper limit, enabling an
effective screening capacity far beyond the actual number of
available tests. For example, for a testing budget of 96 tests
per day, pooled testing achieves an effective screening capacity of
up to 1500.9 individuals per day, which is over 18 times the
effective screening capacity of 81.4 individuals per day achievable
by individual testing.

Across the testing-constrained regime, i.e., where the testing
budget is less than the sample collection budget, HYPER
outperforms both plate-based arrays and P-BEST (Fig. 3 and
Supplementary Fig. 10). Notably, Dorfman testing (i.e., HYPER
with q= 1) is most effective when the testing budget is within a
quarter of the sample budget. However, as the sample budget
begins to further outstrip testing, combinatorial designs that
involve more individuals n per batch and that use more splits q
become most effective, consistent with earlier studies of
analogous random designs11.

The above results consider the effective screening capacity of
each method across a 50-day window of epidemic spread. We
next investigated the effective screening capacity on individual
days, each corresponding to a different fixed prevalence. At low to
moderate prevalence of 0.1% (Supplementary Fig. 11), 1.06%
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(Supplementary Fig. 12), or 1.36% (Supplementary Fig. 13),
HYPER is consistently the most effective strategy across all
settings. In an intermediate range with prevalence of 1.48%
(Supplementary Fig. 14) and 2.46% (Supplementary Fig. 15) there
is a subset of scenarios in which P-BEST outperforms HYPER,
although the performance of each method is nearly equivalent in
these settings. Outside these settings P-BEST is either not viable
or substantially under-performs HYPER. At a higher prevalence
of 3.15% (Supplementary Fig. 16) HYPER again performs best
across all scenarios. We did not observe any scenarios in which
plate-based arrays were most effective.

As before, since plate-based arrays9 and P-BEST8 are particular
instances of general array-based and code-based designs, we also
considered balanced arrays and RS-KS code-based designs
(Supplementary Figs. 17 to 20). The balanced arrays were
optimized over the same set of design parameters as HYPER
(Table 2). On the other hand, RS-KS designs are available for only
a limited subset (indicated in Table 2 by asterisks), so we also
considered a Restricted HYPER that was optimized over the same
subset. In our simulations, HYPER (and Restricted HYPER) were
either more effective or about as effective as balanced arrays and
RS-KS designs across the grid of resource constraints and were
significantly more effective in important testing-constrained
settings. Note also that the balanced arrays and RS-KS designs

we considered are actually extended variants that allow arbitrarily
many individuals (see the Supplementary Material). HYPER
outperforms the unextended variants even more since the most
effective design parameters in testing-constrained settings often
use many individuals. One might also consider forming variants
of each design by concatenating k disjoint copies to obtain a
design with kn individuals and km pools. Indeed, such designs
were already implicitly considered in the above analysis since they
are equivalent to simply running b= k batches.

Discussion
In this paper, we present HYPER, a method for pooled testing with
pooling designs based on hypergraph factorization. Our results
demonstrate the effectiveness of this new family of pooling designs
that are adaptable to any number of samples, with only mild con-
ditions on the number of pools, while remaining maximally
balanced in three senses (number of assignments per individual,
pool, and combination of pools). This flexibility is critical to selecting
appropriate designs under the widely varying global demands and
capabilities for COVID-19 testing. In addition, the balanced nature
of the designs ensures uniform treatment of samples and facilitates
robust and simple implementation. Despite the simplicity of
implementing HYPER, the existence and construction of the designs
relies on deep mathematical results from combinatorics.
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Fig. 3 Comparison of pooling methods under resource constraints. HYPER designs (Table 2) were evaluated together with individual testing, plate-based
arrays9, and P-BEST8, across a range of sample collection and testing budgets. The basis for comparison was the effective screening capacity across days
40–90 of the simulation (Fig. 2), during which the prevalence increases exponentially from 0.03% to 2.46%. Bar plots on the left depict the effective
screening capacities (bar height) in a testing-scarce setting (a), followed by increasingly testing-rich settings (b–d) and settings well-suited for the plate-
based arrays and P-BEST (e, f). When multiple designs for a given method were available within the constraints (i.e., various choices of HYPER designs, or
a choice between the 8 × 12 and 16 × 24 arrays), we use the most effective configuration and indicate it in white text within the appropriate bar. The
average number of batches run per day is noted at the bottom of each bar. g Expanded comparison to a grid of sampling and testing budgets. Each cell is
colored by the best method (where we separately identify HYPER designs with q= 1, 2, 3 splits in shades of orange/red), and shows the corresponding
effective screening capacities (in black text). The best design configuration is written in white text. For HYPER, we write the number of individuals per batch
n and the number of pools m for the best configuration; cell color already indicates the number of splits q. Note that n and m often do not match the daily
sampling and testing budgets, respectively, since multiple batches can be run per day. The cases from (a–f) are outlined in black. See Supplementary Fig. 10
for additional details.
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Our evaluation of HYPER in both the general statistical fra-
mework and the COVID-19 simulation can be used to guide the
choice of design, depending on the setting and purpose of testing.
For the general statistical setup, where each test has specificity
1− α and sensitivity β independent of all other tests, we char-
acterized the overall efficiency and accuracy of HYPER. Notably,
we showed that HYPER has sensitivity βq independent of the pool
sizes. Moreover, in the noiseless case, we showed that using
roughly m/n ≈ 2p2/3− p pools per individual maximizes the
efficiency of HYPER designs. From our simulations, which model
various realistic aspects of COVID-19 testing, we found a general
trade-off between efficiency and sensitivity. Under this model,
using larger pools often yields greater efficiency at low prevalence
but also dilutes samples and results in lower sensitivity. One must
consider how to balance these two aspects, and we discuss how
optimizing the effective screening capacity captures both in a
meaningful way.

Given the potential application of HYPER to future epidemics,
it is important to also consider changes in test characteristics or
epidemic dynamics. In our simulations (Supplementary Fig. 8),
increasing the testing sensitivity (by reducing the limit of detec-
tion) led to an increase in sensitivity for all the methods, without
much change in their relative performance. We also considered a
change in epidemic dynamics that models a sustained two-wave
epidemic11. In our simulations (Supplementary Fig. 9), the per-
formance of all the methods varied from one phase of the epi-
demic to the next, but again without much change in their relative
performance. Notably, sensitivity for all the methods (including
individual testing) was lower during the decline phase than the
two growth phases, even with matching prevalence. The viral
loads of infected individuals were generally smaller (and hence
harder to detect) during epidemic decline than they were during
epidemic growth, due to a shift away from recent infections.
Alternatively, if the viral kinetics change so that viral loads peak
later, the smaller viral loads of recently infected individuals may
lead to reduced sensitivity and may alter the difference between
epidemic growth and decline. We expect that these changes
would again affect all methods concordantly. Another important
aspect is the rate of epidemic spread; prevalence for a slowly
spreading epidemic remains low for a longer time, making it
possible to use HYPER designs that sacrifice efficiency at high
prevalence to dramatically increase efficiency at low prevalence.
Overall, while a future epidemic would likely require some ree-
valuation to carefully account for its specific features, we expect
the relative performance of all the methods to remain similar,
making HYPER a promising candidate for future epidemics
as well.

While pooled testing can substantially increase effectiveness
depending on laboratory capacity and prevalence, it is important
to also consider the added logistical challenges. Notably, the gains
in testing effectiveness that we demonstrate above do not account
for the additional pipetting steps during pooling, or the logistical
cost of temporarily storing and retrieving samples for stage 2
testing. However, simple (Dorfman) pooling designs are receiving
increasing interest4–7,17,65 for real-world testing, demonstrating
that these logistical challenges can be overcome in practice in a
variety of settings. In comparison to Dorfman designs, more
complex designs (with q > 1) will require up to q times as many
pipetting steps during stage 1 pooling. Depending on the relative
timing and cost of each step in the protocol, this may shift the
relative favorability of the strategies considered above. In parti-
cular, P-BEST, with q= 6 or more, may become relatively unfa-
vorable if pooling steps are expensive, while plate-based arrays,
which utilize multichannel pipettes, may become more favorable.

An important strength of the conservative decoder we used
here is its conceptual simplicity, which can help reduce the risk of

mistakes in practice. Moreover, it makes it possible to quickly
illustrate (Fig. 1) and explain the method to those who may not
yet be familiar with group testing. Notably, positives are only
declared on the basis of a positive individual test, which can help
make positive results easier to interpret. One can also consider
using alternative decoders, e.g., that may offer more computa-
tionally efficient decoding or that may potentially reduce the
number of stage 2 tests. For example, definite defective (DD)
decoding33,66 identifies putative positives like conservative
decoding but then selects only those who are the only putative
positive in a positive test. This decoder has the potential for
higher efficiency since only the DD putative positives will then be
tested in stage 2. However, in our analysis (Supplementary
Fig. 21), doing so resulted in a significant loss of sensitivity,
making the method less effective overall. Our analysis also con-
sidered using the DD decoder to instead only identify putative
positives that can skip stage 2 and be declared positive. This
approach preserved sensitivity but had a similar efficiency to
conservative decoding so did not yield a significant improvement
either. Exploring even more sophisticated decoders is an inter-
esting direction for future work, though labs will need to assess
whether the benefits outweigh the potentially greater complexity.

So far we have limited HYPER to q ≤ 3. This has the advantage
of reducing the additional logistical burden (and potential for
error) that comes with splitting samples into more pools. More-
over, the efficient construction of hypergraph factorizations is
highly nontrivial for q > 3. However, higher q can have several
advantages. For example, individuals in the same hyperedge (i.e.,
assigned to the same combination of pools) are identified as
putative positives together as a block even if only one of them is
actually positive. Using a higher q can significantly increase the

number of hyperedges m
q

� �
, reducing the number of individuals

sharing a single hyperedge. Results for HYPER here also indicated
that high q designs can be highly effective when the sample
collection resources significantly outstrip the testing resources,
consistent with earlier studies of random assignment11. Likewise,
greater efficiency can be obtained by using a multi-stage approach
with more than two stages, which is also more logistically chal-
lenging. In practice, one must weigh these opportunities for
greater effectiveness against the increased complexity. Such
designs may be especially promising for labs with access to
robotic pipetting platforms.

To conclude, we present a simple, efficient and flexible pooled
testing strategy that can be easily tailored and implemented
without specialized expertise or equipment. To further facilitate
implementation, we provide an online tool available at http://
hyper.covid19-analysis.org that makes it easy to generate and
carry out designs for a broad range of settings.

Methods
Maximal balance, HYPER, and extensions. As described in “Results”, HYPER
provides a simple and flexible pooled testing method that is maximally balanced.
Supplementary Note S1 describes maximal balance in greater detail; it contains
both examples (illustrating each of the three balance conditions) and a formal
mathematical definition. Developing maximally balanced designs turns out to be
nontrivial, as noted above in “Results”. Supplementary Note S2 describes some of
the challenges by considering various existing approaches. It discusses a couple
straightforward but illustrative approaches (consecutive and lexicographic pool-
ing), a couple randomized approaches (random assignment11 and double-
pooling62), exhaustive search, and finally, code-based and array-based approaches.
Each approach falls short of adequately addressing this aspect of pooling design in
some way. Supplementary Note S3 discusses how viewing this challenge through
the lens of hypergraphs (as described above in “Results”) leads naturally to an
approach based on hypergraph factorization. Finally, Supplementary Note S4
describes the efficient constructions of hypergraph factorizations that we use in
HYPER, Supplementary Note S5 describes how the HYPER design fits into the
broader context of design theory, Supplementary Note S6 describes a more con-
venient way of presenting HYPER designs for implementation in the lab, and

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29389-z

10 NATURE COMMUNICATIONS |         (2022) 13:1837 | https://doi.org/10.1038/s41467-022-29389-z | www.nature.com/naturecommunications

http://hyper.covid19-analysis.org
http://hyper.covid19-analysis.org
www.nature.com/naturecommunications


Supplementary Note S7 describes how the decoder can be extended for error-
correction of false negatives.

Balanced arrays and Reed-Solomon Kautz-Singleton (RS-KS) code-based
designs. In addition to plate-based arrays9 and P-BEST8, we also considered
general balanced arrays and Reed-Solomon Kautz-Singleton (RS-KS) code-based
designs. The balanced arrays we considered use two-way (q= 2) and three-way
(q= 3) arrays and make the pools balanced by using square/cube arrays and filling
them in a carefully chosen order. See Supplementary Note S8 for more details and
examples. The RS-KS code-based designs we considered form pools from Reed-
Solomon67 codes using the celebrated Kautz-Singleton31 construction. See Sup-
plementary Note S9 for more details and an example. As noted above in “Results”,
the balanced array and RS-KS code-based designs we considered are in fact
extended variants that allow arbitrarily many individuals; see Supplementary
Notes S8 and S9 for more discussion.

Performance characterization under a common statistical model. As presented
above in “Results”, we analyzed the performance of HYPER under the common
statistical model where each individual (or in more general contexts, each sample)
is positive independently at random with probability p and each test may be
incorrect with some probability, i.e., each test has a specificity of 1− α and a
sensitivity of β. Supplementary Note S10 provides both the detailed derivations of
these results (including a sharper bound on the expected number of tests used by
HYPER) and further discussion of related works on optimality for group testing.

Simulation under the COVID-19 model. We performed simulations studies using
the COVID-19 model of Cleary and Hay et al.11. The model first simulates viral
loads for a large population of npop= 12,500,000 individuals across dpop= 357 days
during which the epidemic grows then declines. It captures the evolution of both:
(a) viral loads within each individual, i.e., within-host viral kinetics, and (b)
infection prevalence in the overall population. See Cleary and Hay et al.11 for a
detailed description. The main output we use is a matrix ZðpopÞ 2 Rnpop ´ dpop of the

population viral loads, where zðpopÞi;d is the viral load of individual i on day d.
Next, the model simulates pooled testing to determine the average efficiency

(relative to individual testing) and average sensitivity for each day. For the reader’s
benefit, we detail the process here. For HYPER designs, i.e., Hn,m,q, the simulation
proceeds for each trial r of day d as follows:

1. Draw n individuals uniformly at random from the population. Let z1,…, zn
be their viral loads that day. That is, draw n indices k1,…, kn uniformly at
random from the set {1,…, npop} (with replacement), and let zi ¼ z ðpopÞ

ki ;d
. Put

another way, z1; ¼ ; zn �
iid
Uniform ðz ðpopÞ

1;d ; ¼ ; zðpopÞnpop ;d
Þ. Individuals with

nonzero viral load are positive/infected.
2. Generate the sampled viral load for each of the m pools I 1; ¼ ; Im �

f1; ¼ ; ng as follows:

vj ¼ ∑
i2I j

Poisson ðzi=jI jjÞ; j ¼ 1; ¼ ;m;

where jI jj is the size of pool j, i.e., the number of individuals assigned to it.
3. Compute stage 1 pooled testing results:

• if vj > LOD then pool j tests positive, where the LOD (limit of detection) we
use is 100.

• otherwise, pool j tests negative with probability 0.99 (i.e., the false-positive
rate of PCR results is 1%).

4. Select putative positives as those individuals that are not in any
negative pools.

5. Compute stage 2 individual testing results for the putative positives: putative
positive individual j tests positive if zj > LOD and tests negative otherwise.

6. Declare individuals identified by HYPER as those that tested positive in
stage 2.

7. Record the following for the current trial r and day d:

• the number of true positive individuals identified by HYPER: nðrÞidenðdÞ,
• the number of tests expended: T(r)(d)=m+ number of tests used in stage
2,

• the number of true positive individuals seen: nðrÞposðdÞ = number of
individuals with viral load > 0.

For each day, we repeat this for 500 initial trials, then continue until either at
least 2500 true positive individuals have been seen or a total of 200,000 trials have
elapsed (including the initial 500). This is to reduce experimental noise. Denoting R
to be the total number of trials run, we then compute the following averages across
trials

�TðdÞ ¼ 1
R
∑
R

r¼1
T ðrÞðdÞ; �nidenðdÞ ¼

1
R
∑
R

r¼1
nðrÞidenðdÞ; �nposðdÞ ¼

1
R
∑
R

r¼1
nðrÞposðdÞ;

then finally compute the average efficiency (relative to individual testing) and

average sensitivity for day d as follows:

efficiencyðdÞ ¼ n=�TðdÞ; sensitivityðdÞ ¼ �nidenðdÞ=�nposðdÞ:
Note that step 2 in the simulation above captures dilution due to pooling, since
each individual’s viral load gets divided by the pool size. The Poisson distribution
models the arrival of viral particles when the small volume is pipetted from each
swab. Note also that step 5 models the individual testing of stage 2 as having no
false positives. Doing so simplifies the simulation without meaningfully affecting
our conclusions (e.g., the most effective pooling designs, which do not depend
substantially on stage 2 specificity). We do include false positives in stage 1, since
the overall efficiency depends on the specificity there. The parameters were chosen
to match earlier modeling studies11,68–70.

For the 8 × 12 and 16 × 24 plate-based array designs9, the simulation proceeds
in the same way except for step 2, where the corresponding array pools are used
instead. Recall that the array method is a two-stage method like HYPER. For
P-BEST8, which is a one-stage method, steps 1–3 are the same (except that step 2
now uses the P-BEST pools). Steps 4–6 are replaced by running the P-BEST
decoder to identify individuals. For this, we followed the example (including its
tuning parameters) provided online by the authors at https://github.com/
NoamShental/PBEST/blob/f7ffebe6c7021ee40167239210806c5a1319f81e/mFiles/
example_PBEST.m. Finally, since P-BEST has no second stage of validation tests,
the number of tests expended is always T ðrÞðdÞ=m= 48. Figure 2 plots the average
efficiencies and average sensitivities of the various methods for each day in a 90-day
window of epidemic growth. Here we included individual testing, which has a
constant average efficiency of 1 (unity) since it is the baseline. Its average sensitivity
on day d is equal to

sensitivityðdÞ ¼ Number of individuals (on that day) with viral load > LOD
Number of individuals (on that day) with viral load > 0

;

since individual testing identifies those individuals with viral load > LOD, and true
positive individuals are those with viral load > 0 (as before). The average
sensitivities of the various methods appeared to generally have significant
experimental noise. So, Figure 2 plots the raw averages (i.e., sensitivityðdÞ) as dots
along with a degree-8 polynomial curve fitted to sensitivityðdÞ vs. log10pðdÞ across
the plotting window of days d= 20,…, 110, where p(d) is the prevalence on day d.

In Fig. 2a, b, we compared HYPER designs H96,16,2 and H384,32,2 with their
counterpart array designs and P-BEST. For the HYPER designs, the numbers n of
individuals per batch were chosen to match the array designs and P-BEST. The
numbers m of pools were chosen so that the corresponding pool sizes nq/m match
the maximum pool sizes of the array designs (12 for the 8 × 12 array and 24 for the
16 × 24 array). Figure 2c compares HYPER designs H384,32,2, H384,16,2, and H384,12,2

that have varying numbers of pools. Figure 2d compares HYPER designs H384,12,1,
H384,12,2, and H384,12,3 that have varying numbers of splits.

Comparison of pooling methods under resource constraints. We used the
simulations above to evaluate the various methods (individual testing, HYPER,
plate-based array designs, P-BEST) under resource constraints and over time. We
considered two forms of resource constraints: (i) a limited daily sample collection
budget, and (ii) a limited daily testing budget. We let both range from 12 to 6144,
forming the grid of resource-constrained scenarios shown in Fig. 3g and Supple-
mentary Fig. 10, with a few selected scenarios highlighted in Fig. 3a to f. These
figures evaluate average performance of the various methods when deployed across
days 40–90 of the simulation. Supplementary Figs. 11 to 16 repeat the analysis
(using the same set of scenarios) for individual days, namely days 53, 80, 83, 84, 90,
and 93. Hence, we will focus on describing Fig. 3 and Supplementary Fig. 10;
Supplementary Figs. 11 to 16 are similar.

In each scenario, we evaluated each method by its effective screening capacity �C
across a set of days D. As discussed in the “Results”, this performance metric
measures how many individuals the method can screen under the resource
constraints, with a correction applied to account for the associated sensitivity.
Figure 3 and Supplementary Fig. 10 consider days 40–90, so D ¼ f40; ¼ ; 90g
there. Supplementary Figs. 11 to 16 examine individual days, which corresponds,
e.g., to D ¼ f53g in Supplementary Fig. 11. To compute the effective screening
capacity, we first determine the number of batches b(d) that can be run on each day
d, and its corresponding average �b:

bðdÞ ¼ min
sample collection budget

n
;
testing budget

�TðdÞ

� �
; �b ¼ 1

jDj ∑d2D bðdÞ:

If �b<0:9 batches per day, i.e., fewer than 0.9 batches can be run per day on average,
then the method is considered infeasible within the resource constraints and we set
the method to have an effective screening capacity of �C ¼ 0. Setting the above
threshold at 0.9 captures an assumed flexibility to use fewer or more tests across
days. Otherwise, if �b≥ 0:9, we compute the effective screening capacity C(d) for
each day d and the effective screening capacity �C across the days D as follows:

CðdÞ ¼ n ´ bðdÞ|fflfflfflffl{zfflfflfflffl}
#individuals screened

´ sensitivityðdÞ; �C ¼ 1
jDj ∑d2DCðdÞ:

Figure 3a to f shows the effective screening capacities for the considered methods as
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bars, with the corresponding average number of batches noted at the bottom of
each bar. Multiple configurations are available for both the array method (the
8 × 12 and 16 × 24 array designs) and HYPER (various choices of n, m, and q). For
these methods, we select the most effective among all configurations, i.e., the
configuration with the highest effective screening capacity �C. For HYPER, in
particular, we optimized over the configurations listed in Table 2. The chosen
configuration is noted at the top of each bar in Fig. 3a to f.

Supplementary Fig. 10 shows the bar graphs for the full range of resource-
constrained scenarios considered. Figure 3g summarizes these findings by showing
only which method was best (where we distinguish different choices of q in
HYPER), the corresponding effective screening capacity, and the corresponding
configuration.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
No raw data were collected in this study. The data and analyses generated in this study
are available at https://github.com/dahong67/hyper-group-testing and can be regenerated
using the accompanying code. The simulated population for the COVID-19 model was
obtained from previously published code available at https://github.com/cleary-lab/
covid19-group-tests.

Code availability
Code is available on GitHub71 (https://github.com/dahong67/hyper-group-testing).
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