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Dichotomy of platinum(II) and gold(III) carbene
intermediates switching from N- to O-selectivity
Hongming Jin 1,2✉, Wen-Yan Tong3, Jing Zhang4, Matthias Rudolph2, Frank Rominger2, Xu Shen4,

Shuanglin Qu3✉ & A. Stephen K. Hashmi 2✉

Pt(II) and Au(III)-mediated intermolecular divergent annulations of benzofurazans and yna-

mides highlighted the N- to O-selectivity of tunable metal carbene intermediates. PtCl2 with a

bulky phosphite ligand resulted in the specific synthesis of six-membered quinoxaline N-

oxides and successfully suppressed the in-situ deoxygenation of N-oxides. On the other hand,

an unique gold(III) catalyst (2,6-di-MeO-PyrAuCl3) led to the five-membered ring products,

benzimidazoles. A broad scope of functional groups was well compatible, delivering better

yields and selectivities in contrast to conventional gold(I) catalysts. The different behavior of

presumed platinum(II) and gold(III) carbenes with respect to chemoselectivity was inten-

sively examined by experiments and DFT calculations. A detailed mechanistic study, based

on DFT calculations, revealed that the highly electrophilic carbocation-like gold(III) carbene

triggers an oxophilic cyclization, followed by a cascade ring contraction and acyl migration.

On the contrary, the Pt carbene species is less cationic, favoring the formation of the six-

membered ring via N-attack.
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Gold-catalyzed intermolecular formal cycloadditions have
attracted enormous attention as robust, flexible tool for
the construction of heterocyclic frameworks1–6. Here,

gold carbenes usually serve as the key electrophilic
intermediates7–17. Recently, the intermolecular access to α-imino
gold(I) carbenes via direct nitrene transfer to alkynes has sig-
nificantly expanded the synthetic possibilities of gold
catalysis18–34. However, the study of gold(III) carbene analogues
that behave and react distinctly to gold(I) carbenes has been
realized seldom. Very recently, in the reaction of ynamides with
7-methylanthranil the cyclization pathway of gold carbene
intermediate depends on ligands but also the oxidation state of
gold35. While gold(I) carbenes were facilely trapped by the oxy-
gen atom of aldehyde (Fig. 1a, path a), leading to the epoxidation
product, presumed gold(III) carbenes favored to react with the
aryl moiety of anthranil, delivering the indole framework after
1,4-acyl migration (Fig. 1a, path b).

Gold- and platinum catalysts only occasionally have been sys-
tematically compared in chemo-divergent reactions of the same
substrates36–40, especially in the field of carbene intermediates. Ye’s
group speculated on the involvement of α-imino platinum carbenes

in the reaction of isoxazoles with ynamides41. Different from the
carbophilic gold(I) carbene, furnishing a [3+ 2] annulation (Fig. 1b,
path a)42, the platinum(II) carbene turned out to be more oxophilic,
giving rise to a [5+ 2] cyclization pattern (Fig. 1b, path b). Given the
significance with relevance to the synthetic flexibility and catalytic
efficiency, the switching of chemo-selectivity by fine-tunable metal
catalysts remains highly desirable.

Gold(I)-catalyzed formal [4+ 2] cycloaddition of benzofurazan
with ynamides afforded a raw protocol to the synthesis of qui-
noxaline N-oxides43, a frequent substructure of pharmaceutical
compounds. However, the inevitable gold(I)-catalyzed in situ
deoxygenation of quinoxaline N-oxide by reacting with residual
ynamide delivered a mountain of quinoxaline by-product43,44,
decreasing the feasibility of this strategy in practice. Moreover, in
comparison with the distinct nucleophilicity of carbon and oxy-
gen atom in previous work, the nucleophilicity of nitrogen and
oxygen atom is much closer. Thus, the promotion of tunable
N- and O-selective annulations of nitroso with metal carbenes still
remains a challenge.

In this work, Pt(II) and Au(III) catalysts are examined in order
to overcome above problems (Fig. 1c). A bulky phosphite ligand
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cooperating with PtCl2 improve the catalytic activity of platinum
but also successfully suppress the annoying in situ deoxygenation,
giving outstanding yields of N-oxides. Intriguingly, taking
advantage of a pyridine-based gold(III) catalyst (2,6-di-MeO-
PyrAuCl3) result in valuable 2-aminobenzimidazole derivatives.
Rather than the Pt carbene, being always intercepted by the
nitrogen atom, the Au(III) carbene is trapped by the terminal
oxygen atom of the nitrosyl group and then undergoes further
C–C bond cleavage and rearrangement. DFT calculations examine
the different free energy activation barriers for the formation of
six- and seven-membered ring transition states and elucidate the
divergent annulation routes of assumed Pt(II) and Au(III) carbene
intermediates. Selected bioactive molecules containing the fra-
meworks of quinoxaline N-oxide and 2-aminobenzimidazole are
listed in Fig. 245–49.

Results and discussion
Reaction optimization. Initially, the reaction of 2 equiv. benzo-
furazan 1a and ynamide 2a with 5 mol% Me4tBuXPhosAuCl/
AgNTf2 in 1,2-DCE at 70 °C (Table 1, entry 1) provided a mixture
of the products 3a (20%), 5a (45%) and a trace amount of 4a. The
product 5a is convinced from the in situ deoxygenation of 4a with
residual ynamides44. Other gold(I) catalysts still afforded a mix-
ture, whether we altered ligands, counter anions or temperature
(entry 2–4). Simple AuCl3 increased the yield of 3a as well as 4a
(entry 4). Gold(III) with bidentate ligands just led to a trace
amount of 3a (entry 5–6). A pyridine-coordinated gold(III)
complex could provide higher selectivity for 3a (entry 7–8). With
the take-up of 4 equiv. 1 and Pyr-2, the gold(III) complex 6 (Pyr-
2AuCl3) could give rise in 70% yield of 3a (entry 9). A similar
result was obtained with Pyr-3AuCl3 (entry 10). In contrast to
gold(III) catalyst, platinum catalysis only gave quinoxaline deri-
vatives without the benzimidazole 3. Simple PtCl2 had less cata-
lytic reactivity (entry 11). The addition of ligands led to higher
total yields (entry 12–14). PtCl2 in combination with bulky
phosphite ligands L2 reacted selectively (entry 15). Ligand L3
with large cone angle afforded the quinoxaline N-oxide 4a even in
90% yield and with specific selectivity (entry 16). This suggested
that the bulky umbrella-shaped phosphite ligand might protect
the platinum carbene from the intermolecular oxidation with 4a.
Pt(0) catalyst could not promote this reaction (entry 17).

Substrate scope for the synthesis of benzimidazole by Au(III)
catalysis. Under the optimized reaction conditions, the scope of
reaction was evaluated. A range of ynamides was investigated
under the gold(III) catalysis (Fig. 3). Benzyl-, methyl- and phenyl-

substituted ynamides reacted smoothly. In general, ynamides
bearing electron-withdrawing aryl groups gave better yields.
Different functional groups, including halogen (3b, 3f), tri-
fluoromethyl (3e) and ester (3d) groups, were tolerated. The
scope of benzofurazans was also checked. Apart from methoxy
group, benzofurazans bearing other electron-donating sub-
stituents, such as an amide (3n) and a methyl group (3p) were
also suitable, delivering moderate to good yields. Besides of β-
substitution, the α-substituted benzofurazan also performed well
(3o). The solid state molecular structure of 3i was confirmed by
single-crystal X-ray diffraction. Benzofurazan with electron-
withdrawing group could not afford the benzimidazole (3r),
which may owe to the low nucleophilicity of oxygen atom on
nitroso induced by negative inductive effect. Alkyl-substituted
ynamides easily decomposed to α,β-unsaturated amides due to α-
H elimination of carbene intermediate.

Substrate scope for the synthesis of quinoxaline N-oxides by
Pt(II) catalysis. Then, the treatment of ynamides with diverse
benzofurazans was conducted under platinum catalysis (Fig. 4).
An array of substituted derivatives was explored to check the
reaction with ynamides. Due to the positive conjugative effect of
an electron-rich substituent on the nucleophilicity of adjacent
nitrogen atom, the ynamide prefers to react with the proximal
nitrogen to the β-methoxy (4a, b) or amide (4f) group, inducing
good regio-selectivity. The solid state molecular structure of 4b
could be obtained by an X-ray single-crystal structure analysis
and is shown in Fig. 4. Because of the steric effect, the reaction of
α-substituted benzofurazans also showed excellent regio-
selectivity (4e, 4g). The non-substituted benzofurazan also
worked well. Variations on the aryl moiety of the ynamide was
investigated. A wide range of functional groups, including halo-
gen (4j, 4n, 4o), thiophene (4l) and methoxy substituents (4k),
were all tolerated, offering quinoxaline N-oxides in good to
excellent yields. Ms, Bs and the easily removable nosyl protected
ynamides also reacted smoothly (4p–r).

Further modifications of quinoxaline N-oxide. A gram-scale
synthesis of 4i was completed in 80% yield by 5 mol% PtCl2/L3,
which prove the synthetic feasibility of the Pt(II) catalytic system.
By taking the advantage of N-oxides as directing groups, the
further decoration could be accomplished via a direct C–H
functionalization (Fig. 5). The quinoxaline N-oxide 4i was sui-
table for iridium-/rhodium-catalyzed selective C8-amination and
iodination50,51.
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Mechanism studies. For gold(III)-catalyzed the formation of ben-
zimidazole, an intermolecular control experiment did not show
intermolecular cross-over (Fig. 6a), which suggests an intramolecular
acyl migration process. Notably, in contrast with the both isomers of
N-oxide were observed, only 1-acyl substituted benzimidazole was
produced. It may indicate same kind of acyl migration precursor was
produced whether the proximal or distal nitrogen to the methoxy
group of 1a attack the C–C triple bond initially. The acyl migration

always prefers to the proximal N atom due to the higher nucleo-
philicity. The 18O-labeling experiment showed that the O atom of
acyl group owes to the substrate rather than ambient H2

18O
(Fig. 6b). Moreover, the quinoxaline N-oxide 4a could not be con-
vert to benzimidazole under the standard condition (Fig. 6c).

A plausible reaction mechanism is depicted in Fig. 7. The
α-imino gold or platinum carbene species C/C′ is generated via
initial nucleophilic attack of benzofurazan 1a to the metal-ligated
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ynamide (A), followed by N–O bond cleavage. While the Pt(II)
carbene prefers N-attack, leading to the six-membered ring D, the
gold(III) carbene favors O-attack, furnishing the seven-membered
ring intermediate E, which then releases intermediate F after
ligand exchange. Following the electrocyclization and the second
N–O bond cleavage, a ring contraction reaction gives the five-
membered ring intermediate I. After intramolecular 1,2-acyl
migration, the product 3a is afforded eventually.

Computational calculations. In order to gain further insights
into the reaction mechanism and to clarify the different annula-
tion pathways of gold(III) and platinum(II) carbene inter-
mediates, density functional theory (DFT) calculations were
carried out (DFT calculations were performed by Gaussian pro-
gram under the level of M06/6-311++G**/SDD-SMD(CH2Cl2)//
B3LYP(D3BJ)/6-31G*/SDD. The CM5 atomic partial charges
were calculated by Multiwfn program under the M06/6-311+
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+G**/SDD-SMD(CH2Cl2) level. See Supplementary Information
for computational details). Since the mechanism for the genera-
tion of Au/Pt carbene is similar to those of previous analogous
reports35,41, here we do not discuss it but give the corresponding
energetic details in Supplementary Information (Figs. S2, S3).
Starting from metal-carbene species (C/C′), both annulation
pathways are compared for Au(III) and Pt(II) system respectively,
and the corresponding calculated free energy profiles are shown
below. For the Pt(II) system (Fig. 8), the formation of six-
membered ring occurs facilely via TS1, crossing a free energy
activation barrier of 6.0 kcal/mol. The resulting complex D is
lower than C by 22.7 kcal/mol, in which the product 4a is already
formed and can be easily released by ligand exchange. However,
producing a seven-membered ring by O-attack is unfavorable.
Although the activation barrier of 12.0 kcal/mol (TS1′ relative to
C) is accessible, the resulting complex D′ is quite unstable, which
is higher than C by 10.4 kcal/mol. This is also supported by the

weak C–O bond (the resulted C–O bond length is 1.587 Å, which
is obviously longer than normal C–O bonds, see Fig. S4 in Sup-
plementary Information). Thus, the annulation en route to the
seven-membered ring is reversible and is highly inclining towards
C, whereas the six-membered ring annulation pathway is both
kinetically and thermodynamically feasible. The calculated results
well consist with the experimental observation that the Pt(II)
catalyst shows specific selectivity for product 4a.

On the contrary, the seven-membered ring cyclization process
is preferable in the case of gold(III) carbene (Fig. 9). The
nucleophilic attack of nitrosyl oxygen to the carbene carbon
crosses a free energy activation barrier of 15.0 kcal/mol via TS2,
leading to the seven-membered ring complex E with energy
decreased by 11.4 kcal/mol. Alternatively, the attack of nitrosyl
nitrogen atom to the carbene has to overcome a free energy
activation barrier of 22.4 kcal/mol (TS2′ relative to C′). Despite
kinetic disfavor, we could not thoroughly exclude this route. Once
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the activation barrier (22.4 kcal/mol) could be accessible, the
resulted six-membered ring complex E′ is thermodynamically
much more stable than E (by 16.3 kcal/mol). In fact, 4a, released
from E′ via ligand exchange, serves as a side product. Never-
theless, the annulation via O-attack to form E is still kinetically
more favorable as the major pathway. After ligand exchange to
afford F, the electrocyclization undergoes facilely via TS3 to give
G, which is prone to N–O bond cleavage with an activation
energy of only 2.2 kcal/mol (TS4 relative to G). Next, a ring
contraction takes place, resulting in the five-membered ring
intermediate I with energy reduced by 33.6 kcal/mol (from H to
I). In agreement with experimental result, the 1,2-acyl migration
prefers the nitrogen proximal to methoxy group under thermo-
dynamic control. Overall, the final benzimidazole product 3a is
thermodynamically more stable than the six-membered ring by-
product 4a by 43.6 kcal/mol. The calculation on the other
gold(III) catalyst, PicAuCl2, was also carried out in contrary to
above Au system, which further disclosed the annulation
selectivity relied on the electronic character of gold carbene (see
Fig. S6).

The optimized geometries and atomic partial charges for
Au(III) and Pt(II) carbene intermediates are shown in Fig. 9. The
Au(III) carbene is cationic species because of alkyne coordination
instead of coordination to a Cl− ion. In addition, the pyridine is a
weaker electron-donating ligand than the phosphite L3. There-
fore, the Au(III) center is much more electron deficient than the
Pt(II) core, which is supported by the calculated partial atomic
charges (+0.497 vs. +0.198). As a result, the π-back donation
from Au(III) center to the carbene carbon is weaker than that
from platinum to the carbene carbon, leading to the carbocation-
like gold carbene C′. This is well supported by comparing the
metal-carbene bond lengths and atomic charges of carbene atoms.

The Au–C bond length of C′ is 2.056 Å, which is apparently
longer than those of most prior Au carbene species,2c while the
Pt–C bond length of C is 2.000 Å, which is obviously shorter than
the Au–C bond, indicating stronger π-back donation. The
calculated partial atomic charges of the carbene carbon also
show that the Au(III) carbene is obviously more cationic than
Pt(II) carbene (+0.037 vs. +0.018). On the basis of the above
results, the discrepancy between the current Au(III) and Pt(II)
systems should be mainly attributed to the different electronic
characteristics of the metal-carbene species. The Au(III) carbene
favors the O-attack through a seven-membered ring owing to the
carbocation-like trait (because the oxygen atom is more electron
rich than the nitrogen atom, −0.176 vs. −0.017). By taking
advantage of electron-rich aryl group to reduce the cationic
character of gold carbene, only product 4a was observed (see
Supplementary Information). It supported that the high electro-
philicity is crucial to the formation of seven-membered ring
intermediate. In contrast, the Pt(II) carbene features carbene-like
character and the less cationic carbene carbon is not effective to
accept electrons from the strong electronegative O-atom
(supported by the unfavorable O-attack and the weak resulted
C–O bond, 1.587 Å, vide supra), but prefers the N-attack to form
the more stable six-membered ring. We further explored the size
effect of formed ring on the selectivity of annulation in theory.
The calculations indicated that with extending the ring size, the
electronic effect is not predominant. The formation of smaller
ring is favorable (Figs. S7, S8). Although this was out of the scope
of the reactions, it suggested the annulation selectivity may not
only depend on electronic effect.

In conclusion, the difference between gold and platinum
catalysts was studied in detail. The platinum catalyst shows higher
chemo-selectivity for the synthesis of quinoxaline N-oxides than
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gold(I) catalysts. In contrast to Pt(II) catalysis, the gold(III)
complex 6 enables the selective synthesis of benzimidazoles via
tandem annulation/ ring contraction/ acyl migration. DFT
calculations support the experimentally observed selectivity for
gold(III) and Pt(II) systems well. Analysis of geometric and
electronic structures of key metal-carbene intermediates reveals
that the electronic effect is the main reason for the annulation
selectivity. The Au(III) carbene shows carbocation-like character,
favoring O-attack, while the Pt(II) carbene prefers forming a six-
membered ring via N-attack, which rationalizes the divergent
annulation routes. These insight in transition metal catalysis can
help to on purpose switch to certain reaction channels of metal-
carbene intermediates in future methodology development.

Methods
Representative procedure for Au(III)-catalyzed tandem annulation. A round
bottom flask equipped with a magnetic stirrer bar was added 10 mol% 2,6-

dimethoxypyrAuCl3 (4.4 mg), 1a (0.4 mmol), 2a (0.1 mmol) and 1,2-DCE (4 ml).
The reaction was heated at 70 °C for 12 h. After cooling to room temperature, the
solvent was reduced in vacuo, and the residue was purified by column chroma-
tography (SiO2, hexanes/EtOAc= 10/1) to provide the title compound 3a as a
colorless soild.

Representative procedure for Pt(II)-catalyzed formal [4+ 2] annulation. A
round bottom flask equipped with a magnetic stirrer bar was added 10 mol% PtCl2
(2.6 mg), 10 mol% L3 (9.2 mg), 1a (0.2 mmol), 2a (0.1 mmol) and toluene (1 ml).
The reaction was heated at 70 °C for 12 h. After cooling to room temperature, the
solvent was reduced in vacuo, and the residue was purified by column chroma-
tography (SiO2, hexanes/EtOAc= 10/1− 5/1) to provide the title compound 4a as
a colorless soild.

Data availability
Additional data generated in this study have been available in the Supplementary
Information file. For full characterization data of new compounds and experimental
details, see Supplementary Methods, Notes and Figures in Supplementary Information
file. For the energies and Cartesian coordinates, see Supplementary Data file. The X-ray
crystallographic coordinates for structures 3i and 4b reported in this study have been
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deposited at the Cambridge Crystallographic Data Center (CCDC), under deposition
number 1954158 (3i) and 1570451 (4b). These data can be obtained free of charge from
The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
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