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Donut-like organization of inhibition underlies
categorical neural responses in the midbrain
Nagaraj R. Mahajan1 & Shreesh P. Mysore 2,3✉

Categorical neural responses underlie various forms of selection and decision-making. Such

binary-like responses promote robust signaling of the winner in the presence of input

ambiguity and neural noise. Here, we show that a ‘donut-like’ inhibitory mechanism in which

each competing option suppresses all options except itself, is highly effective at generating

categorical neural responses. It surpasses motifs of feedback inhibition, recurrent excitation,

and divisive normalization invoked frequently in decision-making models. We demonstrate

experimentally not only that this mechanism operates in the midbrain spatial selection

network in barn owls, but also that it is necessary for categorical signaling by it. The func-

tional pattern of neural inhibition in the midbrain forms an exquisitely structured ‘multi-holed’

donut consistent with this network’s combinatorial inhibitory function for stimulus selection.

Additionally, modeling reveals a generalizable neural implementation of the donut-like motif

for categorical selection. Self-sparing inhibition may, therefore, be a powerful circuit module

central to categorization.
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Categorization, the transformation of continuously varying
inputs into discrete output groups, is a fundamental com-
ponent of perception and decision-making1–3. Neural

responses that are explicitly categorical4, have been reported across
brain areas and animal species in a variety of perceptual and
decision-making contexts2,5–13. Such response profiles, which
involve a large and abrupt change in firing rate across the category
boundary (Fig. 1A-left, red), are computationally advantageous: they
enhance downstream decoding of the selected category (or “win-
ner”) particularly when competing options are similar (i.e., in the
face of input ambiguity), and when neural responses are variable
(i.e., in the face of representational uncertainty; Fig. 1A; red vs.
blue)9,14. Despite the pervasiveness2,5–13 and computational benefit
of such categorical neural response profiles, how the brain imple-
ments them is unknown. Specifically, it is unclear what identifiable
circuit mechanisms are essential for producing categorical neural
response profiles.

An excellent site in the brain at which to investigate neural circuit
mechanisms of categorization is a vertebrate midbrain network that
plays a causal role in controlling gaze and spatial attention15–21. This
network, which encodes sensory space topographically, includes the
optic tectum (called the superior colliculus, SC, in mammals) and
several nuclei in the midbrain tegmentum, referred to as the isthmic
nuclei21 (Fig. 1B). In the barn owl, this network has been shown to
categorize stimuli into two categories: “highest priority” and
“others”8,9,22, with the priority of a stimulus being defined as the
combination of its physical salience and behavioral relevance23. This
categorization manifests as “switch-like” responses in a subset of
neurons in the intermediate and deep layers of the owl optic tectum
(OTid, SCid in mammals)8,9,22. These neurons fire at a high rate
when the stimulus inside their spatial receptive field (RF) is the
highest priority, but switch abruptly to a lower firing rate when a
distant, competing stimulus becomes the highest priority one
(Fig. 1C; red neural selection boundary nearly overlaps with gray
ideal selection boundary). Such switch-like responses markedly
improve discriminability of the location of the highest priority

stimulus among competing stimuli of similar priority9,14. Addi-
tionally, such categorization by OTid in owls accounts well for the
specific pattern of spatial selection deficits observed in monkeys
following inactivation of the SCid14: worsening of the impairment in
selecting a target among distracters as they become more similar to
the target17,18,24. Together, these studies support that categorical
responses in OTid enhance reliable readout of the highest priority
stimulus for gaze or spatial attention behavior, particularly when
competing stimuli are of similar strength (or more generally, similar
priority)14,21,22.

The responses of OTid neurons are regulated by two key
isthmic nuclei in the midbrain selection network. OTid responses
to single stimuli are enhanced multiplicatively by cholinergic
neurons of the isthmi pars parvocellularis (Ipc), which exhibit
point-to-point recurrent connectivity with the OT (Fig. 1D-
orange)25–27. In parallel, responses of OTid neurons to multiple
competing stimuli are controlled by inhibitory neurons of the
isthmi pars magnocellularis (Imc) (Fig. 1D-purple)28–31. Imc
neurons receive focal input from the OT but send long-range
projections broadly across both the OTid and Ipc space maps,
suppressing OT through the direct (Imc→OTid) pathway as well
as the indirect (Imc→Ipc→OTid) pathway (Fig. 1D-purple pro-
jections). The Imc controls competitive interactions across the
OTid space map: focal inactivation of Imc neurons abolishes all
competitive interactions in the OTid (and Ipc)32,33. Despite these
insights, how categorical neural response profiles in the OTid are
generated is an open question.

Here, using a combination of neurally grounded computational
modeling, dual electrophysiological recordings, and focal ionto-
phoretic neural inactivation32, we investigate how categorical
neural responses in the barn owl OTid are generated by com-
putations in the OT-Imc-Ipc network. We demonstrate that a
donut-like pattern of spatial inhibition in this network causally
controls categorization by OTid, and also that this inhibition is
implemented with an intricate multi-holed donut-like pattern
across interconnected brain areas in support of categorization
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Fig. 1 Categorical neural responses in the owl midbrain network. A Left: Schematic comparing two mathematically generated ‘neural’ response profiles,
as a function of continuously varying input. Red—categorical response profile, blue—linear response profile. Gray vertical line: ideal selection (or
categorization) boundary. Translucent band: variability in responses (s.e.m); fano factor of 6 used to generate these responses (Methods). Filled black dots:
Two competing inputs just straddling the selection boundary: they are nearly equal but belonging to different categories, each at a distance of 3 units from
the selection boundary. Right: Categorization index (CatI); characterizes strength of categorization of response profiles in left panel. CatI is insensitive to
scaling of response means and accounts for response variability (Fig. S1A–C; Methods)6,8. BMidbrain selection network in barn owl. Inset: Side view of owl
brain. Vertical blue line: line of section. Main: Coronal section through owl midbrain showing optic tectum (OT), isthmi pars magnocellularis (Imc,
GABAergic, parvalbumin-positive, purple outline), and isthmi pars parvocellularis (Ipc, cholinergic, orange outline). C Left: Schematic of “competition
protocol” used in (non-behaving) owls9,22. A stimulus of fixed strength (black dot) is presented inside the spatial receptive field (RF; dashed oval) of a
neuron, while a competitor (red dot) of varying strength is presented far outside the RF. Strength of the stimuli is controlled by their loom speeds (°/s);
denoted here by size of dots. Right: Categorical (“switch-like”) response profile of a neuron in the intermediate and deep layers of the OT (OTid) measured
using the competition protocol in left panel. Red vertical line: neural selection boundary; indicates the relative strength at which neural responses switch
from being at a high level to a low level. Gray vertical line: ideal selection boundary; indicates the relative strength of 0, at which the two stimuli are equally
strong. The neural selection boundary nearly overlaps with ideal one. Data reproduced with permission9. D Schematic of connectivity within the avian
midbrain selection network. Layers (1–15) of OT are shown. OTid: intermediate and deep layers (layers 11–15). Cholinergic Ipc neuron (orange circle)
receives focal input from OT (black circle, layer 10), and send projections focally back to OT (orange projections). GABAergic Imc neuron (purple circles)
receives focal input from OT (black circle, layer 10), and but sends inhibitory projections broadly across OTid as well as Ipc (purple projections).
Consequently, Imc neurons suppress OTid responses via two pathways: (i) the direct pathway to the OTid31 (Imc→OT), and (ii) the indirect pathway that
inhibits the potent point-to-point cholinergic amplifiers of OTid, namely the Ipc31,33 (Imc→ Ipc→ OT). See also Fig. S1. Source data are provided as a Source
Data file.
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across space. These results suggest that donut-like inhibition may
be a fundamental circuit motif for generating categorical neural
responses, a function central to spatial selection, perception, and
decision making1,34.

Results
Donut-like inhibitory motif emerges as a powerful mechanism
for generating categorical responses in model circuits of the
avian midbrain selection network. As a first step in investigating
the circuit mechanisms underlying categorical neural response
profiles in the OTid, we turned to neurally grounded computa-
tional modeling. Starting with a simple model of the midbrain
network capable of comparing the representations of competing
stimuli35–37 (“Baseline” model; Fig. 2A, left column-top, oval
“Imc” neurons deliver feedforward inhibition to circular “OTid”
neurons; Methods), we introduced, systematically, each of three
circuit motifs that have been proposed in the literature as
potential mechanisms for generating categorical response
profiles38–41. We compared directly the ability of these different
circuit models to generate categorical neural response profiles.

The first mechanistic proposal from published literature is that
feedback inhibition between the representations of competing
options plays a key role in categorization. This is motivated by

modeling studies of categorical decision-making40,42, work on
direction selectivity in the retina43, as well as work on spatial
selection in barn owls44. The reasoning is that the iterative nature
of the feedback inhibition may allow for small differences in
competing options to be amplified, resulting in large differences
in steady-state competitive inhibition, and therefore, in neural
responses. In the avian midbrain network, such feedback
inhibition is known to be implemented as long-range reciprocal
inhibitory projections among Imc neurons representing different
(competing) options31,44,45. Therefore, in our model, we
introduced feedback inhibition as reciprocal inhibition between
the two model Imc neurons (Fig. 2A, middle-column top; green
inhibitory connections)44.

The second mechanistic proposal is that recurrent excitation of the
responses to each option plays a key role in categorization40,46. This
is a common element in models of decision-making and is thought to
aid categorical selection through response amplification40,46. In the
avian midbrain network, recurrent excitation of OTid responses
encoding for a particular spatial location is known to be implemented
by the cholinergic Ipc neurons encoding for the same location26,
resulting in focal multiplicative enhancement of OTid activity40,46

(Fig. 1D). Notably, as mentioned previously, Ipc neurons receive
feedforward inhibition from Imc (Fig. 1D)26,31, as a result of which
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Fig. 2 Donut-like inhibition surpasses other hypothesized circuit motifs for generating categorical responses in models of the avian midbrain selection
network. A Computational models incorporating combinations of three different circuit motifs proposed in the literature as underlying categorical
responses (Methods; Fig. S1). All models built upon generic “baseline” circuit (left column-top) capable of comparing competing options. Each model
shows two “channels”; each channel is the group of neurons (numbered) involved in representing a stimulus (S1 or S2). Large circles: OTid neurons; ovals:
Imc neurons; small circles: Ipc neurons. Arrows with pointed heads - excitatory connections, arrows with flat heads - inhibitory connections. The three
circuit motifs are – feedback inhibition between competing channels (green; middle column - top), donut-like inhibition (self-sparing inhibition; purple;
middle column-second from top; see also text), and recurrent amplification within each channel (through “Ipc” neuron; orange; left column-bottom). The
goal of output neuron 1 (bold face) in each model is to signal if S1 > S2 (category “a”) or S2 > S1 (category “b”), when presented with S1 and S2 of varying
relative strength following strength-morphing protocol. B Strength-morphing protocol (Methods). S1 and S2 are presented simultaneously “to” the model,
S1(2) is inside the receptive field of neurons in channel 1 (2). As strength of S1 is decreased, that of S2 is systematically increased; strength of the stimuli is
controlled by their loom speeds (°/s); denoted here by size of dots. Gray line: ideal selection boundary (when relative strength= 0). C Simulated response
profiles of output neuron 1 from each of the models (colors) in A obtained using the strength- morphing protocol (bottom inset). Responses are
mean ± s.e.m of 30 repetitions. The continuously varied input parameter was the relative strength of the two stimuli (S2-S1). Lines – best sigmoidal fits.
Input-output functions of model neurons were sigmoids with Gaussian noise (Methods; fano factor=6). Right-Inset: Response profiles normalized between
0 and 1; only means are shown for clarity. D “Population” summary of CatI of response profiles from various circuit models (colors); n= 50 model neurons;
center lines in the violin plots indicate median values. *p < 0.05, One-way ANOVA followed by Holm-Bonferroni correction for multiple paired
comparisons; only a key subset of significant differences indicated for clarity. green vs. gray: p= 0.99, purple vs. gray: p= 5.98e-8, blue vs. purple:
p= 5.98e-8, red vs. purple. See also Fig. S1. Source data are provided as a Source Data file.
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recurrent amplification of OTid by Ipc is regulated by Imc. Therefore,
in our model, we introduced “Ipc recurrence” by incorporating
amplifying Ipc neurons that lie downstream of Imc (Fig. 2A, left
column-bottom; orange projections).

The third mechanistic proposal is that a donut-like pattern of
competitive inhibition, i.e., one in which the representation of
each option suppresses others more strongly than it suppresses
itself, may play a key role in categorization. This is motivated by
work in turtles47 as well as by the observation that categorical
response profiles exhibit large response differences across the
selection boundary. The reasoning is that having strong inhibition
to “other” options, but weak “self”-inhibition can enhance
response differences. In the avian midbrain network, inhibitory
projections from each Imc neuron, which span the OTid space
maps broadly (Fig. 1D), are thought to spare the portion of OT
from which the Imc neuron receives input, suggesting an
anatomical donut-like pattern of inhibition in the direct pathway
from Imc to OTid31. Similar details about the indirect
Imc→Ipc→ OT pathway are unknown. Therefore, in our model,
we introduced donut-like inhibition by removing self-inhibitory
connections in the direct Imc→OT pathway (Fig. 2A, middle
column-second from top model; absence of purple projections
from Imc neurons to aligned OTid neurons). (For completeness,
in models that included Ipc recurrence, we also removed self-
inhibitory connections in the indirect Imc→Ipc→OT pathway:
Fig. 2A, middle column-bottom, absence of absence of pink
projections from Imc neurons to aligned Ipc neurons; right
column-bottom, absence of absence of red projections from Imc
neurons to aligned Ipc neurons; see also Fig. 3 for direct
experimental validation of this assumption).

The eight circuit models that arise from different combinations of
these three proposed circuit motifs are illustrated in Fig. 2A. We next
examined the ability of each model to produce categorical neural
response profiles. We did so by measuring the responses of a
designated output neuron in each model (Fig. 2A, “OTid” neuron 1)
to a classic two-stimulus strength-morphing protocol2,6,8 (Fig. 2B).
This protocol was identical to that used in past experimental work8,
and involved the simultaneous presentation of two stimuli (S1 and
S2) at distant spatial locations (or to distinct “channels” in the
model). The relative strength of the S1 and S2 (controlled by their
loom speed) was systematically varied, resulting in two well-defined
stimulus strength-dependent categories2,6,8: S1 > S2 and S1 < S2;
Fig. 2B; gray line). Model neurons in the circuit were simulated with
noisy, sigmoidal input-output functions (30 repetitions per
“neuron”, n= 50 “neurons”; Methods). The values of the parameters
of these sigmoids, as well as the value of response fano factor used in
the models (=6; Methods), were obtained from a series of previous
experimental (electrophysiological) measurements of input-output
functions in the barn owl midbrain network9,28,30,44,48,49.

To quantify the strength of categorization of the resulting
response profiles, we used a generalized version of the classic
categorization index used in the literature6–8. This index, defined
as the average difference in responses between categories divided
by the average difference in responses within categories, is
insensitive to simple multiplicative scaling of the responses
(Fig. S1A, B), and quantifies how “step-like” the response profiles
are. Here, we modified it to define a generalized categorization
index, “CatI”, which, in addition, takes into account neural
response variability as well. CatI is defined as the average
difference in discriminability (d’) between categories divided by
the average difference within categories (Methods; Fig. 1A, right
panel; Fig. S1A, B). We computed CatI for the strength-
dependent response profiles from each of the eight models
(Fig. 2A), and compared them statistically (Fig. 2D; ANOVA with
HBMC correction; Methods).

Our simulation results revealed that feedback inhibition
between the competing channels, reflecting inhibition between
Imc neurons encoding for S1 and S2 in the avian midbrain
network, had no significant effect on CatI (Fig. 2C-inset and 2D –
green vs. gray; p= 0.99). This result was largely independent of
the strength of feedback inhibition (Fig. S1D). Similarly, recurrent
excitation within each channel, reflecting Ipc amplification of
OTid activity in the avian midbrain network25,27, had no
significant effect on CatI (Fig. 2C-inset and Fig. 2-orange vs.
gray). This result as well was largely independent of the strength
of recurrent amplification (Fig. S1E). Furthermore, the combina-
tion of feedback inhibition and recurrent excitation also had no
significant effect on CatI (Fig. 2D-brown). These results held true
also when we simulated an alternative implementation of
recurrent excitation, one that has been used more generally in
modeling work of decision-making40,42. In this variant, called just
“recurrence” (as opposed to “Ipc recurrence”), the strength of
amplification (Fig. S1F, top-left, orange arrow), is not regulated
by competitive inhibition (from “Imc”; compare Fig. S1F, top-left
to Fig. 2A, left column – bottom). Introduction of such
recurrence, either by itself, or in conjunction with feedback
inhibition, did not produce categorical responses (Fig. S1G, H).

By contrast, however, a donut-like pattern of inhibition from
Imc to OTid in the model substantially boosted CatI of the
response profiles (Fig. 2C-inset and 2D–purple vs. gray;
p= 5.98e-8). The magnitude of improvement was inversely
related to the strength of “self”- inhibition, reaching the
maximum when self-inhibition was zero, i.e., when the pattern
of inhibition was fully donut-like (Fig. S1I; CatI: ρ=−0.81,
p= 2.6 e-3, Pearson correlation test). Whereas the presence of
either or both recurrent excitation and feedback inhibition
enhanced the impact of the donut-like motif (Fig. 2C, D: blue
vs. purple, red vs. purple; p < 6.023 e-8 in both cases), without the
donut-like motif, they were nearly ineffective, either individually
or together, at signaling the strongest stimulus categorically
(Fig. 2C, D: green, orange, brown). The magnitude of response
variability (fano factor) in responses did not alter these findings
(Fig. S1J).

Finally, we explored whether varying the values of various
parameters in models not containing the donut-like motif, but
containing feedback inhibition and/or recurrent amplification,
might allow them as well to achieve categorical responses. We
varied several key parameters (including slopes of the input-
output functions), and simulated 324 circuit models representing
different combinations of parameter values (Fig. S1K). We found
that these models were still markedly less effective (at best, half as
effective) at generating categorical responses compared to the
model containing just the donut-like motif (Fig. S1L).

Donut-like inhibition, therefore, emerged as the most powerful
single circuit motif (among the three proposed in the literature)
for producing categorical neural responses (Fig. 2D).

Functional pattern of competitive inhibition in the owl mid-
brain selection network is donut-like. To examine the potential
role of donut-like inhibition in controlling categorical neural
responses in the avian midbrain, we first investigated experi-
mentally whether a donut-like inhibitory motif even operates in
the owl midbrain selection network. As we pointed out above,
anatomical tracing studies31 have indicated that the direct pro-
jections from Imc neurons to the OT spare the portion of the OT
providing input to Imc, supporting a donut-like motif in the
direct inhibitory pathway (Fig. 3A; white column – highlighting
absence of purple projections in portion of OT containing black
neuron), although this not been established functionally.
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Crucially, however, whether or not the indirect inhibitory path-
way involving the Ipc also exhibits the donut-like motif is
unknown (Fig. 3A, purple “?” under dashed projections and white
column in Ipc). This is critical because the indirect pathway is
known to be the dominant route of inhibition from Imc to
OTid31: the majority of Imc projections target the Ipc31 (rather
than the OTid), and Ipc provides substantial amplification of
OTid responses to single stimuli25.

To determine whether the Imc-Ipc-OT circuit implements a
functional donut-like pattern of competitive inhibition, we measured
experimentally the strength of the net inhibition delivered by Imc
neurons onto OTid neurons, due to both the direct as well as the
indirect pathways. Specifically, we compared the strength of net

inhibition from Imc neurons onto ‘misaligned’ OTid neurons
encoding for stimuli at distant, non-matched azimuthal locations
(“other”-inhibition; Fig. 3B), and separately, that onto “aligned”
OTid neurons encoding for overlapping locations (“self”-inhibition;
Fig. 3G). We did so by making dual extracellular recordings in the
barn owl OTid and Imc (Methods; Fig. 3B, G), coupled with
microiontophoretic silencing of Imc neurons32 (Methods).

To measure the strength of net “other”-inhibition, we first
recorded the responses of OTid neurons to a stimulus (S1) inside the
receptive field (RF; Fig. 3B, C-left; Methods) while simultaneously
presenting a competing stimulus outside the RF (S2; at a distant
azimuthal location from S1; Fig. 3D-left; Methods). We then
repeated this measurement after focally (and reversibly) inactivating

Imc

19
23
27
31
35
39
43
47
51

   0  250  500
Time (ms)

19
23
27
31
35
39
43
47
51

   0  250  500
Time (ms)

19 27 35 43 51

0

40

80

120

Kynurenic acid

   0  250  500
-20
-15
-10
-5 

0  
5  

10 
15 
20 
25 
30 

Time (ms)
   0  250  500

Time (ms)

-20
-15
-10
-5 

0  
5  

10 
15 
20 
25 
30 

-20 -10 0 10 20 30

S1 azimuth (O)

0

40

80

120

0 60 120

[Imc off] (sp/s) 

0

40

80

120

R
es

po
ns

e 
(s

p/
s)

C

OTid

Imc

OTid

Kynurenic acid
Imc

OTid

Imc

OTid

Imc

OTid

S1 S2

Ipc

A

H

D I

E L J K

0 50 100

[Imc off] (sp/s)

0

50

100

[Im
c 

in
ta

ct
] (

sp
/s

)

F

%change 
= -69%

%change 
= -7%

Othe
r

Self
-100

-50 

0

50

%
 re

sp
os

e 
ch

an
ge

Azimuth

Elevation

Azimuth

Elevation

Other inhibition Self inhibition

1 2

1 2

1 2

S1 S2

Imc

OTid

Ipc

Rec.

B

2

1

1

Iont.

2

1 2

G

Imc

OTid

Ipc

Rec.

S1 S2

1 2

1 2

1 2

2

(n=19)

(n=28)

*

R
es

po
ns

e 
(s

p/
s)

S1 S2

S1 elevation (O)

[Im
c 

in
ta

ct
] (

sp
/s

)
S1

 a
zi

m
ut

h 
(O )

S1
 a

zi
m

ut
h 

(O )

S1
 e

le
va

tio
n 

(O )

S1
 e

le
va

tio
n 

(O )

Imc intact Imc off Imc intact Imc off

Imc intact
Imc off

Imc intact
Imc off

Spatial locations

Ipc 

O
Ti

d

11

1

15

Imc

9
10

?

Iont.

S2 S2

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29318-0 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1680 | https://doi.org/10.1038/s41467-022-29318-0 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the portion of Imc encoding S2 (a site spatially mismatched with the
OTid recording site; Fig. 3C-right, 3D-right), and compared the
responses (Methods). Focal, space-specific Imc inactivation was
achieved by iontophoresing the pan-glutamate receptor blocker,
kynurenic acid32 (Methods).

Responses to S1 in the OTid are known to be divisively
suppressed by a distant S2 (by an amount depending on their
relative strength)49,50, and this suppression is known to be abolished
upon focally inactivating the portion of Imc representing S232,33.
Therefore, any increase in OTid responses to the paired presentation
of S1 and S2 following Imc inactivation would represent other-
inhibition provided by Imc (Fig. 3D-right vs. 3D-left; Fig. 3E, red vs.
black). We quantified the strength of this net other-inhibition as %
change in OTid responses: 100*(responses in Imc intact condition−
responses in Imc off condition) / responses in Imc off condition
(Methods; no change in OTid responses would indicate zero
competitive suppression by Imc onto that OTid neuron).

We found that Imc neurons exerted strong inhibition onto OTid
neurons encoding for distant, non-matched spatial azimuths (Fig. 3F,
L-red; mean strength=−40.47%+/− 17.70%, n= 19 paired neu-
rons; p= 9.43e-9, t test against 0; mean distance between centers=
26.74°). We verified that the results were specifically due to Imc
inactivation by observing that OTid responses to paired S1 and S2
returned to pre-drug levels after recovery from iontophoresis
(measured 15min after the drug was turned off; Fig. S2A; Methods).
Indeed, the suppression provided by Imc accounted for nearly all the
suppression exerted by the stimulus S2 (Fig. S2B). In these
experiments, Imc was inactivated effectively (median= 95%, 95%
CI of median= [87%, 103%]; p= 3.8e-6, sign test, n= 19; Fig. S2C).

Next, to measure the strength of net “self”-inhibition, we
recorded the responses of OTid neurons to a single stimulus (S1)
presented inside the RF (Fig. 3G, H-left; Methods). We then
repeated this measurement after focally (and reversibly) inacti-
vating the portion of Imc also encoding for S1 (a site spatially

matched with the OTid recording site; Fig. 3H-right; Methods),
and compared the responses.

Following a similar argument as above, any increase in OTid
responses between the Imc-intact (Fig. 3I-left; 3J-black) and the
Imc-inactivated (Fig. 3I-right; 3J-blue) conditions would repre-
sent self-inhibition provided by Imc. We quantified the strength
of this net self-inhibition also as % change in OTid responses:
100* (responses in Imc intact condition− responses in Imc off
condition) / responses in Imc off condition (Methods).

We found that Imc neurons exerted no significant inhibition onto
OTid neurons encoding for overlapping spatial locations (Fig. 3K, L-
blue; mean strength=−3.7%, s.d.= 12.2%, n= 28 neuron pairs;
p= 0.12, t test against 0; mean distance between centers= 2.86 °).
We verified that these results were not due to ineffectiveness of
iontophoresis by observing that the suppression of Imc responses by
kynurenic acid was substantial (Fig. S2C), and not distinguishable
from that in the “other” case (Fig. S2C; p= 0.68, ranksum test, Imc
suppression by drug in “self” vs. “other” cases). Therefore, strength
of net self-inhibition in the OTid was substantially weaker than the
strength of net other-inhibition (Fig. 3L, red vs. blue; p= 7.8e-11,
two sample t test with HBMC correction; Methods). Additionally,
the average strength of net self-inhibition from Imc to OTid was not
significantly different from zero (Fig. 3L, blue; p= 0.12, t test with
HBMC correction; Methods).

Together, these findings demonstrated the presence of a net
functional donut-like pattern of competitive inhibition imple-
mented by Imc across the OTid (azimuthal) space map; operating
necessarily along both the direct and indirect pathways. Notably,
they attest to the presence of a functional donut-hole of inhibition
in Imc→OTid projections, as well as in Imc→ Ipc projections.

Donut-like inhibition in the avian midbrain selection network
is multi-holed. Imc neurons are strikingly asymmetric in their

Fig. 3 Barn owl midbrain selection network contains functional donut-like inhibitory motif. A Left: Schematic of avian (barn owl) midbrain selection
network; modified from Fig. 1D; same conventions. Columns across layers of OT tissue, from left to right, encode individual locations in space (here,
azimuth) topographically92. White column in OT space map: Inhibitory projections from Imc neuron that impinge broadly across OTid thought to spare this
portion of OT which provides input to that Imc neuron (absence of purple projections here; white column surrounds the black OT10 neuron providing
input31). Purple “?”: unknown if congruent portion of Ipc space map (white column) is also spared of Imc projections (dashed purple projections). Right:
Network model showing the OT-Imc-Ipc circuit; conventions as in Fig. 2A. Dashed purple lines: Unknown if these “self”-inhibition connections exist
functionally; in case of Imc→ Ipc, anatomical evidence is also lacking. B–F Measurement of the strength of net “other” inhibition from Imc → OTid with
paired recordings in barn owl Imc and OTid. “Net” indicates the combined inhibition due to both the direct (Imc→ OTid) and indirect (Imc→ Ipc→ OTid)
pathways (text). “Other” indicates that the OTid neuron encodes for (distant) spatial locations outside Imc neuron’s RF. B Experimental setup.
Iontophoresis and recording electrode (Iont.) in the portion of Imc (encoding for stimulus S2); recording electrode (Rec.) in the portion of OTid encoding
for distant location (and stimulus S1). Neurons and connections not immediately relevant to current experiment are shown ghosted-in. C Schematic of OTid
and Imc space maps (quadrilaterals) showing RFs of neurons being recorded (dotted ovals) and stimulus protocol (black filled dot – S1; gray filled dot – S2).
S1 and S2 are looming visual stimuli of fixed contrast but different loom speeds (strength49); S1= 9.6 °/s, S2= 19.2°/s (Methods). D Raster responses of
example OTid neuron to paired stimulus protocol in (C), in the Imc-intact condition (left column; black data) and Imc-off condition (right column – red
data). Imc inactivation by (reversible) iontophoresis of kynurenic acid (a pan-glutamate receptor blocker32; Methods). Gray shading: stimulus duration
(E) Response firing rates of this OTid (computed from rasters in (D); spike count window= 150–350ms); mean ± s.e.m (n= 12) Lines: best Gaussian fits.
Filled dots: responses to S1 at locations inside the OTid RF; open circles, outside RF (Methods). F Scatter plot showing OTid responses in Imc-intact vs.
Imc-off conditions. Line: Best fit straight line; slope= 0.31, r2= 0.76. % change in responses= 100*(responses in Imc intact condition− responses in Imc
off condition) / responses in Imc off condition= 100*(slope-1), directly estimates the strength of inhibition at this OTid neuron due to Imc (here, −69%;
100*(0.31–1); Methods). G–K Measurement of the strength of net “self” inhibition from Imc → OTid with paired recordings in Imc and OTid. (Conventions
as in B–F). G, H OTid neuron is spatially aligned with Imc neuron (both encode overlapping locations); distance between OTid and Imc RF centers= 1.5°.
J Response firing rates of this OTid (computed from rasters in I; spike count window= 75–350ms); mean ± s.e.m (n= 15) Lines: best Gaussian fits. Filled
dots: responses to S1 at locations inside the OTid RF; open circles, outside RF (Methods). K Line: Best fit straight line; slope= 0.93, R2= 0.95. % change in
responses directly estimates the strength of suppression at this OTid neuron due to Imc (here, −7%; Methods). L Population summary of strength of net
“other” inhibition (red; n= 19 Imc-OTid pairs), and strength of net “self” inhibition (blue; n= 28 pairs) from Imc→ OTid. Average distance between OTid
and Imc RF centers in “other” experiments= 26.8°+/− 2.3°; in “self” experiments= 2.9°+/− 0.7 °. *p= 7.8e-11 (red vs. blue), p= 9.43e-9 (red vs. 0),
p= 0.12 (blue vs. 0), paired two-sided t tests with HBMC correction (Methods). Center lines in the box plots indicate median values, edges of the boxes
indicate 25th and 75th percentile values, whiskers are at a distance of 1.5 times interquartile range from the edge of the box on respective sides. See also
Fig. S2. Source data are provided as a Source Data file.
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encoding of elevational vs. azimuthal space. The majority (67%)
exhibit RFs with multiple discrete firing fields (“lobes”) dis-
tributed along the elevation, but not the azimuth (multilobed RFs
exhibit up to 3 lobes along the elevation51; Fig. 4A, G-left panels).
This unusual RF structure has been shown to be essential for Imc
to achieve selection at all possible pairs of spatial locations in the
face of scarcity of its neurons, and it does so using a combina-
torially optimized inhibitory strategy51.

A direct consequence of multilobed encoding of elevational
space is that there are gaps between the lobes of an Imc RF,
constituting locations that are outside that neuron’s RF (Fig. 4A,
B-left panels; light red bar). If the donut-like inhibitory motif is to
operate generally in the avian midbrain network to support
selection along not only azimuthal locations, but also along
elevational locations, then the spatial pattern of inhibition must
respect the following strict conditions. A multilobe Imc neuron
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Fig. 4 Barn owl midbrain selection network contains multi-holed donut-like inhibitory motif operating across 2-D sensory space (azimuth x elevation).
A–F Measurement of the strength of net “gap” inhibition from Imc → OTid with paired recordings in owl Imc and OTid. A Spatial receptive fields (RFs) of
an Imc neuron (left) and an OTid neuron (right) from a paired Imc-OTid recording experiment. Imc RF is two-lobed51(text; Fig. S3B–D; Methods). OTid RF
lies in the gap between the lobes of the Imc RF. B Binarized versions of RFs in (A), at 60% max. firing rate in each case. Red horizontal bar: highlights the
relative position of OTid RF to Imc RF lobes. C–F Conventions as in Fig. 3C–F. C Red vertical bar indicates that OTid RF is in the gap between Imc RF lobes.
E mean ± s.e.m (n= 10). F Line: Best fit straight line; slope= 0.65, R2= 0.95. % change in responses directly estimates the strength of inhibition at this
OTid neuron due to Imc (here, −35%; Methods; conventions as in Fig. 3F). G–L Measurement of the strength of net “different lobe” inhibition from Imc →
OTid with paired recordings in Imc and OTid. Conventions as in (A–F). G, H Three-lobed spatial RF of an Imc neuron (left; Fig. S3E–G; Methods). RF of OTid
neuron overlaps (blue bar) with one of the lobes of Imc neuron’s RF. K mean ± s.e.m (n= 10). L Line: Best fit straight line; slope= 1.18, R2= 0.9. % change
in responses directly estimates the strength of inhibition at this OTid neuron due to Imc (here, 18%; Methods; conventions as in Fig. 3F). M Population
summary of strength of net “gap” inhibition (red; n= 12), and strength of net “different lobe” inhibition (blue; n= 17) from Imc→ OTid. Open red and blue
box plots: reproduced from Fig. 3L. p= 1.02e-6 (red vs. 0), p= 0.35 (blue vs. 0); *p < 0.05, p= 8.69e-11 (red vs. blue), paired two-sided t tests with HBMC
correction. Box plot conventions as in Fig. 3L. See also Fig. S3. Source data are provided as a Source Data file.
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activated by a stimulus within one of its RF lobes must send
strong competitive inhibition to OTid neurons encoding locations
outside all of its RF lobes, and specifically, to neurons encoding
locations in the gaps between RF lobes (strong “gap”-inhibition).
By contrast, it should send weak or no inhibition to OTid neurons
encoding locations within any of its RF lobes, and specifically,
within its other RF lobes (weak “different-lobe” inhibition).
Together, these predict a multi-holed donut-like pattern of net
inhibition from Imc to OTid (Fig. S3A).

To test experimentally if this strict requirement holds true in
the owl midbrain selection network, we again made dual
extracellular recordings in the OTid and Imc, and measured
directly the strength of gap-inhibition, and separately, the
strength of different-lobe inhibition from Imc neurons onto
OTid. We first recorded the responses of an Imc neuron, mapped
out its spatial RF, and applied previously published analytical
approaches to determine if it was a multilobed RF (two-lobed RF
in Fig. 4A, B-left panels and Fig. S3B–D; three-lobed RF in
Fig. 4G, H – left panels and Fig. S3E–G51; Methods). If so, we
next measured the strength of gap inhibition by positioning a
second electrode in the OTid such that the spatial RF of the OTid
neuron was centered within the gap between Imc RF lobes
(Fig. 4A, B-right panels and Fig. 4C-left, light red bar). We
recorded the responses of the OTid neuron to a stimulus inside its
RF (S1; Fig. 4C-left; Methods) while simultaneously presenting a
competing stimulus (S2) at a distant location along the elevational
axis such that S2 was within a lobe of the RF of the Imc neuron
(Fig. 4C-left – S1 in the Imc RF gap denoted by light red bar, and
S2 within an Imc RF lobe).

Alternatively, to measure the strength of different-lobe
inhibition, we positioned the OTid electrode such that the spatial
RF of the recorded OTid neuron overlapped one of the lobes of
the Imc neuron’s RF (Fig. 4G, H-right panels and Fig. 4I-left, light
blue bar). We recorded the responses of the OTid neuron to a
stimulus inside its RF (S1; Fig. 4I-left; Methods) while
simultaneously presenting a competing stimulus (S2) at a distant
location along the elevational axis such that S2 was within a
different lobe of the Imc neuron’s RF than S1 (Fig. 4I-left – S1
within one Imc RF lobe and S2 within different one – light
blue bar).

In both cases, we compared OTid responses when Imc was
intact (Fig. 4C, I-left panels) vs. when the portion of Imc
encoding S2 was focally and reversibly inactivated using
kynurenic acid iontophoresis (Fig. 4C, I-right panels). As before,
any observed response increases directly estimated, respectively,
the (net) strengths of gap-inhibition or different-lobe inhibition
exerted by an Imc neuron onto the OTid space map (see also
Methods, Paired OTid and Imc data collection, “Gap” inhibition
section for explanation of why potential spread of kynurenic acid
to also include Imc neurons encoding S1 does not present
confounds to measurement of strength of gap inhibition).

We found that Imc neurons exerted strong gap-inhibition
(Fig. 4D–F, M-red), but weak different-lobe inhibition onto OTid
(Fig. 4J–L, M-blue). The mean strength of gap-inhibition (along
elevation) was strong at −55.88% (Fig. 4M-red, s.d.= 20%,
n= 12 neuron pairs; p= 1.02 e-6, t test against 0 with HBMC
correction; Fig. S3I, J-red; Methods). The mean strength of
different-lobe inhibition was very weak at 2.43% (Fig. 4M-blue,
s.d.= 10.3%, n= 17 neuron pairs; p= 0.35, t test against 0 with
HBMC correction; Fig. S3I, J-blue; Methods), and was not
distinguishable from the average self-inhibition (Fig. 4M- blue vs.
open blue; p= 0.09; two sample test with HMBC correction). Imc
was inactivated effectively in both sets of experiments (median=
98.2%, 95% CI of median= [96.46–99.99%]; Fig. S3K).
Taken together, these results demonstrated that the Imc

implements precisely organized, multi-holed donut-like patterns

of net inhibition onto the OTid space map (azimuth and
elevation), operating along both the direct and indirect pathways.
Each Imc neuron’s net inhibitory action in the OTid creates a
spatial pattern complementary to its (multilobed) RF structure
(Fig. S3A).

Donut-like inhibitory motif is necessary for categorization by
avian midbrain selection network. Considering the complexity
of the multi-holed donut-like connectivity between Imc (and Ipc)
and OT (Fig. 5A), we next asked if donut-like inhibition serves a
functional purpose. Specifically, given its ability to produce
categorical responses (modeling results; Fig. 2), we investigated
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whether this motif was necessary for the categorical signaling of
the strongest stimulus by the OTid. To do this, we needed to test
the impact of causally disrupting the donut-like pattern of inhi-
bition from an Imc neuron to OTid, on categorical signaling in
the OTid. In other words, we needed to selectively introduce self-
inhibition onto the spatially aligned OTid neuron, thereby “fill-
ing-in” the donut hole (Fig. 5B, brown projections). However,
introducing self-inhibition experimentally by activating Imc →
Ipc projections (indirect pathway) or Imc → OTid projections
(direct pathway) between spatially aligned neuron-pairs (Fig. 5B,
brown projections) is not feasible because such projections either
do not exist or are functionally inactive (combined self-inhibition
at most OTid neurons is weak or zero; Figs. 3L and 4M).

To resolve this apparent conundrum, we stepped back and
considered the specialized anatomical connectivity of the avian
midbrain selection network (Fig. 5A). We observed that in a
competitive setting (i.e., when S1 and S2 are both present), the
“amplifier” Ipc neurons corresponding to each stimulus are not free
to amplify OTid activity solely based on that stimulus’s strength. For
instance, whether Ipc neurons encoding for S1 amplify OTid
responses to S1 at all, and if so, to what extent, are controlled by the
strength of competitive inhibition due to S2 delivered by Imc
neurons in S2’s channel (Fig. 5A, oval “Imc” neuron #2). In other
words, in a competitive setting, the “amplifier” Ipc neurons operate
wholly under the powerful control of the inhibitory Imc neurons.

This observation led us to reason that we could achieve the
goal of experimentally introducing self-inhibition onto OTid
neurons not by activating the (likely non-existent) self-
projections from Imc to the aligned Ipc neuron in the dominant
indirect pathway (Fig. 5B), but rather by mimicking the
consequence of doing so, namely, by focally suppressing the
evoked output of the aligned Ipc neuron (Fig. 5C, pink, drug
iontophoresis onto aligned Ipc).

To test if this logic was sound, we first simulated this latter model
(Fig. 5C), and found that focal Ipc-inactivation in the model
abolished categorical signaling by OTid (Fig. 5D, pink vs. red), and
this was indistinguishable from the effect of introducing self-
inhibition (Fig. 5D, brown vs. red; simulation of 5B). This
established the effectiveness of the proposed manipulation. Notably,
this manipulation in the avian midbrain circuit during stimulus
competition was akin to filling-in the donut hole, rather than to
simply silencing recurrent amplification: simulating the silencing of
just the recurrent amplification in a circuit model in which
recurrence was not under the control of powerful competitive
inhibition did not produce a significant drop in categorical signaling
(Fig. S4A–C, blue vs. red-gray). In other words, the result of Ipc
inactivation (5C, D) was nearly identical to that of introducing self-
inhibition (5B, D), but very different from that of silencing recurrent
amplification (Fig. S4B, C). These model simulations established that
in the avian midbrain selection network, focal Ipc inactivation in a
competitive setting (Fig. 5C) was functionally equivalent to the
desired causal manipulation of filling-in the “hole” in the donut-like
pattern of inhibition. Additionally, we confirmed that, as predicted
by the specialized anatomical connectivity of the OT-Imc-Ipc
network, silencing the Ipc neuron encoding for S2 (i.e., filling-in the
donut-hole in channel “2”; Fig. 5C) had no impact on the
competitive responses of OTid neuron encoding for S1 (i.e., in
channel 1; Fig. S4D, E). This established that silencing just the Ipc
neuron(s) encoding for S1 was sufficient to test the role of donut-like
inhibition on categorical signaling by OTid neuron 1.

Using these insights, we proceeded to test experimentally, the
functional consequence of filling-in the donut hole on categorization
by barn owl OTid neurons. We focally (and reversibly) inactivated
Ipc neurons by the iontophoresis of the pan-glutamate receptor
blocker, kynurenic acid (Fig. 5E-right, pink blob, “Iont.”; Fig. S4F;
Methods), while simultaneously recording the responses of spatially
matched OTid neurons (“Rec.”). OTid responses were measured to
the same two-stimulus morphing protocol used in our modeling
(Fig. 5E left vs. right; protocol shown in Fig. 5G–bottom, same as
Fig. 2C; Methods), as well as in previous experimental studies of
categorical signaling in the OTid8,22.

We found that disrupting the donut-like inhibitory motif
caused a substantial reduction in categorical signaling in the OTid
(Fig. 5F, G: example neuron pair). Across the population of tested
neuron pairs, categorization was nearly abolished by this
experimental perturbation, with the median reduction in CatI
of 104.7% (Fig. 5H; n= 11 neuron pairs; CatI: 95% CI of
median= [91.52%, 117.92%]; p= 2.55 e-5, ranksum test against 1
with HBMC correction). These results reinforce the dominance of
the indirect Imc-Ipc-OT pathway over the direct Imc-OT
pathway (the donut-like inhibition there remained intact in these
experiments). Thus, the midbrain spatial selection network not
only contains a specialized donut-like inhibitory circuit motif, but
also critically depends on it for categorical signaling by OTid.

Discussion
Our results discover the donut-like inhibitory motif as a powerful,
identifiable circuit mechanism for generating categorical neural
selection boundaries, able to convert even linear response profiles

Fig. 5 Donut-like inhibitory motif is required for categorical signaling of
the strongest stimulus by the barn owl midbrain selection network.
A Network model schematizing the OT-Imc-Ipc circuit with donut-like
inhibition in the barn owl midbrain. “Rec”: Recording at OTid neuron 1.
B Network model schematizing the desired experimental manipulation of
disrupting donut-like inhibition (i.e., filling-in the donut-hole): introduction of
self-inhibition (brown connections) in the direct pathway between Imc and
OTid, as well as in the powerful indirect pathway through Ipc. However, this is
infeasible experimentally (Figs. 3 and 4; text). C Network model schematizing
the proposed equivalent experimental manipulation: focal inactivation of Ipc
neuron in channel 1, mimicking the effect of introducing self-inhibition onto Ipc
neuron 1, while recording from aligned OTid neuron 1. “Iont”: Iontophoresis of
kynurenic acid (magenta blob) onto Ipc neuron; “Rec”: Recording OTid neuron.
D Modeling results showing equivalence between desired (B) and proposed
(C) manipulations. Plots of CatI computed from response profiles simulated
from models in (A–C); conventions as in Fig. 2D; n= 50 model neurons; center
lines in the violin plots indicate median values. Manipulations in both (B) and
(C) cause abolishment of categorization. See also Fig. S4A–C showing,
additionally, that (C) is not equivalent to removal of recurrent amplification.
(Note: model in (A) is identical to model in Fig. 2A, right column-bottom;
model in (B) is identical to model in 2B, middle column-third from top).
E Paired recordings in OTid and Ipc such that RF of OTid neuron overlaps with
that of Ipc neuron. Conventions as in Fig. 3C. Stimulus protocol used is the
same two-stimulus morphing protocol used in model simulations in Fig. 2B–D;
the relative strength between S1 and S2 was systematically varied. F Left: OTid
response rasters in the Ipc-intact condition. Right: OTid response rasters in the
Ipc-off condition. Distance between OTid and Ipc RF centers= 5°. G OTid
response firing rates, computed from D over the 100–400ms time window.
mean ± s.e.m (n= 12). Black: Ipc-intact condition, magenta: Ipc-off condition.
Dashed lines: best fitting sigmoid or straight line to data, chosen based on AIC
criterion. Black: AIC (sigmoid)= 29.07, AIC (line)= 40.92; magenta: AIC
(sigmoid)= 37.75, AIC (line)= 34.67. H Population summary of effect of Ipc
inactivation on CatI; n= 11 neuron pairs; data in orange are from example
neuron pair in (F, G). Top panel: measured values. Bottom panel: Data in top
panel replotted after normalizing to Ipc-intact values. Diamond: average of
magenta data; *p= 2.55e-5, two-sided ranksum test against 1 with HBMC
correction. See also Fig. S4. Source data are provided as a Source Data file.
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to categorical ones (Fig. 2D-inset, 2D – orange/brown to purple;
Fig. 5G, H – pink vs. black data).

Superiority over feedback inhibition and recurrent excitation
motifs for generating categorical neural responses. Contrary to
prior proposals42,44, our results showed that feedback inhibition and
recurrent amplification, by themselves, are not effective at producing
categorical response profiles, nor is their combination (Fig. 2C, D).
This was true independently of the strength of feedback inhibition
(Fig. S1D), the strength of recurrent amplification (Fig. S1E), the
specific implementation of recurrent amplification (Fig. S1F–H), the
magnitude of response noise (Fig. S1J), and over a range of values of
key parameters of the models including the slopes of the single-
stimulus input-output functions (or neuronal “activation” functions;
Fig. S1K, L). (The latter point is consistent with previous work
showing that the steepness of input-output functions of neurons can
be uncorrelated with whether the selection signal is categorical9).
Although not effective for producing categorical responses, feedback
inhibition and recurrent amplification have been linked to other
important functions related to selection, namely, the implementation
of a flexible selection boundary (feedback inhibition13,44,52), and
evidence accumulation (recurrent amplification39,42). Selection cir-
cuits may, therefore, need to include these motifs for other reasons
than categorization. If present as well, they heighten the efficacy of
the donut-like inhibitory motif in producing categorical response
profiles (Figs. 2D and S1H), effectively helping implement attractor
dynamics for flexible and categorical decision-making2,40,44.

A viable alternative to donut-like inhibition for categorization are
highly recurrent, non-structured networks, which have been shown
in modeling to be capable of generating categorical outputs from a
multiplexed representation of inputs53,54. However, because it is
difficult to extract specific, experimentally testable neural circuit
mechanisms from the opaque connectivity diagrams of recurrent
networks, and in light of the recently reported counterpoint to
mixed-selectivity descriptions10, we focused, here, on structured
circuit mechanisms, and identified donut-like inhibition as being
highly effective for categorizing inputs.

Superiority over the normalization model for generating
categorical neural responses. The structured donut-like organi-
zation of inhibition stands in contrast to another computational
mechanism that has been invoked in the decision-making lit-
erature, namely divisive normalization46,55–57. This involves
inhibitory elements that pool the drive from all the active chan-
nels (as opposed to receiving selective drive), that inhibit one
other, and that deliver pooled inhibition uniformly (rather than
in a donut-like manner) to the output elements (Fig. 6A55,56).
The midbrain spatial selection network (OT-Imc-Ipc), in which
categorical neural responses have been reported, does not
implement pooled divisive normalization for selection across
space: past work has shown that the inhibitory Imc neurons
receive selective input31–33,51, and our results (Figs. 3 and 4) show
that pattern of inhibitory output across the OT is not uniform
(but rather donut-like).

To test more generally whether the divisive normalization
model is capable of generating categorical response profiles, we
simulated a circuit model of normalization and obtained model
neuron responses to the two-stimulus morphing protocol
(Fig. 6A). This model yielded a substantially lower CatI than
the donut-like inhibitory motif (Fig. 6C right panel: mean
CatI=−0.05 for normalization model compared to 0.331 for
donut model in Fig. 2A, p= 1.5 e-29, t test with HMBC
correction, gold vs. purple; left panel: p= 1e-12, t test of gold vs.
purple). Thus, the normalization mechanism is not effective for
generating categorical responses (consistent with findings from

modeling in visual cortex58). Indeed, it was the presence of self-
inhibition, specifically, that caused this circuit to be ineffective: a
modified version of the circuit which did not include self-
inhibition (Fig. 6B), did produce categorical responses (Fig. 6C,
blue vs. gold data), further attesting to the primacy of the donut-
like motif for categorization.

Alternate implementation of the donut-like inhibitory motif.
Both in the barn owl brain and in the various models considered
in Figs. 2–5, the circuit architectures included feedforward inhi-
bition from inhibitory (“Imc”) neurons to the output (“OTid”)
neurons, with the donut-like motif instantiated as the absence of
feedforward self-inhibition. However, other established models of
decision-making do not include feedforward inhibition, but
rather only involve inhibition in a ‘reverberant’ path between the
competing options40 (Fig. 7A). To test if the implementation
method impacted our conclusions, we simulated a version of our
circuit model that implemented the donut-like motif only via a
reverberant route (Fig. 7A); we note that this implementation, by
definition, also includes feedback inhibition between the two
channels (Fig. 7A: black neuron 1→ blue neuron 1→ black
neuron 2 → blue neuron 2 → black neuron1). For completeness,
we simulated this model both without (Fig. 7A) and with recur-
rent amplification within each channel (Fig. 7B; curved orange
arrow). We found that this alternate implementation of the
donut-like motif also successfully produced categorical response
profiles (Fig. 7C, D; CatI= 0.29 (filled light blue), 0.34 (filled
orange)). Nonetheless, the feedforward implementation of the
donut-like motif (Fig. 2A, B, right panels) offered additional
benefits to categorization beyond the purely reverberant imple-
mentation in each case (Fig. 7C: filled light blue vs. dark blue; 7D:
filled orange vs. red).

Generality of donut-like inhibition as mechanism for catego-
rical neural responses. This study revealed the donut-like inhi-
bitory motif as the engine of categorization in the avian midbrain
network for spatial selection, a network conserved across
vertebrates21,31,59,60. Although the response curves discussed here
were obtained using competing looming stimuli, extensive work
in the barn owl has shown that categorical response profiles in the
owl midbrain are not specific to looming visual stimuli. Rather,
they occur no matter what the varying stimulus feature is (sti-
mulus contrast, for instance), and no matter what the sensory
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with pooled inhibition and inhibitory feedback55,56. B Schematic of
normalization circuit with self-inhibition removed (i.e., with donut-like
inhibition introduced). C Plot of CatI computed from the responses of
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modality is (for instance, binaural level of an auditory
stimulus)9,22,28,61. In other words, categorical neural responses
are not idiosyncratic to a specific stimulus feature, but are in fact,
general, representing the neural basis of stimulus competition and
selection across space in the barn owl14,21. Notably, the catego-
rical responses measured in the owl OTid have been shown to be
capable of accounting for behavioral deficits in target selection for
spatial attention in monkeys following focal perturbation of the
homologous SCid14. These observations, together with the fact
that the midbrain tecto-isthmic selection network is conserved
across all vertebrates26,31,59,60,62,63, point to the potential gen-
erality of the donut-like motif across the vertebrate midbrain for
spatial selection.

Might this motif also generalize to other forms of categorical
selection (beyond selection across space), mediated by other
cortical and subcortical areas (beyond the midbrain)? If so, how
might it generalize, implementation-wise? Below, we examine
these two questions in order.

To address the first question of whether or not this motif might
generalize (issue of feasibility), we draw upon the extensive literature
of computational modeling of categorical decision-making by various
cortical (and subcortical) areas2,5–7,11,40,64–67. These models success-
fully account for neural as well as behavioral responses in a wide
array of decision-making tasks –perceptual decision-making,
delayed-match-to-sample decision-making, sensory categorization,
etc. Examination of the circuit architectures in these models reveals
that nearly all of them contain a (seemingly hidden) donut-like

inhibitory motif34. Some include a feedforward
implementation64,65,67 (as in Figs. 2 and S1), while others include
a reverberant implementation (as in Fig. 7B)40,44,64,67,68. The
existence of this motif in these models, however, is not discussed
explicitly, and the need for it is unclear. We posit, based on our
experimental as well as modeling findings here, that it is this motif
that imbues those models with the ability to categorize. Indeed, the
one class of models that does not contain the donut-like motif is a
normalization-based modeling of decision-making69–73, which we
show is ineffective for generating categorical neural response (Fig. 6).
Together, these observations support the feasibility of the donut-like
motif for producing categorical neural representations across brain
areas, animal species and task contexts.

To address the second question of how it might generalize
(issues of implementation), we highlight four key characteristics
of the donut-like motif in the avian midbrain selection network
and discuss plausibly generalizable implementations of each.
First, in the midbrain selection network in which the donut-like
motif operates, individual stimuli are encoded with neural activity
that is proportional to their net priority21–23. This readily
generalizes to other instances of selection in which stimulus
options are encoded with neural activity that is proportional to
their net attractiveness or importance: for instance, subjective-
value of an option in the case of value-based decision-
making74–76, degree of membership of a stimulus in the case of
perceptual categorization2,77, etc. Second, in this network, long-
range suppression across spatial locations is the substrate upon
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Fig. 7 Alternate implementation (and generality) of the donut-like inhibitory motif. A, B Circuit with implementation of donut-like motif purely via a
reverberant route, i.e., in the absence of any feedforward inhibition. A Without recurrent amplification. B With recurrent amplification; curved orange
arrow. Blue ovals: inhibitory neurons, black circles: excitatory/output neurons, dashed gray ovals: populations of neurons representing each stimulus or
category. C, D Plots of CatI computed from the responses of output neuron 1 in circuits in (A) (C, filled light blue data) and in (B) (D, filled orange data), to
the standard two-stimulus morphing protocol (as in Fig. 2B). For comparison, the CatI values for the corresponding models with feedforward
implementation of the donut-like motif are reproduced here (in C: dark blue data from Fig. 2D; in D: red data from Fig. SH). *p < 0.05. Filled light blue vs.
dark blue, p= 1.7e-25; orange vs. red, p= 2.5e-31; paired two-sided t tests with HBMC correction. Purple dashed line: CatI of purple model from Fig. 2A,
which has just the feedforward donut-like motif sans feedback; reproduced here from Fig. 2D. n= 50 model neurons; center lines in the violin plots indicate
median values. E–H Graphical summary of central findings of this study. E Donut-like inhibition, i.e., inhibition (−) driven by preferred inputs (+) and
delivered to all non-preferred inputs, can be implemented in neural circuits either in a feedforward manner (F) or in a reverberant manner (G), to generate
categorical selection boundaries (H). F, G Blue ovals: inhibitory neurons, black circles: excitatory/output neurons. F dashed thin blue arrow indicates
absence of inhibitory projection. G based on Figs. 1–4; (G) is a simplified representation of model in (B), in which populations of neurons representing each
category or choice (dashed gray circle) mutually inhibit one another. The similarity of this reduced model structure to several previous models of selection
highlights the generality of our findings and provides a mechanistic explanation for the ability of those models to produce categorical selection
boundaries40, 64, 67, 68; see text. H Ability of donut-like motif to convert linear response profiles (thin black) to categorical (thick black) ones. Source data
are provided as a Source Data file.
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which the donut-like inhibitory motif is sculpted, and is
implemented by inhibitory neurons with far-reaching projections
across the space of stimuli. Alternatively, such inhibition could
also be implemented, for instance, in cortical circuits, through
long-range excitation contacting local inhibitory neurons. Third,
in the midbrain network, the donut-like motif is instantiated via a
feedforward implementation. As we saw in Fig. 7A–D, an
equivalent reverberant implementation, found in many models
of selection40,78 is also effective. Fourth, in the midbrain network,
the donut-like motif aids spatial selection by operating across a
well-organized topographic map of space. However, for many
forms of selection, such organized functional maps do not exist,
with olfactory categorization being an extreme example2,79. In the
case of olfactory decision-making, there is some evidence
suggesting self-sparing, combinatorial lateral inhibition across
mouse glomeruli79,80, of the kind found in the owl Imc. In most
of these cases, however, a detailed description of the large-scale
connectivity diagrams of inhibitory neurons in the corresponding
brain areas is yet to be worked out; this study suggests that a
search for donut-like inhibitory connectivity might be a fruitful
endeavor.

More generally, the donut-like motif described here does not
rely on mechanisms of plasticity for its operation. It is able to
dynamically generate categorical neural responses from con-
tinuously varying inputs, on the fly, and dynamic categorization is
critical to various behaviors (value-based decision-making, action
selection, spatial attention, etc.). However, conceptually, this
motif could also be introduced into a circuit through plasticity
mechanisms, thereby aiding in the generation of categorical
response profiles that are learned with experience6,12,81,82.

Temporal aspects of selection, and links to behavior. In this
study, we were interested, particularly, in mechanisms that could
generate categorical profiles of average firing rates (steady state
neural activity) as a function of relative stimulus strength, as
reported experimentally in the barn owl midbrain9,22,28,61.
(Similar categorical firing rate profiles have also been reported in
multiple other brain areas across species and task
configurations2,5–13). Our past modeling work (which forms the
basis of this work) has shown that not including precise timing
descriptions—for instance, timing of the arrival of excitation vs.
inhibition, does not impact the ability of these models to capture
phenomena at the level of average firing rates22,44. Separately,
several experimental studies have also reported temporal aspects
of decision-making—time courses of neural activity as well as
behavioral reaction times. We recall that leading classes of models
of selection/decision-making contain the donut-like inhibitory
motif2,5–7,11,34,40,64–67,83. Consequently, because those models
account for experimentally measured reaction times of animals
during the selection tasks (as well as in some cases, response time
courses), the donut-like motif is consistent with such temporal
aspects and dynamical features of categorical decision-making as
well. It will be valuable for future studies (involving behavior) to
explore these links explicitly.

The central proposal of this study is that donut-like inhibition
underlies categorical neural responses. Whereas neural response
profiles underlying decision-making and selection tasks are
frequently categorical2,5–13, psychometric profiles (of accuracy)
are often not. To clarify, whereas the animal or subject must (and
does) make a discrete choice on each trial, which results in the
task being referred to commonly as a “categorical” decision-
making task, behavioral performance, when assessed as a function
of a continuous task parameter, is often not actually step-
like17,76,84,85. It does not exhibit a large, abrupt change across the
category boundary, but instead, varies more gradually across it.

These two facts, however, are not in conflict: in line with previous
findings, neurons can encode information more effectively than
the animal as a whole, with behavior being a result of (noisy)
aggregation of activity across neurons86. Consequently, the
central prediction of this study is that causally perturbing
donut-like neural inhibition in a relevant brain area during a
decision-making task, will cause loss of categorical neural
responses, and in turn cause psychometric response curves to
become shallower (more gradual) than in the intact condition,
independently of their original shape, with selection performance
worsening particularly around the selection boundary.

In closing, we propose that the donut-like inhibitory motif
(Fig. 7E–H) may be a critical neural circuit module common to
various forms of categorical selection and decision-making. An
intriguing open question in this context, even in the avian
midbrain selection network, is how the wiring of the exquisitely
organized donut-like connectivity is achieved in the brain.

Methods
Animals. We performed experimental recordings in 7 head-fixed awake adult barn
owls viewing a visual screen passively (Tyto alba). Both male and female birds were
used; the birds were shared across studies. All procedures for animal care and use
were carried out following approval by the Johns Hopkins University Institutional
Animal Care and Use Committee, and in accordance with NIH guidelines for the
care and use of laboratory animals. Owls were group housed in flight runs within
the aviary, each containing up to 6 birds. The light/dark cycle was 12 hr/12 hr.

Neurophysiology. Experiments were performed following protocols that have
been described previously32,49. Briefly, epoxy-coated, high impedance, tungsten
microelectrodes (A-M Systems, 250 μm, 5–10MΩ at 1 kHz) were used to record
single and multi-units extracellularly in the OTid. Multi-barrel glass electrodes
(Kation Scientific, Carbostar– 3LT, 0.4-1.2MΩ at 1 kHz) filled with kynurenic acid
(a competitive inhibitor of ionotropic glutamate receptors; pH 8.5–9 at a con-
centration of 40 mM) were used to record from and inactivate neurons in the Imc
and Ipc. Inactivation was performed using micro iontophoresis by ejecting
kynurenic acid with an eject current of −450 nA to −500 nA; data were collected
starting 15 min after drug ejection commenced. A retain current of +15 nA was
used to prevent leakage of the drug from the tip of the electrodes when drug was
not being iontophoresed. Recovery data were measured 15 min after drug ejection
was ceased. Microiontophoresis, the technique we use here, is an established
technique for focal delivery of drugs that has been used extensively for this purpose
in the literature87–91. Prior published work has demonstrated that micro-
iontophoresis of kynurenic acid is spatially specific in the Imc-OT circuit32, and
that it offers a reliable approach to quantify Imc inhibition onto OTid neurons32.
Additionally, it is preferable to the alternative of electrical microstimulation of Imc
neurons for measuring the strength of Imc-OT inhibition because, (a) it avoids the
confound that can arise from potentially activating fibers of passage from Ipc to OT
as well (which are known to course through the Imc region26,31), and (b) it
measures the strength of physiological inhibition evoked by a stimulus rather than
that evoked by ectopic electrical activation.

OT, Imc and Ipc targeting. We navigated to the OT (based on well-established
methods92), and then navigated to the Imc using the OT’s topographic space map
as reference. The Imc is an oblong structure that is 2.8 mm rostrocaudally and
0.35 mm dorsoventrally, appearing as a 700-μm× 350-μm elliptical disk in coronal
sections. It lies parallel to the rostrocaudal axis of the OT, located ~16 mm ventral
to the surface of the brain, and ~500 μm medial to the medial-most part of the OT.
We targeted the Imc following published methods32. Imc targeting has been
validated previously using dye injections and lesions51. Dorsoventral penetrations
through the Imc were made at a medial-leading angle of 5˚ from the vertical to
avoid a major blood vessel in the path to the Imc. The Ipc lies roughly 500–700 um
medial to the Imc and its targeting was confirmed based on the neural response
characteristics of the neurons (characteristic bursty responses61).

Data collection and spike sorting. Multi-unit spike waveforms were recorded
using Tucker Davis Technologies hardware interfaced with MATLAB. The
responses of neurons were measured by counting spikes during a time window
(typically 100–350 ms) following stimulus onset.

The automated “wave-clus” spike-sorting toolbox was used for spike sorting93.
We included only those units for analysis for which fewer than 5% of the recorded
spikes were within 1.5 ms (inter-spike interval; ISI) of each other.

Model details (Related to Figs. 2, S1, S1, 6 and 7).

Input output functions. The input output functions (firing rate f , as a function of
the saliency, l) of the neurons in the model were simulated using sigmoid functions
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using previously published methods44.

f lð Þ ¼ cþ s
lm

lm þ Lm50

� �
ð1Þ

where c; is the baseline firing rate of the neuron; l, is the saliency parameter of the
stimulus (e.g., loom speed of the stimulus, loudness of an auditory stimulus,
contrast of the stimulus, speed of a moving stimulus) that can vary continuously
over a range; s; is the maximum change in the firing rate of the neuron; L50 is the
saliency value at which the neuron’s firing rate changes by 50% of the maximum
change; and m, is a parameter that controls the slope of the sigmoid.

Excitatory neurons. The excitatory neurons were simulated using the following
parameters (which are consistent with the parameters obtained by fitting a sigmoid
to response functions of OTid neurons44):

c ¼ 5:3; s ¼ 22:2; L50 ¼ 11:6;m ¼ 2 ð2Þ

Inhibitory neurons. The inhibitory neurons were simulated using the following
parameters (which are consistent with the parameters obtained by fitting a sigmoid
to response functions of Imc neurons44):

c ¼ 5; s ¼ 15; L50 ¼ 8;m ¼ 10 ð3Þ

Recurrent excitation neurons. The excitatory neurons that provide recurrent
amplification in Fig. 2 were simulated using the following parameters (which are
consistent with the parameters obtained by fitting a sigmoid to response functions
of Ipc neurons48):

c ¼ 8:4; s ¼ 36; L50 ¼ 5:8;m ¼ 3:3 ð4Þ
The inhibition sent from the inhibitory neurons onto excitatory neurons is

modeled using input and output divisive factors as below using previously
published methods44.

f ¼ 1
sout

þ 1

� �
:

c
sin þ 1

þ s
lm

lm þ Lm50 þ smin

� �� �
ð5Þ

where

● sin ¼ din:I; sout ¼ dout :I are the input and output divisive factors.
● din and dout are parameters that control the strength of input and output

division and I is the output (firing rate) of the inhibitory neuron sending
the inhibition.

The value of these parameters chosen were din= 0 and dout= 0.25 consistent
with previously published methods (see Fig. 5D in44).

Feedback inhibition. In models in which the inhibitory neurons inhibit each other
(Fig. 2A, middle column-top; green inhibitory connections), the feedback inhibi-
tion was modeled as below using previously published methods44.

IðtÞ ¼ 1
iout

þ 1

� �
:

c
iin þ 1

þ s
lm

lm þ Lm50 þ imin

� �� �
ð6Þ

iinðtÞ ¼ rin:I
0ðt � 1Þ; iout ¼ rout :I

0ðt � 1Þ ð7Þ
where I0 is the output (firing rate) of the other inhibitory neuron at time ðt � 1Þ.

These equations were iteratively applied until there was no further change in the
output of the neurons (i.e., steady state was reached). The time course of
reverberant activity due to this feedback connectivity has been plotted in our
previously published work44.

The values of the feedback parameters used were rin ¼ 0:8; rout ¼ 0:01
consistent with previously published methods. We also varied these two parameters
(varying feedback; Fig. S1D) to study their effect on categorization index.

“Self” inhibition and donut. In models in which the excitatory neuron receives
inhibition from more than one inhibitory neuron (e.g., Fig. 2A, left column top
model; baseline model), the inhibition from these sources was combined as below.

f ¼ 1
sout1

þ 1

� �
:

1
sout2

þ 1

� �
:

c
sin1 þ sin2 þ 1

þ s
lm

lm þ Lm50 þ smin1 þ smin2

� �� �
ð8Þ

where, sin1 ¼ din:I1; sout1 ¼ dout :I1; sin2 ¼ ðs � dinÞ:I2; sout2 ¼ ðs � doutÞ:I2
I1 is the output (firing rate) of the inhibitory neuron 1 and I2 is the output

(firing rate) of the inhibitory neuron 2.
The parameter value s controls the strength of self-inhibition, and ranges

between 0 and 1. In models that have “donut-like connectivity”, s is set to 0 (e.g.,
Fig. 2A, middle column-second from top model; absence of purple projections
from Imc neurons to aligned OTid neurons; Donut model). In models which do
not have the donut-like connectivity (e.g., Fig. 2A, left column top model; baseline
model), s is set to 1.

We also vary the value of s systematically between 0 (donut) and 1 (maximum
self-inhibition) to study the effect of the strength of “self” inhibition on
categorization index (Fig. S1I).

Recurrent excitation. In the models with recurrent excitation, (of the kind in
Fig. S1F), the output of the neuron is scaled by a factor (k; k= 2.5 in Fig. S1G, H).

In the model in Fig. 2, the output of the neuron which receives recurrent
amplification is modeled as below.

f ðlÞ ¼ 1þ eout
� �

:
1

sout þ 1

� �
:

c
sin þ 1

þ s
lm

lm þ Lm50 þ smin

� �� �
ð9Þ

where, eout ¼ ea:A; ea ¼ 0:01, and A is the output of the neuron sending the
amplification.

The value of the parameter is chosen as 0.01 to yield results consistent with the
amplification effect of Ipc on OT responses as reported in previously published
work (Ipc inactivation results in a 31% decrease in the OTid responses on
average25). We also vary the amplification factor ea to study its effect on
categorization index (Fig. S1E).

Models for Figs. 6 and 7. To implement the models in Figs. 6 and 7 (normal-
ization model and donut-like motifs purely via a recurrent route), we used the
input-output functions and the effect of divisive inhibition described above. The
primary feature of these models that is different from models in Figs. 2, and S1 is
that the excitatory neurons send inputs to inhibitory neurons, which then inhibit
those excitatory neurons. The output of an excitatory neuron at time t is calculated
by applying divisive inhibition (from the inhibitory neurons at time t− 1) to its
activity at time t− 1. This activity is then used to calculate the activity of the
inhibitory neurons at time t as below.

IðtÞ ¼ 1þ eout
� �

:Iðt � 1Þ ð10Þ
where, eout ¼ ea:A; ea ¼ 0:01, and A is the output of the neuron sending the input
at time t− 1.

This process is repeated iteratively until steady state activity is obtained. The
initial activities (at t= 0) of the inhibitory neurons are set to their baseline level,
and of the excitatory neurons are calculated from the stimulus inputs without any
divisive inhibition.

For the models with recurrent amplification (Fig. 7A, B), the output of the
neuron is scaled by a factor (k, k= 2.5).

Calculating categorization index (Figs. 2, 6, 7, S1 and S4) and boundary dis-
criminability (Fig. S1) for the models. For each of the models in Figs. 2, 6, 7, S1 and
S4 we used a two-stimulus strength morphing protocol described in previously
published work8. We presented stimulus S1 at location 1 and stimulus S2 at
location 2. As the strength of the first stimulus was increased, the strength of the
second stimulus was decreased (Figs. 2B and 5E). Responses of the model output
neuron (#1) were simulated using this protocol. Random noise from a standard
normal distribution was added to the responses. The variance of the noise added
depended on the mean value of the responses (m) and a fano factor value (ff):
variance= ff*m. This was repeated 30 times (to mimic 30 reps of data collection
from a ‘neuron’) and was used to compute the response profiles (mean+/− s.e.m)
of that neuron from different model circuits. Similarly, response profiles for 50
neurons were obtained for each model circuit. For all the model runs reported, we
used a fano factor value of 6. We also varied the fano factor value to test the effect
of noise on model performance (Fig. S1J).

This stimulus presentation protocol results in 2 categories (Category 1: S1 > S2
and Category 2: S1 < S2). We measured the boundary discriminability (bd’) of the
responses of neuron 1 by calculating the d-prime between the responses of neuron
to stimuli pair straddling either side of the selection boundary and at a distance of 3
units from the boundary as:

bd0 ¼ μ1 � μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 s21 þ s22

� �q ð11Þ

where, μ1 and s1are the mean and the standard deviation of the responses of the
neuron to the stimuli pair from category 1 near the boundary; and μ2 and s2are the
mean and the standard deviation of the responses of the neuron to the stimuli pair
from category 2 near the boundary.

To compute the categorization index, we compared two quantities: (modified
from previously published work6,8) (a) the mean within-category d-prime (WCD’)
between the responses of the neuron to pairs of stimulus-pairs (S1 and S2) that are
in the same category, and (b) the mean between-category d-prime (BCD’) between
the responses of the neuron to pairs of stimulus-pairs that are in different
categories. The pairs are chosen while ensuring that (i) the number of pairs used to
calculate both these metrics are the same, and (ii) the distribution of the distances
between the chosen pairs for calculating both the metrics are the same. The
categorization index is calculated from these two metrics as:

Categorizationindex ðCatIÞ ¼ meanðBCD0Þ �meanðWCD0Þ
meanðBCD0Þ þmeanðWCD0Þ ð12Þ

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29318-0 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1680 | https://doi.org/10.1038/s41467-022-29318-0 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


CatI= 1 indicates idealized, step-like responses; =0 indicates linear, non-
categorical responses; <0 indicates better discriminability within category than
between categories (Fig. S1C).

Data collection protocol. Visual stimuli used here have been described
previously8,49. Briefly, looming visual dots are flashed at different locations on a
tangent TV monitor in front of the owl. Looming stimuli were dots that expanded
linearly in size over time, starting from a size of 0.6° in radius. The speed of the
loom was decided based on the stimulus protocol and varied between 9.6°/s and
21.6°/s. Visual stimuli were presented for a duration of 250 ms with an inter
stimulus interval of 1.25 s to 4 s.

Receptive fields (RFs). For measuring spatial RFs of Imc, OTid and Ipc neurons,
a single stimulus of a fixed contrast was presented at the sampled locations. The
order of locations at which the stimulus was presented was randomized to mini-
mize adaptation. A location is considered to be inside the RF if it evokes responses
significantly different from that of baseline response. All other locations are con-
sidered to be outside the RF.

The following stimulus protocols were used for measuring data reported in
Figs. 3 and 4.

I. Paired OTid and Imc data collection

1. “Other” inhibition

To measure the strength of “other” inhibition sent from an Imc neuron to a
distant location in the OTid space map, we simultaneously recorded from the Imc
neuron (with a multi-barrel glass electrode filled with the kynurenic acid), and a
spatially misaligned “other” OTid neuron (with a tungsten electrode) as described
below; we ensured that the half-max of the RF of the OTid neuron lay outside (did
not overlap with) the half-max of the Imc RF.

For measuring “other” inhibition, we recorded the following data curves
together in an interleaved manner.

a. Tuning curve (TC) centered at the OTid RF peak: A 1-dimensional spatial
tuning curve centered at the peak of the OTid RF. The stimulus had a loom
strength of 9.6°/s.

b. Tuning curve centered at the OTid RF peak + competing stimulus centered
at the Imc RF peak (TCC): The same curve as in a), but along with a
(distant) competitor positioned at the peak of the Imc RF. The strength of
the competing stimulus was chosen to be 19.2°/s. This second competing
stimulus drives the Imc neuron, which sends strong competitive inhibition
to the OTid neuron. Since the competing stimulus was more salient than the
stimulus driving the OTid neuron, the responses of the OTid neuron were
strongly suppressed consistent with previous published results49.

c. Tuning curve (TC) centered at the Imc RF peak: 1-dimensional spatial
tuning curve centered at the Imc RF. The loom strength of the stimulus was
chosen to be 9.6°/s.

We measured the above 3 curves both when the Imc neuron is intact (“baseline”
condition) and focally inactivated (“inactivation” condition) and compare the
responses as below. In a subset of the data, we also measured the curves after the
responses of the Imc neurons recovered (Fig. S2A, “recovery” condition) from focal
iontophoretic inactivation. Inactivation curves were measured 15 min after the
drug ejection was started. Recovery curves were measured 15 min after the drug
ejection was stopped.

We analyzed the data from these three curves as below.
First, a distant competing stimulus is known to typically suppress OTid

responses49,50, something that we confirmed by comparing the responses of OTid
neurons to the TC (curve a) and TCC (curve b); Fig. S2B. Notably, it is also known
that some OTid neurons do not show such suppression, and any such neurons
were excluded from our analyses9.

Next, to measure the amount of Imc inactivation, we compared the responses of
the Imc neurons to the TC measured at the Imc RF peak (curve c) in the baseline
condition vs. the inactivation condition. Kynurenic acid was able to effectively shut
down Imc responses: (Fig. S2C; red, median strength of Imc inactivation= 95%,
95% CI of median= [87%, 103%], p= 3.8e-6, sign test, n= 19).

Finally, to measure the strength of “other” inhibition, we compared the TCC
responses (curve b) in the baseline condition and the inactivation condition. In the
baseline condition, the Imc neuron was intact, driven by the competing stimulus
and sent strong inhibition to the OTid neuron. In the inactivation condition, the
Imc neuron was silenced, as a result of which the OTid neuron was released from
inhibition and exhibited an increase in responses.

Any observed increase in OTid responses quantified the amount of suppression
due to Imc onto the OTid location, thereby directly estimating the strength of net
“other” inhibition: % change in OTid responses= 100* (responses in Imc intact
condition− responses in Imc off condition)/responses in Imc off condition. To
obtain an accurate estimate of the % change, we considered the responses to
stimulus S1 (in the two conditions) at all locations inside the RF as follows. We fit a
straight line to the plot of OTid responses to S1 in the Imc intact vs. Imc of
conditions (Fig. 3F), calculated the slope of the best-fit line, and used it to compute
the average value of % change as: %change in OTid responses= 100*(slope-1).

This procedure was also used to quantify “self” inhibition, “gap” inhibition and
“different lobe” inhibition (below).

2. “Self” inhibition:
To measure the strength of “self” inhibition sent from an Imc neuron to a
matched location in the OTid space map, we simultaneously recorded from
the Imc neuron (with a multi-barrel glass electrode filled with the kynurenic
acid), and a spatially aligned “self” OTid neuron (with a tungsten electrode)
as described below; we ensured that the half-max of the RF of the OTid
neuron overlapped with the half-max of the Imc RF.
We recorded a spatial tuning curve centered at the peak of the OTid (and
therefore, Imc) RF. The loom speed of the stimulus used was 9.6°/s; this
stimulus drives both the OTid and the Imc neuron.
We compared the responses of the OTid neuron in the Imc-intact (baseline)
and Imc inactivated condition and the difference quantified the strength of
“self” inhibition (Fig. 3L, blue).
To measure the amount of Imc inactivation, we compared the responses of
the Imc neuron in the baseline and the inactivation condition as before.
Kynurenic acid was able to effectively shut down Imc responses: (median
strength of Imc inactivation= 92%, 95% CI of median= [86% 98%],
p= 7.5e-9, sign test).

3. “Gap” inhibition:
To measure the strength of “gap” inhibition sent from an Imc neuron with a
multilobed RF to the locations in the OTid space map between the RF lobes
(gaps), we simultaneously recorded from the Imc neuron (with a multi-
barrel glass electrode filled with the kynurenic acid), and “gap” OTid neuron
(with a tungsten electrode), the RF (half-max) of which was located in the
gap between the half-max of the lobes of the Imc RF (Fig. 4A–C). We
recorded the same set of curves as in the “other” inhibition case (see above)
from the gap OTid neuron, and performed similar analyses on the data to
quantify the strength of “gap” inhibition.
As pointed out in the Neurophysiology subsection above, microiontophor-
esis is a focal technique for manipulating neural activity. This minimizes
concerns about potentially broad spread of kynurenic acid in this
experiment causing inactivation of Imc neurons encoding for the gap
location as well. Notably, even if such widespread inactivation were to occur,
it would not affect our interpretations for the following reason. Consider
that an Imc neuron that encodes for the gap location (at which stimulus S1
is presented; Fig. 4C) is also inactivated by kynurenic acid iontophoresis to
the portion of Imc encoding for stimulus S2. As demonstrated in Fig. 3, this
Imc neuron does not send any inhibition to the OTid neuron encoding for
S1 (i.e., to a “self” site in OTid; Fig. 3G–L). In other words, the donut-like
pattern of inhibition established in Fig. 3 ensures that the strength of OTid
inhibition measured by applying kynurenic acid to the portion of Imc
encoding for S2, is unaffected by whether or not Imc neuron(s) encoding for
S1 are also inactivated.

4. “Different lobe” inhibition:

To measure the strength of inhibition sent “from” locations within one lobe of
an Imc neuron with a multilobed RF to the locations in the OTid space map within
other lobes of the Imc RF (“different lobe” inhibition), we simultaneously recorded
from a multilobe Imc neuron (with a multi-barrel glass electrode filled with the
kynurenic acid), and an OTid neuron (with a tungsten electrode), the RF (half-
max) of which overlapped with one of the lobes of the Imc RF (Fig. 4G–I). Then we
measured the same set of curves as in the “other” case while ensuring one
additional detail. We recorded the TC curve (curve a) with stimulus (S1) centered
at the OTid RF peak (and therefore within one of the lobes of the Imc RF as well).
For the TCC (curve b), the second stimulus S2 was centered at the peak of a
different lobe of the Imc neuron’s multilobe RF. Thus, both stimuli excited the Imc
neuron (during curve b) as they lay within its RF, but only S1 excited the OTid
neuron and S2 served as a (distant) competitor from the its perspective.

An OTid neuron in this configuration was defined as a “different lobe” OTid
neuron; the half max of its RF overlapped with the half max of one of the lobes of
the Imc RF, but not of other lobes. (Note that by definition, every “different lobe”
OTid neuron is also a potentially “self” OTid neuron, and admits to the use of the
appropriate stimulus protocol to measure “self” inhibition. However, the opposite
is not true, since “self” OTid neurons can be identified for Imc neurons with single
lobed RFs as well, but “different lobe” OTid neurons are only defined for multilobe
Imc neurons).

We applied similar analyses as in the “other” case to the data from “different
lobe” OTid neurons and quantified the strength of “different lobe” inhibition.

II. Paired OTid and Ipc data collection (Figs. 5 and S4)

To test if the donut-like inhibitory motif is required for (robustness-to-noise
and) categorization, we made paired recordings at spatially aligned Ipc and OTid
neurons. We used a strength morphing stimulus protocol described in previously
published work8. Briefly, we presented one stimulus (S1) inside the RF of the OTid
neuron (and also Ipc neuron because their RFs overlap). Simultaneously, we
presented a competing stimulus (S2) 30˚ away along azimuth from S1. As the
strength of the S1 decreased, the strength of S2 stimulus increased (Fig. 5E).

We applied the same analyses described above for the model in Fig. 2, S1 to
compute the categorization index for experimental data reported in Fig. 5.
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Data analyses and statistical tests. All analyses were carried out with custom
MATLAB code. Parametric or non-parametric statistical tests were applied based
on whether the distributions being compared were Gaussian or not, respectively
(Lilliefors test of normality). The Holm-Bonferroni correction was used to account
for multiple comparisons; the abbreviation “with HBMC correction” in the text
stands for “with Holm-Bonferroni correction for multiple comparisons”. All tests
were two-sided. Data shown as a ± b refer to mean ± standard deviation, unless
specified otherwise. The “*” symbol indicates significance at the 0.05 level (after
corrections for multiple comparisons, if applicable). Correlations were tested using
Pearson’s correlation coefficient (corr command in MATLAB with the “Pearson”
option).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available in the Zenodo repository94

https://doi.org/10.5281/zenodo.6253293.

Code availability
The software code that supports the findings of this study are available in the Zenodo
repository94 https://doi.org/10.5281/zenodo.6253293.
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