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Single-cell RNA sequencing (scRNA-seq) can be used to gain insights into cellular hetero-

geneity within complex tissues. However, various technical artifacts can be present in scRNA-

seq data and should be assessed before performing downstream analyses. While several

tools have been developed to perform individual quality control (QC) tasks, they are scat-

tered in different packages across several programming environments. Here, to streamline

the process of generating and visualizing QC metrics for scRNA-seq data, we built the SCTK-

QC pipeline within the singleCellTK R package. The SCTK-QC workflow can import data from

several single-cell platforms and preprocessing tools and includes steps for empty droplet

detection, generation of standard QC metrics, prediction of doublets, and estimation of

ambient RNA. It can run on the command line, within the R console, on the cloud platform or

with an interactive graphical user interface. Overall, the SCTK-QC pipeline streamlines and

standardizes the process of performing QC for scRNA-seq data.
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S ingle-cell RNA-sequencing (scRNA-seq) has been instru-
mental in providing detailed insights into cellular hetero-
geneity related to tissue development and disease

pathogenesis1. With the advent of microfluidic devices, the
transcriptome for thousands of individual cells can be measured
in a single run2. These devices work by partitioning cells into
droplets along with beads containing oligonucleotide primers
with unique barcodes. Within each droplet, reverse transcription
is initially used to create barcoded cDNA and then additional
amplification steps are used to create final sequencing libraries
depending on the protocol3. Other approaches such as SMART-
seq2 and CEL-seq2 can be used to profile cells that have been
sorted into 96- or 384-well plates4,5. Many of these protocols use
unique molecular indices (UMIs) to barcode each individual
mRNA molecule and correct for biases in amplification6.

Despite the advances in scRNA-seq protocols, poor-quality
cells can still be present in high-quality runs. Technical artifacts
related to the cell dissociation process, cell encapsulation, library
preparation, or sequencing can affect various aspects of data
quality. Low quality cells need to be excluded and technical
artifacts need to be systematically assessed in each sample before
downstream analyses can be performed. We briefly describe five
types of QC analyses and metrics that are commonly utilized in
scRNA-seq data analysis: (1) Cells in which barcoding or
amplification reactions were not successful will have lower
numbers of UMIs and genes detected. Lower numbers of UMIs
and detected genes can hinder downstream analyses such as
clustering because the genes that are able to distinguish cell
populations may not be adequately measured. Often, these cells
are excluded by setting a minimum threshold on the number of
UMIs per cell and/or genes detected. (2) Another aspect unique
to droplet-based microfluidic devices is that the majority of the
droplets (>90%) will not contain an actual cell7,8. Despite the
absence of a cell, these “empty droplets” may contain low levels of
background ambient RNA that was present in the cell solution9.
An algorithm is needed to determine which droplets likely con-
tained a real cell versus those that just contain ambient RNA9.
Only droplets predicted to contain an actual cell are used in
downstream analyses. (3) Doublets and multiplets occur when
two or more cells are partitioned into a single droplet or well and
will result in an artificial hybrid expression profile of each indi-
vidual cell2. Several algorithms have been developed to identify
potential doublets by combining expression profiles of randomly
selected cells and then scoring each cell against the in silico
doublets10,11. These tools can be used to flag problematic clusters
that are created by droplets that contain cells from two different
cell types. (4) Ambient RNA in the cell suspension can also be
present in droplets containing a cell as well as empty droplets.
These ambient transcripts will be counted along with a cell’s
native RNA and result in contamination of highly-expressed
genes from other cell types. Tools such as decontX can be used to
estimate contamination levels and deconvolute each cell into
counts derived from native RNA and counts from contaminating
ambient RNA12. (5) Perturbations during sample preparation can
lead to biological artifacts. For example, cells that become stressed
during tissue dissociation may express abnormally large propor-
tions of mitochondrial genes in their transcriptome13. These cells
may appear as a unique cluster in the scRNA-seq data even
though they did not represent a unique cell population in the
original tissue sample. If not taken into account, these factors can
confound downstream analyses or produce erroneous findings.
Therefore, performing comprehensive QC is a crucial step in
scRNA-seq data analysis to ensure valid results.

While a large number of QC algorithms and software tools have
been produced to address the specific challenges inherent in
scRNA-seq data, these tools are implemented in different packages

across various programming environments. In order to generate a
comprehensive set of QC metrics, users need to separately
download, install, and run each tool for each sample and inde-
pendently assess the results14. Currently, there is a lack of stan-
dardized workflows that can streamline the process of generating
QC metrics from different tools. While standalone quality control
workflows such as those included in Seurat offer methods for the
removal of poor-quality cells, it is usually focused on detection of
droplets with abnormally low or high library size15,16. These
workflows do not offer a breadth of options for QC, and do not
contain methods for detection of doublets and ambient RNA
contamination. In order to address these limitations, we have
developed the SCTK-QC pipeline within the singleCellTK R
package. The SCTK-QC pipeline is an extension of the single-
CellTK package and designed as a standalone script which can be
run on the command line and incorporated into standard cloud-
based preprocessing pipelines. This pipeline can import single-cell
RNA-seq data from a variety of preprocessing tools, run a mul-
titude of different tools to generate comprehensive sets of QC
metrics, visualize the results within detailed HTML reports, and
export the results in an organized manner in various formats.

Results
Overview of SCTK-QC Pipeline. The SCTK-QC pipeline is
accessible through the singleCellTK package in R/Bioconductor.
This pipeline assumes that the raw sequencing reads have been
aligned, a correction for UMI and cell barcodes has been applied,
and a count matrix containing genes and cells has been created by
an upstream preprocessing tool such as CellRanger7 or
STARsolo17. For data generated with microfluidic devices, the
first major step after UMI counting is to detect cell barcodes that
represent droplets containing a true cell and exclude empty
droplets that only contain ambient RNA9. We use the terms
“Droplet” matrix to denote a count matrix that still contains
empty droplets, “Cell” matrix to denote a count matrix of cells
where empty droplets have been excluded but no other filtering
has been performed, and “FilteredCell” matrix to indicate a count
matrix where poor quality cells have also been excluded. The
Droplet and Cell matrices have also been called “raw” and “fil-
tered” matrices, respectively, by tools such as CellRanger. How-
ever, using the term “filtered” can be ambiguous as other forms of
cell filtering can be applied beyond empty droplets (e.g., excluding
poor-quality cells based on low number of UMIs). Additionally,
even after excluding empty droplets and poor-quality cells, the
matrix will still contain unnormalized counts, which is also
commonly referred to as the “raw” count matrix. To eliminate
ambiguity of these terms, we adopt the nomenclature of “Dro-
plet”, “Cell”, and “FilteredCell” to describe the level of filtering on
the dimensions of the count matrix while we prefer the terms
“Raw”, “Normalized”, and “Scaled” to denote the level of pro-
cessing for the counts within the matrix.

The major steps in the SCTK-QC pipeline include: (1)
importing of the Droplet matrix, (2) detection and exclusion of
empty droplets to create the Cell matrix, (3) calculation of a
comprehensive set of QC metrics on the Cell matrix, (4)
visualization of results in HTML format, and (5) exporting the
data to formats used in downstream analysis workflows (Fig. 1).
Note that several preprocessing tools automatically exclude empty
droplets and create a Cell matrix. The SCTK-QC pipeline also has
the ability to import a Cell matrix and start with the calculation of
QC metrics in step 3 or import both the Droplet and Cell
matrices and perform QC on each matrix independently. The
single-cell data is stored within the pipeline as a SingleCellExperi-
ment object14. Cell-level metrics generated by QC tools are stored
in the colData slot alongside other imported cell-level annotations
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and corrected raw counts matrices created by any QC tool are
stored in the assays slot. For reproducibility, the parameters and
seeds used to run the functions within the pipeline will be also
stored in the metadata slot. Overall, the pipeline supports
importing data from 11 different preprocessing tools or file
formats, empty droplet detection with 2 algorithms, generation of
standard QC metrics, doublet detection using 6 algorithms, and
estimation of ambient RNA with DecontX (Table 1). SCTK-QC
integrates numerous tools across different programming envir-
onments such as R and Python. To streamline installation and
minimize challenges with package dependencies, we have built
Docker and Singularity images which are available through
DockerHub (campbio/sctk_qc). To enable usage on the cloud, we
have wrapped the SCTK-QC pipeline in Workflow Description
Language (WDL) which can be used to QC samples on the Terra
platform. The specific algorithms and tools used in each step of
the pipeline are described in more detail below.

Data import. SCTK-QC can automatically import data from a
variety of preprocessing tools and file formats. Supported pre-
processing tools include CellRanger7, BUStools18, STARSolo17,
SEQC19, Optimus20, Alevin21, and dropEST22. Generally, users will
only need to specify the top-level directories for one or more
samples and SCTK-QC will import and combine each sample into a

single matrix (Supplementary Table 1). Alternatively, specific file
formats such as Market Exchange Format (MEX) or a file con-
taining comma-separated values (.csv) can be specified along with
separate files for feature and cell annotation. By default, SCTK-QC
will run QC analysis on both Droplet matrix and Cell matrix if both
of them are provided. However, users can also choose to run QC
only on the Droplet or only on the Cell matrix. The sample labels
for each cell are stored in a variable called “sample” within the
colData slot of the SingleCellExperiment object. Each QC algorithm
will be applied to cells from each sample separately.

Empty droplet detection. Detection of empty droplets within the
Droplet matrix is accomplished using the algorithms barcodeRanks
and EmptyDrops from the dropletUtils package9. These algorithms
are incorporated within the wrapper function runDropletQC().
barcodeRanks ranks all barcodes within the Droplet matrix based
on total UMI counts per barcode. The knee, and inflection points
are computed from the log-log plot of the rank against the total
counts. Under the assumption that cells will have a higher number
of total UMI counts than empty droplets, barcodes with total
counts under the knee or inflection points are flagged as empty
droplets. Rank, total counts, knee and inflection point are all out-
putted from the algorithm and stored within the SingleCellExperi-
ment object. In contrast, emptyDrops differentiates between empty

Fig. 1 Overview of the SCTK-QC pipeline. The SCTK-QC pipeline is developed in R and can import datasets generated from various preprocessing tools.
The pipeline incorporates various software and tools to perform QC for Droplet and/or Cell matrices within each sample. Tools are included for calculation
of standard metrics such as the number of Unique Molecular Identifier (UMIs) per cell, detection of empty droplets, prediction of doublets, and estimation
of contamination from ambient RNA. The pipeline utilizes the SingleCellExperiment (SCE) R object to store assay data and the derived QC metrics. Data
visualization and report generation can be subsequently performed on the imported dataset based on user specified parameters. All data can be exported
to Seurat object, a Python AnnData object, or as Market Exchange Format (MEX) and.txt flat files to facilitate analysis in downstream workflows.

Table 1 Functions available in the singleCellTK package and the SCTK-QC pipeline along with the corresponding wrapper
functions.

SCTK QC modules Methods Goal Packages integrated Function

runDropletQC runBarcodeRankDrops Calculate barcode ranks DropletUtils barcodeRanks
runEmptyDrops Detection of empty droplets DropletUtils emptyDrops
runPerCellQC Compute general quality control metrics scater addPerCellQC

runCellQC runPerCellQC Compute general quality control metrics scater addPerCellQC
runScrublet Doublet detection Scrublet scrub_doublets*
runScDblFinder Doublet detection scDblFinder scDblFinder
runDoubletFinder Doublet detection DoubletFinder doubletFinder_v3
runCxds Doublet detection scds cxds
runBcds Doublet detection scds bcds
runCxdsBcdsHybrid Doublet detection scds cxds_bcds_hybrid
runDecontX Detect ambient RNA contamination celda decontX

The diverse algorithms and their corresponding SCTK-QC wrapper functions that are used to generate quality control QC metrics in SCTK-QC pipeline. The asterisk denotes Python functions.
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droplets containing ambient RNA from true cells by employing a
probabilistic model that assumes a “pool” of ambient RNA from
the Droplet matrix randomly contaminates each droplet. This
algorithm identifies droplets containing true cells by comparing
each droplet to a pool of low-count droplets that likely only con-
tains ambient RNA. Metrics generated from this model include the
total UMI counts per barcode, the log-probability, Monte Carlo
p-value, and the q-value for a droplet containing a real cell, and a
value signaling whether increasing the number of iterations within
the algorithm will increase the likelihood of identifying a lower
p-value. The SingleCellExperiment object containing the Droplet
matrix can be automatically filtered on either the barcodeRanks or
emptyDrops output to create a new SingleCellExperiment object
containing the Cell matrix if this matrix was not originally supplied
as input to the SCTK-QC pipeline.

Generation of QC metrics. Wrapper functions for each QC
algorithm or tool are included in SCTK-QC. Additionally, the
wrapper function runCellQC() is capable of executing these
algorithms all at once within SCTK-QC. runCellQC() applies
algorithms available from the scater23 package to the Cell matrix
to compute standard metrics. This includes the total UMI counts
per cell, total number of features detected per cell, and the per-
centage of library size occupied by the most highly expressed
genes in each cell. Users may also supply any gene set of their
choice to calculate the aggregate expression of the gene set per
cell. As a specific use case, a list of mitochondrial genes may be
supplied to runCellQC() to compute the mitochondrial gene
expression per cell. Mitochondrial gene sets for mouse and
human in Gene Symbol, Ensembl and Entrez formats are stored
in the package and can be supplied to the SCTK-QC pipeline by
setting “-M” parameter. The runCellQC() function employs the
following algorithms for doublet identification in the Cell matrix:

Scrublet10, scDblFinder24, DoubletFinder11, and the cxds, bcds, and
cxds_bcds_hybrid models from SCDS25 package. All of these
algorithms output a doublet score and derive a threshold to make
a call as to whether each cell is a doublet or a singlet. Running
multiple algorithms allows users to set their own criteria for
flagging potential doublets that works best for their dataset. If
users do not have a specific preference for a doublet detection
algorithm, we recommend adopting a “consensus” approach and
consider cells identified as doublets by multiple algorithms to
most likely be doublets. Finally, the runCellQC() function runs
decontX12 to detect ambient RNA contamination for each cell
within the Cell matrix. The percentage of estimated contamina-
tion is stored within the colData and the decontaminated count
matrix is stored as an assay in the SingleCellExperiment, which
can be optionally used in downstream analysis. After completion
of runCellQC(), users can use any combination of these QC
metrics to filter the Cell matrix and create a FilteredCell matrix
for use in downstream analyses. For all of these above QC
metrics, users may determine their own outlier cutoff by applying
the wrapper function detectCellOutlier() which determines out-
liers based on median absolute deviation.

Generation of comprehensive QC HTML reports. Rmarkdown
documents can be used to create dynamic HTML or PDF reports
useful for systematic display and evaluation of data26. We include
the functions reportDropletQC(), reportCellQC(), and reportQC-
Tool(), which make use of algorithm-specific Rmarkdown docu-
ment templates to generate HTML reports with the visualizations
of QC metrics from all algorithms (Fig. 2). reportDropletQC()
generates a report including a scatterplot annotating all empty
droplets flagged by the EmptyDrops algorithm as well as a curve
visualizing the knee and inflection points identified by Barco-
deRanks. For each set of doublet detection algorithm executed,

runDropletQC() runCellQC()

reportDropletQC() reportCellQC()

Fig. 2 Generation of HTML reports for visualization and assessment of QC metrics. The functions reportDropletQC() and reportCellQC() generate the
extensive HTML reports to display data generated by the various QC tools applied by the functions runDropletQC() and runCellQC(), respectively. The
reportDropletQC() report contains figures visualizing identified empty droplets. The reportCellQC() report contains visualizations of total read counts, total
genes detected, doublet scores, doublet calls, percentages of ambient RNA detected, and cell clusters identified by decontX. These reports are run
automatically by the SCTK-QC pipeline. Examples of reportDropletQC() (on the left) and reportCellQC() (on the right) reports are shown.
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reportCellQC() generates a report which visualizes the doublet
score and call through violin plots, density plots, and dimen-
sionality reduction plots. These plots are also created to visualize
the contamination percentage of ambient RNAs computed by
decontX if the algorithm has been applied to the data. Addi-
tionally, both reports include a summary table detailing the
outputted quality control metrics for all algorithms run.

Export to common data structures. Different software packages
utilize varying data containers to store and retrieve scRNA-seq
data27. To facilitate downstream analysis in multiple platforms,
the SCTK-QC pipeline provides several functions to export the
data in one or more data structures or file formats. The
exportSCEtoFlatFile() function writes assays to MEX files and the
colData, rowData, reducedDims slots into tab-delimited flat files.
The metadata is exported as a list in an RDS file. All exported files
can be optionally saved in a gzipped format. The exportSCE-
toAnnData() function exports the data into a Python annotated
data matrix (AnnData)28 object. The function stores assay, row-
Data, colData and reducedDims slots into X, var, obs, and obsm
groups of the AnnData object, respectively. The AnnData object
can be written into a.h5ad file format and can subsequently be
compressed in a “gzip” or “lzf” format. The convertSCEToSeurat
function exports the data into a Seurat15,16 object. The function
stores assay, colData and reducedDims slots into assays, meta.-
data and reductions groups of the Seurat object. These functions
can be run by setting the “-F” or “--outputFormat” parameter in
the SCTK-QC pipeline.

R/Shiny user interface. Shiny is a R package developed for
building interactive web applications. The singleCellTK package
incorporates Shiny Graphical User Interface (GUI) for the
interactive analysis of single-cell data. Users are able to access the
user interface by simply executing the singleCellTK() function in
the R console. Upon loading the data, QC algorithms to be run
are chosen on the “Data QC & Filtering” page by selecting
checkboxes in the user interface (Fig. 3). Upon the completion of
the algorithms, QC plots will appear within tabs for each of the
algorithms selected. The “Filtering” tab can be used to set criteria
for filtering. After QC, users are able to interactively perform
other downstream analyses such as batch correction, feature
selection, dimensionality reduction, clustering, differential
expression, and pathway analysis. Upon completion, the data can
be exported as a RDS, Python AnnData, or a tab-delimited flat
file. Benchmarking of the Shiny GUI was conducted on a Linux
machine using example datasets of 34k and 68k PBMCs. Due to
one of the doublet detection algorithms, DoubletFinder, requiring
large amounts of memory, benchmarking was performed with
and without executing DoubletFinder. When DoubletFinder was
applied, the 34k and 68k PBMC dataset required 18.5GB and
4200 seconds, and 38.5GB and 6820 seconds, respectively. When
DoubletFinder was removed from the list of algorithms executed,
the 34k and 68k PBMC dataset required 6GB and 2350 seconds,
and 7GB and 3960 seconds, respectively (Supplementary Table 2).
Therefore, all of the QC tools with the possible exception of
DoubletFinder can be applied on larger datasets using the Shiny
GUI.

Comparison to other tools. Several other tools that can perform
single-cell RNA sequencing data analysis and quality control have
been created. While many packages only support input data
stored in structured format (SingleCellExperiment object,
Seurat15,16 object or count matrix stored in csv/txt/mtx file),
SCTK-QC also accepts data generated from different preproces-
sing tools and .h5ad files. Although other packages can generate

general QC metrics including number of UMIs and features
detected per cell, SCTK-QC includes comprehensive QC analysis
including empty droplet detection, doublet detection and ambient
RNA correction (Table 2). Furthermore, no other software
package currently runs multiple doublet detection methods and
allows users to easily compare results. SCTK-QC also visualizes
QC metrics in standardized html reports and stores results in
several data formats, which facilitates downstream analysis in
different analysis workflows. Currently, SCTK-QC does not
support RSEM as an input format and it does not support other
Python objects such as pickle and joblib as these are not com-
monly used.

Application of SCTK-QC pipeline to PBMC datasets. To
demonstrate the utility of SCTK-QC, we apply the pipeline to the
10x Genomics 1K healthy donor Peripheral Blood Mononuclear
Cell (PBMC) dataset generated with v2 or v3 Chromium che-
mistries. Each dataset was processed with two different versions
of Gencode GTF files (Gencode v27 and Gencode v34). The
resulting four count matrices (Gencode v27 PBMC 1K v2, Gen-
code v27 PBMC 1K v3, Gencode v34 PBMC 1K v2, Gencode v34
PBMC 1K v3) were then processed by the SCTK-QC pipeline.
Specifically, the pipeline used the importCellRangerV2() and
importCellRangerV3() function by setting the “-cellRangerDirs” as
the path of input data, and the “-dataType” parameter as “Cell”
and the runCellQC() function was called to generate the QC
metrics. All of the QC metrics are summarized for each of the
four samples in Table 3. The distributions for some of the general
QC metrics and the decontX decontamination scores are dis-
played in violin plots. (Fig. 4a). As expected, the median counts
and features detected in the alignments from v3 chemistry PBMC
datasets were almost double than those detected from v2 chem-
istry indicating the higher capture sensitivity of the 10x v3
chemistry. No significant difference was observed in the total read
counts (p= 0.93; t-test) and the number of features detected per
cell between the PBMC datasets aligned to different versions of
Gencode references (p-value: 0.69; t-test). The predicted doublet
rate of each dataset varied among different doublet detection
methods. With the exception of DoubletFinder and scDblFinder,
all other methods consistently predicted higher doublets rate for
v3 chemistry dataset than those for v2 chemistry dataset. Finally,
lower decontX contamination scores suggest improved processing
for the samples profiled with the v3 chemistry.

We additionally applied the SCTK-QC pipeline to two replicate
human PBMC datasets previously generated with the SMART-
Seq2 protocol, available from the Human Cell Atlas Single Cell
Portal20,29. The QC metrics for each replicate are summarized in
Table 3. The distributions for the library size, total features
detected and the decontX decontamination scores per cell are
displayed in violin plots (Fig. 4b). The overall library size, as well
as the number of features detected per cell was significantly
higher in the SMART-Seq2 datasets than the 10X datasets
(Library size: p < 2E-16, Number of features: p < 2E−16; t-test). In
all doublet detection algorithms, the doublet rate was higher in
the 10X protocol compared to the SMART-Seq2 protocol. The
mean ambient RNA contamination level was 1.8 times higher on
average in the 10X droplet-based datasets compared to the two
SMART-Seq2 replicates.

Discussion
The wide applicability of single-cell approaches has led to the
development of novel computational tools that allow for clus-
tering and identification of new cell types and trajectory inference
of cell populations in development. Despite the improvements of
scRNA-seq platforms and protocols, low-quality cells and
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technical artifacts such as empty droplets, doublets, and ambient
RNA still remain present to some degree in most datasets. Thus,
rigorous QC measures are needed to evaluate the quality of
individual experiments. The SCTK-QC pipeline streamlines and
standardizes the generation and visualization of metrics impor-
tant for assessing data quality. Previous tools like FastQC and

RSeQC30,31 have enabled extensive quality assessment and
visualizing of FASTQ and aligned BAM files. Similarly, the
SCTK-QC pipeline enables comprehensive generation and
visualization of QC metrics for the initial count matrix by inte-
grating several algorithms and tools into a common, easy-to-run
framework. Importantly, SCTK-QC pipeline provides a

Fig. 3 Interactive QC of single cell data using a Graphical User Interface (GUI). An R/Shiny GUI can be used to interactively run QC algorithms in the
singleCellTK package. A screenshot of the “Data QC & Filtering” tab from the interactive GUI is shown. After importing the data, quality control is performed
within the “QC & Filtering” tab (red) of the user interface. QC algorithms are chosen from a list (blue), while specific parameters may be specified as well
(green). Plots displaying metrics generated by each QC tool will appear to the right in a tab.
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framework with standardized data structures for computing and
storing QC metrics. This modular architecture of SCTK-QC will
allow for easy integration of new tools as they are made available
in the future. SCTK-QC is able to generate HTML reports with
publication-ready figures and contains a GUI for interactive QC
of single-cell data. These features will enable users without in-
depth programming backgrounds to run these tools and perform
QC on their data. Finally, the SCTK-QC pipeline can export both
R and Python-compatible data structures enabling easy integra-
tion with other popular analysis frameworks such as Seurat15,16

and Scanpy28. While packages such Seurat or Scanpy offer the
ability to calculate some basic QC metrics and remove poor
quality cells, they do not have a comprehensive workflow that
includes multiple algorithms for detection of doublets or esti-
mation of contamination from ambient RNA. Additionally, no
other package includes the ability to produce HTML reports for
easier assessment of quality metrics.

Methods
Accessibility. The SCTK-QC pipeline is executable on the R console, Rstudio or
on the Unix command-line with an Rscript command. The singleCellTK package
and quality control pipeline is open sourced through GitHub (https://github.com/
compbiomed/singleCellTK) and the Bioconductor repository. Additionally, we
have included scripts to set up the Conda or Python virtual environments that
meet all cross-platform dependency requirements for convenient portability of the

pipeline between operating systems. To encourage reproducibility and make the
computing environment independent, the singleCellTK package and SCTK-QC
pipeline is included in Docker image32 (https://hub.docker.com/r/campbio/
sctk_qc). All dependencies of the singleCellTK package are included in the Docker
image and the quality control pipeline can be executed with a single docker run.
Users can specify parameters used for each QC function by providing a YAML file
to the pipeline with the argument “-y” or “--yamlFile”. We have created several
vignettes and in-depth walkthroughs for installation and analysis workflows which
are available on the GitHub repository and at https://www.camplab.net/sctk. To
enable QC analysis on cloud, SCTK-QC is wrapped in WDL, which can be
deployed on Terra platform (https://github.com/htan-pipelines/scrna-seq-pipeline/
tree/master).

Quality control of PBMC datasets. 10X Genomics. The raw reads in the FASTQ
format were downloaded from the 10x Genomics Dataset portal and the human
reference genome sequence GRCh38 release versions 27 and 34 in the FASTQ and
GTF formats from the GENCODE website. The “mkref” command in CellRanger
v3.1.0 was used to build separate custom references for Gencode GRCh38 v27 and
v34. Droplet and Cell matrices for both PBMC 1k v2 and v3 samples were then
obtained by aligning the raw reads to the reference genomes using CellRanger
v3.1.0 running bcl2fastq v2.20.

SMART-Seq2. The raw read count data from two PBMC SMART-Seq2
replicates available from the “counts.read.txt.gz” file located at https://
singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-
pbmc-data was processed through the SCTK-QC pipeline. A SingleCellExperiment
object was constructed from the available cell names, gene names, and the
metadata, labeled “cells.read.new.txt”, “genes.read.txt”, and “meta.counts.new.txt”,
respectively. Both 10X and SMART-Seq2 dataset size is summarized in Table 3.

Table 2 Comparison of features in the SCTK-QC pipeline with other single-cell analysis toolkits.

SCTK PIVOT Seurat ascend scRNABatchQC Adobo SCONE SCHNAPPs iS-CellR Ganatum ASAP
browser

Input format
10x CellRanger ✓ ✓ ✓ ✓
SCE Object ✓ ✓ ✓ ✓ ✓
Seurat Object ✓ ✓
AnnData ✓ ✓
LOOM
BUStools ✓
SEQC ✓
STARSolo ✓
Optimus ✓
DropEst ✓
CSV, TXT, and MTX ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
RSEM ✓

Ambient droplets detection ✓
General QC Metrics
Total counts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Number of features

detected
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gene set count (e.g
mitochondrial)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Doublet detection
scDblFinder ✓
Scrublet ✓
doubletFinder ✓
cxds ✓
bcds ✓
cxds/bcds hybrid ✓

Shiny App/interactive ✓ ✓ ✓ ✓ ✓ ✓ ✓
docker ✓ ✓ ✓ ✓
HTML Report ✓ ✓ ✓ ✓
Output format
RDS ✓ ✓ ✓ ✓
AnnData ✓
hdf5 ✓ ✓
.txt Flatfile ✓ ✓
pickle ✓
joblib ✓

SCTK-QC pipeline supports various types of input, full scRNA-seq quality control pipeline and supports common data structures for data storage.
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Table 3 Summary of QC metrics for each PBMC sample. A total of six PBMC datasets were analyzed with the SCTK-QC pipeline.

GENCODE GRCh38 v27 GENCODE GRCh38 v34 SMART-Seq2

PBMC1k V2 PBMC1k V3 PBMC1k V2 PBMC 1k V3 Replicate 1 Replicate 2

Total number of genes detected 58,347 60,669 58,347 60,669 33,694 33,694
Number of droplets, Droplet matrix 737,280 6,794,880 737,280 6,794,880 NA NA
Number of Cells, Cell matrix 995 1223 996 1222 311 273
Mean counts 3559 7576 3553 7576 390,058 292,971
Median counts 3374 6637 3375 6640 388,420 290,819
Mean features detected 1133 2088 1140 2104 2436 2795
Median features detected 1106 1957 1109 1978 2406 2632
Scrublet, Number of doublets 12 16 12 18 0 3
Scrublet, Percentage of doublets 1.21 1.31 1.2 1.47 0 1.1
ScDblFinder, Number of doublets 13 16 14 20 3 13
ScDblFinder, Percentage of doublets 1.31 1.31 1.41 1.64 0.97 4.76
DoubletFinder, Number of doublets, Resolution 1.5 75 92 75 92 23 20
DoubletFinder, Percentage of doublets,
Resolution 1.5

7.54 7.52 7.53 7.53 7.4 7.33

CXDS—Number of doublets 51 195 53 183 19 4
CXDS—Percentage of doublets 5.13 15.9 5.32 15 6.11 1.47
BCDS—Number of doublets 91 91 69 71 17 8
BCDS—Percentage of doublets 9.15 7.44 6.93 5.81 5.47 2.93
SCDS Hybrid—Number of doublets 65 119 77 90 20 13
SCDS Hybrid—Percentage of doublets 6.53 9.73 7.73 7.36 6.43 4.76
DecontX—Mean contamination percentage 5.4 3.7 5.8 3.0 2.1 2.9
DecontX—Median contamination percentage 1.7 0.9 1.8 0.7 0.7 1.3

A total of six PBMC datasets were analyzed with the SCTK-QC pipeline. Two GENCODE PBMC 1k datasets of differing 10x Chemistry were taken from GENCODE v27 and v34, resulting in a total of four
datasets. Additionally, two SMART-Seq2 datasets from PBMC replicates were also taken. A per-sample summary table is automatically generated by the pipeline.
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Fig. 4 Application of SCTK-QC to PBMC datasets. A QC metrics were generated by the SCTK-QC pipeline for 1K healthy donor Peripheral Blood
Mononuclear Cell (PBMC) datasets from 10X Genomics. Violin plots generated by the pipeline demonstrate higher capture sensitivity of the 10x v3
Chromium chemistry. Furthermore, lower ambient RNA contamination was observed in the samples run with v3 chemistry compared to samples profiled
with the v2 chemistry. B The SCTK-QC pipeline was applied similarly on a PBMC dataset generated by SMART-Seq2. A higher number of features were
detected per cell in the SMART-Seq2 datasets compared to either of the 10X Genomics datasets.
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Quality control on count matrices was conducted with SCTK-QC under default
parameters for all QC algorithms.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Both V2 and V3 chemistry PBMC data used in this study is available on the 10X
Genomics website database [https://www.10xgenomics.com/resources/datasets/1-k-pbm-
cs-from-a-healthy-donor-v-2-chemistry-3-standard-3-0-0, (V2), https://
www.10xgenomics.com/resources/datasets/1-k-pbm-cs-from-a-healthy-donor-v-3-
chemistry-3-standard-3-0-0 (V3)]. The SMART-seq2 PBMC data used in this study is
available in the Single Cell Portal [https://singlecell.broadinstitute.org/single_cell/study/
SCP424/single-cell-comparison-pbmc-data]. The processed PBMC data is available on
GitHub at https://github.com/campbio/Manuscripts/tree/master/Hong_SCTK-QC under
the “Data” folder.

Code availability
All code used to generate QC analysis results and figures are available on GitHub at
https://github.com/campbio/Manuscripts/tree/master/Hong_SCTK-QC under the
“Scripts” folder or under the https://doi.org/10.5281/zenodo.6256957.
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