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Emergent quasiparticles at Luttinger surfaces
Michele Fabrizio 1✉

In periodic systems of interacting electrons, Fermi and Luttinger surfaces refer to the loca-

tions within the Brillouin zone of poles and zeros, respectively, of the single-particle Green’s

function at zero energy and temperature. Such difference in analytic properties underlies the

emergence of well-defined quasiparticles close to a Fermi surface, in contrast to their sup-

posed non-existence close to a Luttinger surface, where the single-particle density-of-states

vanishes at zero energy. We here show that, contrary to such common belief, dispersive

‘quasiparticles’ with infinite lifetime do exist also close to a pseudo-gapped Luttinger surface.

Thermodynamic and dynamic properties of such ‘quasiparticles’ are just those of conven-

tional ones. For instance, they yield well-defined quantum oscillations in Luttinger surface and

linear-in-temperature specific heat, which is striking given the vanishing density of states of

physical electrons, but actually not uncommon in strongly correlated materials.
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Periodic systems of interacting electrons are classified as
Landau’s Fermi liquids1,2 whenever they possess coherent
‘quasiparticles’, namely single-particle excitations with dis-

persion ϵqp(k) in momentum space whose on-shell lifetime at
zero temperature, T= 0, diverges on the surface within the
Brillouin zone where ϵqp(k) is equal to the chemical potential,
which we hereafter take as the zero of energy. Those quasi-
particles therefore contribute, e.g. to thermodynamic properties
essentially like free fermions, thus with a specific heat linear in T
and a finite paramagnetic susceptibility.

In the classical microscopic derivation3,4 of Landau’s Fermi
liquid theory, the quasiparticles correspond to poles of the T= 0
Green’s function at ϵ= ϵqp(k) and k→ kF, where kF: ϵqp(kF)= 0
defines, in this case, the Fermi surface. That conventional qua-
siparticle thus shows up as a peak in the single-particle density of
states (DOS) that, as k→ kF, moves towards ϵ= 0 and, simul-
taneously, grows and narrows.

Therefore, the absence of a peak in the single-particle spectrum
measured, for instance, in angle-resolved photoemission spectro-
scopy (ARPES), is commonly interpreted as the non-existence of
quasiparticles, all the more when the peak is replaced by a pseu-
dogap like in underdoped cuprates5–7, and attributed to a break-
down of Landau’s Fermi liquid theory. However, it may happen
that, despite such anomalous spectral features, other physical
quantities behave as in conventional Fermi liquids. This is, for
instance, the case of quantum oscillations, usually interpreted as
characteristic signatures of well-defined quasiparticles with their
own Fermi surface8, which are observed also in the pseudogap
phase of cuprates9–12 together with a standard linear behaviour of
the electronic specific heat13–15. Such Janus-faced character of
some correlated materials becomes amazing, almost paradoxical,
in SmB6, an insulator that shows quantum oscillations char-
acteristic of a large Fermi surface16, and in spin liquid Mott
insulators, which seem to display conventional Fermi liquid-like
magnetic and thermal properties17–20.

That anomalous physical behaviour suggests the existence of
new quantum states of matter21–26, but in some cases, it might
simply indicate that Landau’s paradigm of Fermi liquids applies
to a much broader class of interacting electron systems than
conventionally believed27,28, even those where perturbation
theory breaks down and thus Landau’s adiabatic hypothesis1,2

is not valid.
Perturbation theory can break down already at weak coupling

because of Fermi surface instabilities, as in one-dimensional inter-
acting Fermi gases29, or only above a critical interaction strength. In
the latter case, the breakdown is commonly associated with the
emergence at T= 0 of a zero-energy pole in the self-energy, thus a
zero in the Green’s function. Such singularity may either signal the
transition to a Mott insulator, as observed, e.g. within dynamical
mean field theory30, or, if the system remains compressible, the birth
of a Luttinger surface31 where the Green’s function develops zeros at
ϵ= 0, in place of the former Fermi surface, on which the Green’s
function has instead poles. Since a zero of the ϵ=T= 0 Green’s
function corresponds to a pseudo- or hard-gap, this circumstance
looks at odds with the common definition of Landau’s Fermi liquids.
In spite of that, it has been recently shown27 that in compressible
normal metals a Luttinger surface as well as a Fermi surface give rise
to similar Fermi liquid-like long-wavelength low-frequency linear
response functions. In reality, a connection between Luttinger and
Fermi surfaces was earlier noticed by Volovik32,33, who showed that
the Green’s function close to both of them is characterised by a
topological invariant that Heath and Bedell recently proved to be
closely related to Luttinger’s theorem34.

Here we show that the relationship between Luttinger and Fermi
surfaces is actually even much deeper, and entails the existence in
both cases of ‘quasiparticle’ excitations whose lifetime grows to

infinity approaching a Luttinger surface as well as a Fermi surface.
Such ubiquitous ‘quasiparticles’ close to both Fermi and Luttinger
surfaces, which yield further physical meaning to their common
topological properties32–34 and rationalise in simpler terms the results
of ref. 27, may provide a new, broader paradigm for strongly corre-
lated electron systems.

Results
Preliminary considerations. We consider a generic non-insulating
interacting electron system in three dimensions, whose single-
particle Green’s function (The Green’s function is generically a
matrix in the eigenbasis of the non-interacting Hamiltonian. Here
we assume, for simplicity, that Green’s function is diagonal on such
a basis, although our final results do not depend on that choice.
Moreover, we do not indicate explicitly the labelling of such
eigenbasis, unless necessary.) of the complex frequency ζ can be
written, through Dyson’s equation, as

Gðζ ; kÞ ¼ 1
ζ � ϵðkÞ � Σðζ ; kÞ ¼

Z
dω

Aðω; kÞ
ζ � ω

; ð1Þ

where ϵ(k) is the non-interacting dispersion measured with respect
to the chemical potential, Σ(ζ, k) the self-energy, and A(ω, k) > 0 the
single-particle DOS satisfying ∫dωA(ω, k)= 1. We shall mostly
work with the analytic continuation on the real axis from above, i.e.
G(ζ= ϵ+ iη, k)≡G+(ϵ, k) the retarded Green’s function, and,
similarly, Σ(ζ= ϵ+ iη, k)≡ Σ+(ϵ, k), with infinitesimal η > 0. For
convenience, we absorb the Hartree–Fock contribution to the self-
energy into a redefinition of ϵ(k) so that, by definition,
Σ+(ϵ→∞, k)→ 0.

One can readily show that order by order in perturbation
theory the following result holds at T= 0:

Im Σþðϵ ! 0; kÞ ¼ �γðkÞ ϵ2 ; ð2Þ
with γ(k) > 0, which is actually the starting point of the
microscopic derivation of Landau–Fermi liquid theory3,4.

However, the validity of Eq. (2) order by order in perturbation
theory does not guarantee that the actual interaction strength,
especially in strongly correlated electron systems, is within the
convergence radius of the perturbation series, nor that the latter
converges at all. Nonetheless, it has been recently shown27 that
Eq. (2) is not necessary but only sufficient to microscopically derive
Landau-Fermi liquid theory.

Key analytic assumptions. Indeed, condition (2) refers just to the
hypothetical decay rate of an electron undressed by self-energy cor-
rections, which is not an observable quantity. On the contrary, for
Landau’s Fermi liquid theory to apply, we do have to impose a
similar condition of vanishing decay rate, i.e. infinite lifetime, but for
the actual quasiparticles, which reads, still at T= 0,

lim
ϵ!0

Γðϵ; kÞ � � lim
ϵ!0

Zðϵ; kÞ Im Σþðϵ; kÞ ¼ γ�ðkÞ ϵ2 ; ð3Þ
where

Zðϵ; kÞ�1 � 1� ∂ReΣþðϵ; kÞ
∂ϵ

; ð4Þ

is the so-called quasiparticle residue, and γ*(k) ≥ 0 provided
Z(ϵ→ 0, k) ≥ 0, which is generally true even though Z(ϵ, k) may well
be negative at ϵ≠ 0. Such physically sound replacement is actually the
key of this work, and has huge implications, as we are going to show,
despite it may look at first sight innocuous. For instance, Eq. (3) does
include Eq. (2) when Z is finite as a special case, but, e.g. remains
valid even when Z ~ ϵ2 and ImΣ+ is constant, the furthest possible
case from a conventional Fermi liquid. We mention that in two
dimensions the analytic ϵ2 dependence in Eq. (3) must be substituted
by a non-analytic one35, as non-analytic are the expected subleading
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corrections to Eq. (3) also in three dimensions36,37. However, all the
results we are going to derive are valid in three as well as in two
dimensions. We further remark that while Eq. (2) is a perturbative
result, Eq. (3) is a non-perturbative assumption based on the con-
jecture that ‘quasiparticles’ may exist also when perturbation theory
breaks down. As such, Eq. (3) is not meant to describe generic non-
Fermi liquids, as those classified in ref. 34, like marginal Fermi
liquids22 or Luttinger liquids29. For instance, in Luttinger liquids the
right-hand side of Eq. (3) does vanish, but not continuously as ϵ→ 0.

Emergence of quasiparticles. Let us now prove that Eq. (3)
indeed admits the existence of ‘quasiparticles’. We define

Ξðϵ; kÞ � Zðϵ; kÞ ϵðkÞ þ Re Σþðϵ; kÞ � ϵ
� � ¼ � ∂ ln ReG�1

þ ðϵ; kÞ
∂ϵ

� ��1

;

ð5Þ
so that the single-particle DOS can be formally written as

Aðϵ; kÞ ¼ 1
π
Zðϵ; kÞ Γðϵ; kÞ

Ξðϵ; kÞ2 þ Γðϵ; kÞ2 ; ð6Þ

and, for ϵ≃ 0, a ‘quasiparticle’ DOS

Aqpðϵ; kÞ � Zðϵ; kÞ�1 Aðϵ; kÞ ¼ 1
π

Γðϵ; kÞ
Ξðϵ; kÞ2 þ Γðϵ; kÞ2 : ð7Þ

Since Γ(ϵ→ 0, k)→ 0, Aqp(ϵ, k) generically vanishes for ϵ→ 0
unless

EðkÞ � lim
ϵ!0

Ξðϵ; kÞ ; ð8Þ

vanishes, too. That, because of the definition (5) of Ξ(ϵ, k), occurs
only if E(k) crosses zero. Therefore, in the present formalism
there exists a unique surface in k-space, which we dub as
Fermi–Luttinger surface, where k= kFL such that E(kFL)= 0.
Moreover, a reasonable assumption given Eq. (5) is that Ξ(ϵ, kFL)
vanishes linearly in ϵ. Indeed, we can envisage two different
scenarios:

(F) ϵ(kFL)+ Re Σ+(0, kFL)= 0, so that

Re G�1
þ ðϵ ! 0; kFLÞ ¼ Zð0; kFLÞ�1 ϵ ;Ξðϵ ! 0; kFLÞ ¼ �ϵ :

ð9Þ
This is actually the case of conventional Fermi liquids,
where kFL belongs to the Fermi surface and the Green’s
function has a simple pole at ϵ= 0.

(L) the self-energy has a pole at ϵ= 0, hence

Re G�1
þ ðϵ ! 0; kFLÞ ’ �ΔðkFLÞ2

ϵ
;Ξðϵ ! 0; kFLÞ ¼ ϵ :

ð10Þ
In this case, kFL lies on the Luttinger surface, where Green’s
function crosses zero at ϵ= 0.

We may make a further step forward and assume that Ξ(ϵ, k)
has a regular Taylor expansion for small ϵ and k≃ kFL, at least to
leading order. If so,

Ξ ϵ ! 0; k ’ kFL
� � ’ EðkÞ � ϵ ; ð11Þ

where the minus and plus signs refer, respectively, to the cases (F)
and (L) above. We remark that this assumption is not verified in
generic non-Fermi liquids34 and Luttinger liquids29, where Ξ(ϵ, k)
is non-analytic as ϵ→ 0 and k→ kFL, and thus does not admit a
regular Taylor expansion.

If we assume the analytic behaviour of Eqs. (3) and (11), we
readily find that for small ϵ and close to the Fermi-Luttinger

surface

Aqpðϵ; kÞ ’
1
π

γ�ðkÞϵ2
EðkÞ � ϵð Þ2 þ γ�ðkÞ2ϵ4

’ δ ϵ� EðkÞð Þ � δ ϵ� ϵqpðkÞ
� �

:

ð12Þ
That is exactly what we expect when approaching the Fermi
surface in a conventional Fermi liquid, here valid also upon
approaching the Luttinger surface. In that case the existence of a
‘quasiparticle’, with δ-like DOS and dispersion ϵqp(k)=−E(k) in
momentum space is in striking contrast with the behaviour of the
experimentally accessible DOS of the physical electron, A(ϵ, k) in
Eq. (6), which has instead a pseudogap since Z(ϵ→ 0, kFL) ~ ϵ2.

Fermi liquid properties. Since in both cases Eq. (3) holds, one can
derive microscopically a Landau–Fermi liquid theory27, and, cor-
respondingly, a kinetic equation for the ‘quasiparticle’ distribution
function, which looks exactly like the conventional one1,2,4, apart
from the fact that the ‘quasiparticle’ dispersion in momentum space
is ϵqp(k)= E(k) and ϵqp(k)=−E(k) for cases (F) and (L), respec-
tively. For instance, the specific heat can be calculated through the
heat density–heat density response function, using the
Ward–Takahashi identity38. We find, at leading order in T39, that

cV ¼ � 1
V

∑
k

Z
dϵ
T

∂f ðϵÞ
∂ϵ

Ξðϵ; kÞ þ ϵð Þ2 Aqpðϵ; kÞ

’ π2

3
T
V
∑
k
δ ϵqpðkÞ
� �

� π2

3
T Aqpð0Þ ;

ð13Þ

hence the specific heat is still linear in T even in Luttinger’s case (L),
despite the single-particle DOS pseudogap, a result which is also
striking. Therefore, a pseudogap in the single-particle spectrum
measured in ARPES and a finite specific heat coefficient cV/T
are indirect evidences of those ‘quasiparticles’, although other
explanations are well possible. Similarly, we expect that the coherent
‘quasiparticles’ will give rise to well-defined quantum oscillations in
both Fermi and Luttinger surfaces, although the amplitudes might
be different in the two cases. We remark that a finite cV/T in the
case of quasiparticles close to a Luttinger surface entails singular
vertex corrections that compensate the vanishing quasiparticle
residue Z to enforce the Ward–Takahashi identity.

Since Galilean invariance is lost on a lattice, one could in
principle imagine a circumstance where the Drude peak vanishes
despite a finite quasiparticle DOS at zero energy, thus a linear in
temperature specific heat, and still compatible with Landau’s Fermi
liquid theory. Such anomalous situation, as many others one could
think of inspired by the earlier mentioned phenomenology of some
correlated materials, might occur more likely for quasiparticles at a
Luttinger surface because of the singular vertex corrections.
Moreover, an almost insulating behaviour in the charge transport
as opposed to, e.g. a conventional Fermi liquid thermal one is hard
to imagine when the single-particle DOS shows a quasiparticle peak
but sounds more plausible with a pseudogap.

Counting electron numbers through quasiparticle one. In
conventional Fermi liquids, Luttinger’s theorem31,40,41 states that
the total number N of particles at fixed chemical potential is
simply the total number of quasiparticles, namely, considering,
e.g. a single band of electrons and spin SU(2) symmetry,

N ¼ ∑
k

∑
σ¼";#

f ϵqpðkÞ
� �

; ð14Þ

where f(ϵ)= θ(−ϵ) is the Fermi distribution function at T= 0.
This result is just another manifestation of Landau’s adiabatic
hypothesis1,2. It is therefore worth showing how Eq. (14) changes
when quasiparticles lie close to a Luttinger surface, namely, when
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the interacting system is not adiabatically connected to the non-
interacting one.

We recall that Luttinger’s theorem requires just the existence of
the Luttinger–Ward functional42, and holds, in the more general
sense outlined in the Supplementary Notes 1, provided at T= 0

lim
ϵ!0

Im Σþðϵ; kÞ Re Gþðϵ; kÞ ¼ lim
ϵ!0

Ξðϵ; kÞAqpðϵ; kÞ ¼ 0 ;

ð15Þ
which is verified for both (F) and (L) quasiparticles. Since the
Luttinger–Ward functional can be constructed fully non-
perturbatively44, Luttinger’s theorem remains valid beyond pertur-
bation theory with the caveat highlighted in Supplementary Notes 1.
Specifically, when perturbation theory breaks down leading to
the appearance of a Luttinger surface, and thus of an additional
zero of ReG(iϵ, k) for ϵ ≥ 0, the expression of the total electron
number may be different from that one deriving from conventional
Luttinger’s theorem (14)43.

As discussed in Supplementary Notes 1, if we assume that
perturbation theory may break down because of the proximity to
a half-filled Mott insulator, Eq. (15) must be replaced by43

N ¼ 1
2
∑
kσ

f EðkÞð Þ þ f ϵðkÞð Þ� �
: ð16Þ

Eq. (16) reduces to Eq. (14) when there is an adiabatic continuation,
thus E(k) and ϵ(k) have the same sign, which, not surprisingly,
corresponds to case (F) with ϵqp(k)= E(k), while it is different when
perturbation theory breaks down at k and E(k)ϵ(k) < 0, case (L)
with ϵqp(k)=−E(k). Let us assume that the system is not far from
the point in the Hamiltonian parameter space where perturbation
theory breaks down and that N at fixed chemical potential is
smooth crossing that point. Under that assumption, since N ¼
∑kσ f ϵðkÞð Þ on the side where adiabatic continuation holds true,
then Eq. (16) implies that on either side

N ¼ ∑
kσ

f ϵðkÞð Þ ¼ ∑
kσ

f EðkÞð Þ ¼ ∑
kσ

f ϵqpðkÞ
� �

cases ðFÞ ;

1� f ϵqpðkÞ
� �

cases ðLÞ :

8><
>:

ð17Þ
In other words, the quasiparticle ‘Fermi’ surface encloses a volume
fraction of the whole Brillouin zone, k: ϵqp(k) < 0, equal to the
electron filling fraction ν in case (F), and the complement hole
fraction 1− ν in case (L).

Physics of a toy self-energy. To make our point clearer, we present
an explicit example based on a toy self-energy vaguely inspired by the
phenomenology and by model calculations for the pseudogap phase
of underdoped cuprates 45–52.

Assume a two-dimensional (2D) square lattice, a less than half-
filled band with non-interacting dispersion ϵ(k) that gives rise to a
closed Fermi surface, see Fig. 1, and a model self-energy45 at very
small ϵ

Σþðϵ; kÞ ¼
ΔðkÞ2

ϵþ ϵ�ðkÞ þ i γðkÞ ϵ2 ; ð18Þ

which, because of the imaginary term in the denominator, does
satisfy Eq. (3) for any k (Strictly speaking, in two dimensions the ϵ2

dependence in Eqs. (2) and (3) should be replaced by �ϵ2 ln ϵ.
Here, we still assume ϵ2, as in a quasi 2D model while neglecting a
weak dispersion along the third dimension.)

Σþðϵ; kÞ ¼ ΔðkÞ2
ϵþi γðkÞ ϵ2 ’ϵ!0 ΔðkÞ2

ϵ � iΔðkÞ2 γðkÞ ;
is highly singular. We also assume, again unlike real systems,
Δ(k)=Δ and γ(k)= γ to be independent of k. We thus readily find

that

EðkÞ ¼ ϵ�ðkÞ
ϵ�ðkÞ ϵðkÞ þ Δ2

Δ2 þ ϵ�ðkÞ2
; ð19Þ

vanishes at ϵ*(k)= 0, which defines the Luttinger surface, case (L)
above, and at ϵ*(k) ϵ(k)=−Δ2, provided the latter equation admits
real roots, which would then belong to case (F). Let us first assume
ϵ*(k) ϵ(k)+Δ2 > 0 throughout the Brillouin zone, so that E(k) just
vanishes on the Luttinger surface k= kL with ϵ*(kL)= 0, close to
which E(k)≃ ϵ*(k). Making the same assumption that leads to Eq.
(17), the Luttinger volume in this case comprises all k such that
ϵ*(k) ≤ 0, which we suppose give rise to an open Luttinger surface,
contrary to the closed non-interacting Fermi surface, both shown in
Fig. 1.

The equation ϵ= ϵ(k)+ ReΣ+(ϵ, k) has two roots,
ϵ= ϵ−(k) < 0 and ϵ= ϵ+(k) > 0. Since

� Im Σþðϵ; kÞ ¼
Γ Δ2 ϵ2

ϵþ ϵ�ðkÞ
� �2 þ γ2 ϵ4

; ð20Þ

is peaked at ϵ=− ϵ*(k), the physical particle DOS, A(ϵ, k),
displays two asymmetric peaks at ϵ= ϵ±(k), blue in Fig. 2. The
negative energy peak is higher than the positive energy one when
k is inside the Luttinger surface, i.e. ϵ*(k) < 0, and the opposite
when k is outside, much the same as for a conventional Fermi
surface, despite here A(ϵ, k) ~ ϵ2 vanishes quadratically at ϵ= 0.
The low-energy quasiparticle DOS, Aqp(ϵ, k), red in Fig. 2, shows
a peak that sharpens approaching the Luttinger surface, and
moves oppositely from a conventional Fermi liquid: inside the
Luttinger surface, the peak is at positive energy, while at negative
energy outside.

We note that, according to Eq. (16), the presence of only a
pseudo-gapped Luttinger surface without Fermi pockets implies
an electron density stuck to half-filling, thus an incompressible
state, and, yet, supporting ‘quasiparticles’, i.e. gapless fermionic
excitations; a remarkable physical situation if it were ever realised.

Assume now that the equation ϵ(k) ϵ*(k)=−Δ2 admits two
real roots, which create small Fermi pockets in the regions where
the Luttinger and the non-interacting Fermi surfaces do not
overlap, shown in green in Fig. 3. Since these roots belong to case
(F), the physical particle DOS should develop peaks at ϵ= 0 along
the borders of such pockets. However, the pseudogap on the
Luttinger surface implies that the peaks along the arcs closer to
the non-interacting Fermi surface, bold green lines in Fig. 3, are

Fig. 1 Luttinger surface of the model self-energy. In black, the Brillouin
zone with the high symmetry points. The non-interacting Fermi area, ϵ(k)≤0,
is drawn in blue, while the interacting Luttinger one, ϵ*(k)≤0, is in red. They
are obtained, respectively, assuming ϵðkÞ ¼ �2 cos kx � 2 cos ky � μ, with
μ=−0.2, and ϵ�ðkÞ ¼ �2 cos kx � 2 cos ky þ 4 t0 cos kx cos ky � μ�, with
t0 ¼ 0:3 and μ* such that both areas are equal, thus forcing by hand the same
number of electrons in the non-interacting and interacting cases.
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much more pronounced. This is explicitly shown in Fig. 4, where
we draw the physical particle DOS on the points along Γ→M
of Fig. 3.

In other words, moving from the case in which ϵ(k) ϵ*(k)=−Δ2

has no solution to that in which the solution exists, our toy self-
energy describes a kind of Lifshitz’s transition resembling that
observed by cluster extensions of dynamical mean field theory in
the 2D Hubbard model upon increasing hole doping away from
half-filling46,51,52, which in turn has been associated with the Fermi
surface evolution across the critical hole-doping level at which the
pseudogap vanishes.

We mention that E(k) of Eq. (8) along, e.g. the path Γ→M in
Fig. 3 crosses three zeros, which may evoke the so-called ‘fermion
condensation’53,54. However, in the present case, two of the three
zeros refer to divergences of G+(ϵ, k), the boundaries of the Fermi
pocket in Fig. 3, while the third to a zero of G+(ϵ, k), the Luttinger
surface, which avoids the band flattening mechanism at the
fermion condensation55.

Discussion. We have shown that coherent ‘quasiparticles’ emerge
both approaching Fermi and Luttinger surfaces. This result expands
the class of interacting electron systems, like, e.g. Luttinger liquids29,
which are predicted to display conventional Landau–Fermi liquid
behaviour, despite very different and anomalous single-particle
properties. Moreover, it implies that also close to a Luttinger surface
the low-energy physics may possess the huge emergent symmetry56

recently discussed in great detail by ref. 28, which is remarkable
given the single-particle density pseudogap at the Luttinger surface.

Data availability
The author declares that all data supporting the findings of this study are available within
the paper and its Supplementary Information files.
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