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All-fiber high-speed image detection enabled by
deep learning
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Ultra-high-speed imaging serves as a foundation for modern science. While in biomedicine,

optical-fiber-based endoscopy is often required for in vivo applications, the combination

of high speed with the fiber endoscopy, which is vital for exploring transient biomedical

phenomena, still confronts some challenges. We propose all-fiber imaging at high speeds,

which is achieved based on the transformation of two-dimensional spatial information into

one-dimensional temporal pulsed streams by leveraging high intermodal dispersion in a

multimode fiber. Neural networks are trained to reconstruct images from the temporal

waveforms. It can not only detect content-aware images with high quality, but also detect

images of different kinds from the training images with slightly reduced quality. The fiber

probe can detect micron-scale objects with a high frame rate (15.4 Mfps) and large frame

depth (10,000). This scheme combines high speeds with high mechanical flexibility and

integration and may stimulate future research exploring various phenomena in vivo.
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U ltra-high-speed imaging is vital for observing microscopic
and transient physical phenomena1. To date, silicon-
based imaging sensors, including charge-coupled device

(CCD) and complementary metal-oxide-semiconductor (CMOS)
cameras, have achieved imaging speeds of up to millions of
frames per second (fps)2. Some advanced systems have also been
invented for even faster transient imaging, reaching trillions of
fps, including sequentially timed all-optical mapping photo-
graphy (STAMP)3, frequency-domain tomography4, femtosecond
time-resolved optical polarimetry5, and compressed ultrafast
spectral photography6. These advanced technologies have helped
researchers better understand various transient phenomena, such
as lattice dynamics1, hot-electron diffusion7, the evolution of laser
ablation8, and the production of electronic plasmas9. However, in
some other fields, especially in vivo applications10, high-speed
detection requires imaging in narrow spaces, for which the
emerging fiber-based imaging technology has unique advantages.

In contrast to bulk imaging systems, fiber-based imaging sys-
tems feature high mechanical flexibility, compact sizes, and
resistance to ambient interference. These features have made
fiber-based imaging a competitive candidate for detecting images
under special circumstances, for example, in environments with
high temperatures, pressures, or radiation levels. Fiber probes can
also penetrate deep into narrow spaces for endoscopy, which is
essential in fields such as biomedicine11 and microfluidics12. Fiber
endoscopy with a high frame rate is especially necessary in some
special scenarios. For instance, a fiber probe can be inserted into
the cerebral cortex to examine the fast signals of neural
activation13 or used in vivo to observe chemical dynamics in
living tissues14. In physics and engineering, such probes can also
be used for observing transient physical reactions in closed
containers15 or exploring fuel injection dynamics in internal
combustion engines.

For currently prevalent fiber-based imaging systems, the basic
principle involves analyzing the light fields at the output fiber
facet and reconstructing two-dimensional (2D) images using
transmission matrix methods and deep learning methods16–19.
Due to this principle, they must detect different frame fields at a
fixed position, which means that they can only use conventional
single-sensor cameras (special cameras such as rotating-mirror
cameras20 and framing cameras with higher frame rates are
inapplicable). However, the traditional cameras generally require
a balance between the imaging speed and the frame depth
(number of frames that can be captured in a single shot) due to a
limited readout speed from the pixel arrays to memory2. To the
best of our knowledge, the world’s fastest single-sensor camera
has a frame rate of 10 Mfps and frame depth of 256 frames21,
which places an upper limit on performance of the current fiber-
based systems in high-speed imaging. Moreover, the silicon-based
cameras are sensitive only to wavelengths below 1.1 μm22, which
also limits the applications of these systems in longer infrared
bands. In addition, free-space optical elements are commonly
required in the collection of output fields from the fiber end,
which reduces the level of integration and makes these systems
susceptible to environmental disturbances.

A single-pixel imaging method, termed serial time-encoded
amplified microscopy23–25, has been proposed to eliminate
pixelated sensors by encoding the spatial information of objects
into time-domain signals, which requires only a one-pixel
detector. Since each optical pulse can carry the information of
one image frame, a high frame rate can be achieved by recording
the temporal signals of a pulse train with a high repetition rate.
Moreover, the use of one-pixel detectors, such as InGaAs pho-
todiodes can extend the detection wavelengths to longer infrared
bands. However, such systems require bulk spatial dispersers,
which are not compatible with fiber endoscopy.

Here, we combine the advantages of the time-stretching
method and fiber endoscopy and propose a one-pixel method
to enable all-fiber high-speed detection of images. Using a single
multimode fiber (MMF) as the probe, real-time image acquisition
with a frame rate of over 15 Mfps and a shutter time of 45.1 ps
was experimentally demonstrated, in which 10,000 frames could
be recorded in a single shot. We also verified that the maximum
frame rate of the system can be further enhanced to 53.5 Mfps.
Leveraging the intermodal dispersion effect in an MMF, we
transformed 2D spatial information into one-dimensional (1D)
time-domain pulsed waveforms. A neural network model was
trained to reconstruct images from the temporal waveforms
recorded by an ultrafast photodiode connected to the output end
of the fiber. In addition, we propose an all-fiber structure by
combining a fiber-output pulse laser, a triple-cladding fiber probe,
and a side-pump coupler. This scheme enables high levels of
integration and system stability.

Results
Principles. The light fields in an MMF can be resolved into a set
of orthogonal spatial modes26 that enable the transmission of
spatial information. It has been verified that the information
contained in images with 4N resolvable features, where N is the
number of fiber modes per polarization, can be carried in a single
MMF27. When light scattered by an object is collected by an
MMF, various fiber modes are excited to different degrees. When
an ultrafast pulse laser is used as the illumination source, the
energy of each pulse entering the MMF can be dispersed into
different modes. Because the different modes have different group
velocities, the pulses in these modes will arrive at the opposite end
of the MMF with different time delays. If the intermodal dis-
persion of the MMF is sufficiently large, after transmission
through the MMF, a pulse with a temporal duration of less than
the delay difference between different modes will be split into a
number of isolated subpulses in the time domain, as schematically
shown in Fig. 1. If the power of the pulse is sufficiently low and its
wavelength bandwidth is sufficiently narrow, both the chromatic
dispersion and nonlinear effects in the MMF can be ignored,
resulting in the pulse evolution being dominated by intermodal
dispersion28,29 (see Supplementary Note 1 for details). Therefore,
the temporal distribution of the train of subpulses depends on the
mode composition of the original pulse, which is determined by
the spatial distribution of the object. Hence, the spatial infor-
mation of objects can be encoded into the time waveforms of the
output pulses.

Experimental setup. The structure of the system is illustrated in
Fig. 2a. The illumination pulses from a mode-locked fiber laser
are directly coupled into the fiber probe by a side-pump

Input pulses

Output pulses

Corresponding 
modes

Fig. 1 Evolution of ultrashort pulses. The pulses entering the MMF will be
split into lots of subpulses due to the large intermodal dispersion in the
MMF. Each subpulse contains the energy of a certain mode in principle.
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coupler30. After approximately 2 m of transmission, the illumi-
nation pulses emerge from the fiber probe to illuminate the
intensity patterns displayed by a digital micromirror device
(DMD). The pulse laser operates at a wavelength of 1064 nm with
a 3 dB bandwidth of 0.14 nm. While the full width at half max-
imum of the output pulses is 26.4 ps, it broadens to 45.1 ps after
the pulses transmit through the fiber probe and emerge from the
fiber-end-ball (see Supplementary Note 1). Then, the light
reflected from the patterns reenters the fiber probe, as shown in
Fig. 2c. In this way, the illumination and reception of light are
integrated into a single fiber probe. The other end of the fiber
probe is spliced with a 1 km MMF (50/125 μm, numerical aper-
ture (NA)= 0.22), in which the spatial information carried in the
signal pulses is transformed into temporal waveforms. The step-
index core of the MMF can provide much greater intermodal
dispersion than a graded-index core31. In such a long MMF, the
delay differences between different modes are sufficiently large to
cause each signal pulse to split into a burst of subpulses. The
temporal waveforms of the pulses at the other end of the MMF
are detected by an ultrafast InGaAs photodetector (spectral
response 750–1650 nm, bandwidth 30 GHz) and instantly stored
in the memory of an oscilloscope (100 G samples/s.). In the
training stage, different displayed images and the corresponding
waveforms are used to train the neural network model. After
training, the network is capable of recovering new images directly
from the acquired waveforms, as shown in Fig. 2b.

The fiber probe is a triple-cladding fiber. The diameters of its
core, first cladding, and second cladding are 50, 70, and 360 μm
respectively. The core is step-index with an NA of 0.2, and the
second cladding has an NA of 0.46. Both the core and the second
cladding layer can transmit light. The structure of the side-pump
coupler, where the illumination light is coupled into the second
cladding layer of the fiber probe (see Supplementary Note 2 for
detailed structure), is schematically shown in Fig. 2d. Although
the light reflected by the DMD enters both the core and cladding
of the fiber probe, only the light in the core (signal light) can enter
the MMF due to the matching NA and diameter between the fiber
probe core and the MMF core. The end part of the fiber probe is

fused into a microball with a 580 μm diameter, as shown in
Fig. 2e, which serves to produce more uniform and focused
illumination (in the absence of this microball, the beam emerging
from the cladding of the fiber would have an annular shape). This
probe can be directly moved very close to microscale objects for
imaging, with no requirement of objectives that are vital for
conventional cameras. To demonstrate this, the fiber-end ball
probe was placed very close to the surface of the DMD such that
it could only receive light returning from a very small region of
the DMD. The area of this small region measured approximately
200 × 200 μm2, in which images of approximately 28 × 28 pixels
could be displayed.

Image recovery. Figure 3 shows several example images from the
MNIST dataset32 and their corresponding temporal waveforms.
We see that after transmission through the long MMF, a single
input pulse splits into a burst of subpulses spanning approxi-
mately 45 ns (see Supplementary Note 3 for more waveform
details). A U-Net model was trained on 19,000 waveform/image
pairs to learn the corresponding mapping. Using the trained
model, we could directly recover other new images from the
corresponding acquired waveforms. The recovery results corre-
sponding to these example images are shown in the right side of
Fig. 3. The results for 1000 test images showed an average fidelity
(calculated as the 2D correlation) of 81.8% and an average
structural similarity index measure (SSIM, which correlates well
with human perception) of 0.78. Compared with previous fiber
endoscopy technologies, which generally operate at low frame
rates16,33,34, our scheme showed comparable performance in
terms of image quality.

We also tested the reconstruction performance for several
different types of images, including handwritten letters from the
EMNIST dataset35 and patterns of clothes from the Fashion-
MNIST dataset36. After similar training processes, some examples
are shown in Fig. 4a, along with the average fidelities and SSIMs.
The results indicate high practicability of our scheme. While one
waveform corresponds to one image and there is no mutual
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Fig. 2 Experimental layout. a Schematic of the experimental setup. b Flow of the reconstruction process from waveforms to images. c Schematic of the
fiber-end ball, the side-pump fiber coupler, and the flow of illumination light (orange arrows) and signal light (red arrows). d Structures of the side-pump
coupler and triple-cladding fiber probe, where illumination light (orange arrows) is coupled into and transmitted through the cladding of the fiber,
while signal light (red arrows) is collected and transmitted through the fiber core in the opposite direction. The cross section of this coupling region is
also shown. The triple-cladding fiber consists of the fiber core (red), first cladding layer (blue), and second cladding layer (orange). e Micrograph of the
fiber-end ball. Scale bar: 500 μm.
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interference between neighboring waveforms (see Fig. 4c), the
successive pulses can enable detection of images at a frame rate of
15.4 Mfps, which is consistent with the repetition rate of the pulse
source. Moreover, the shutter time of the system is equal to
the time duration of a single pulse irradiating the DMD. Thus, the
shutter time can be as low as 45.1 ps, consistent with the
pulse width.

Additionally, the MMF length of 1 km can be further reduced
without significantly deteriorating the system performance. The
recovery quality under different MMF lengths in the system is

shown in Fig. 4b. The experimental processes using different
MMF lengths were consistent with those for the 1 km MMF
described above and the same number of digit images were used.
There was almost no loss of fidelity as the MMF length was
reduced from 1 km to 400 m. After the length was reduced to
below 150 m, the image quality deteriorated obviously, indicating
that such lengths were too short to split the pulse adequately for
separating the information in different modes. In addition, when
the MMF length was reduced from 1000 to 400 m, the width of
the waveforms was much compressed as shown in Fig. 4c, d. For
the 400 m length, a single waveform was much narrow than the
period of the pulses, indicating that the temporal space was not
fully utilized. Thus, the frame rate could be further increased by
lowering the pulse period. Because a single waveform had a length
of 18.7 ns in this case, the pulse repetition rate could be increased
to 53.5 MHz without any overlap between the neighboring
waveforms as shown in Fig. 4d. Thus, it is feasible to increase
the frame rate of the current system to 53.5 Mfps by changing the
repetition rate of the illumination pulses. Furthermore, if the
system is modified to detect a larger image with more pixels, it
would require an MMF with more modes. In this case, a larger
modal dispersion is required that makes the waveforms becoming
broader so that the pulses can be split adequately for separating
the information in more modes. However, the broadening of the
waveforms will cause the reduction of the frame rate. Thus,
considering that the number of modes is in direct proportion to
the number of resolvable pixels in the images, the frame rate will
be approximately inversely proportional to the number of
resolvable pixels.

In the imaging experiments discussed above, the detected
images are of the same type as the images used to train the
network. Here, we verified that this system could also recover
images of different types. To validate this, we replaced the U-Net
network with a fully connected network. We found that for the
current system, although the U-Net model could realize high-
quality imaging of type-aware objects, its ability to image random
types of objects, i.e., generalization ability, was not as high as that
of the fully connected network (see Supplementary Note 4 for
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details). Moreover, given that the generalization of a trained
neural network is closely connected to the complexity of the
training data, we used the images from the Omniglot dataset37 for
training. These images contain patterns made up of nearly
random lines. In addition to the original images of the Omniglot
dataset, we also generated some other training images based on
the original ones by shifting, rotating, or scaling the original
patterns to increase the complexity of the training data. Finally,
20,000 images with different complex patterns were used for the
training. Then, the trained model was used to restore images of
completely different types from the training images. Exemplary
results are shown in Fig. 5a and we see that the test images could
be recovered with high fidelities. Furthermore, we also verified
that this system can be used for detecting grayscale images
(see Supplementary Note 9 for details).

Next, we used the same trained model to test the spatial
resolution of the system by recovering images of resolution
targets similar to the USAF 1951, which contains white bars with
different pitches. Here, we adjusted the location of the fiber-end-
ball relative to the DMD until it could receive light from a larger
region of the DMD surface. The area of this region measured
approximately 300 × 300 μm2 and included 40 × 40 pixels (pixel
size of 7.56 μm), which was larger than the previous 28 × 28 pixels
and thus could help explore the minimum resolution of the
system. The recovered results are shown in Fig. 5b, indicating that
the smallest bars with pitches of 15 μm (occupying two pixels on
the DMD surface) could be distinguished, which is shown more
clearer in Fig. 5c.

This system can also be used for high-speed classification,
which has great value in fields such as microfluidics12. We tested
this ability via the classification of handwritten digits based on the
acquired waveforms (see Supplementary Note 5 for details). A
high accuracy of 91.5% was achieved. We note that image
detection through such long fibers has been a major challenge for
conventional multimode imaging systems34 because the distur-
bance grows more severe as the fiber length increases33, making
the recovery more difficult (the accuracy of digits classification is
less than 70% for the speckle-based imaging through a 1 km
MMF). However, in our scheme, the classification accuracy
remains at such a high level under the same length, indicating
high interference immunity and practicability. This superiority
can probably be attributed to low crosstalk between different

modes when the pulse energy in the modes is separated after
transmission over a certain distance in the MMF, thus, the energy
coupling between different modes is suppressed. This feature
makes our scheme suitable for long-distance detection.

High-speed detection. To verify the feasibility of high-speed
detection, we adjusted the time scale of the oscilloscope to the
maximum (625 μs), allowing it to store approximately 10,000
waveforms in a single record. Although the highest refresh rate of
the DMD used here is limited to 4.3 kHz, preventing it from
displaying an ultrahigh-speed video that matches our detection
frame rate of 15.4 Mfps, the refresh processes when the DMD
switches from one image to another are nearly transient and
spend only 3 μs (see the recorded waveforms in Fig. 6b). Thus, we
chose to detect this refresh process using our system to reveal the
detailed process over such a short time. We set the DMD to
periodically display two images and simultaneously record the
time signals, as shown in Fig. 6b. The detailed waveforms cor-
responding to one refresh process (marked with a black circle) are
shown in Fig. 6a, where we can see the process of the waveforms
corresponding to the image 3 gradually changing to the wave-
forms corresponding to the image 0 within 3 μs. The retrieved
successive frames are shown in the insets (a1–a17), from which
we can understand the refresh process of the DMD. The whole
refresh process can be divided into three stages. In stage 1 (insets
a1–a5), the DMD initially displays the image 3, which means that
the micromirrors in regions (i) and (ii) of the DMD (see Fig. 6e)
are in the on state, while the others are in the off state. The states
of the micromirrors are explained in Fig. 6d, where region (ii)
represents the overlap between the patterns of 0 and 3. When the
DMD starts to refresh to the image 0, the micromirrors in regions
(i) and (iii) rotate in opposite directions38, causing the light in
region (i) to fade away. In stage 2 (insets a6–a14), only the light
from region (ii) can be observed because the micromirrors there
maintain in the on state. In stage 3 (insets a15–a17), the light
from region (iii) appears, indicating that the corresponding
micromirrors have rotated into on state. Thus, the image 3 has
been refreshed to the image 0. For comparison, we also used a
commercial high-speed camera to record the refresh process (see
the “Methods” section for details), and the real images captured
are shown in Fig. 6c. We can see that the change process of the
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DMD patterns is consistent with what observed using the
proposed system.

System robustness. To analyze the robustness of the system, we
investigated the influence of temperature and fiber bending on
the imaging performance. For temperature effect, we changed the
environmental temperature from 23 to 27 °C by adjusting the air
conditioners. We tested the imaging performance at different
temperatures in two different cases. In the first case, the neural
network was trained with image/waveform pairs collected with
the temperature fixed at approximately 25 °C. In the other case,
the network was trained with the data collected at different
temperatures, called joint training. The details of the experiment
and test results are shown in Supplementary Note 6. While the
average fidelity of the recovered images remains above 70%
within a temperature variation of 0.5 °C in the first case, this
variation range increases to 3 °C for the joint training case. This
temperature sensibility is mainly caused by the temperature-
induced index-distribution change in the MMF which will
influence the temporal distribution of the subpulses. To investi-
gate the bending effect, we fixed the fiber-end ball and bent the
fiber probe into a semicircle with variable radii as shown in the
inset of Supplementary Fig. 11b. Similarly, we tested the imaging
performance under different bending states in two cases: training
with the data collected under one bending state and joint training
with the data collected under different bending states. The results
(see Supplementary Fig. 11) show that in the first case, the
average fidelity can remain above 70% when the bending radius
changes from 28 to 22 cm. And for the joints training, the 70%
fidelity is obtained in the range of 28–19 cm, showing a higher
robustness. The sensibility to the bending is mainly caused by the
fiber-stress-induced modal crosstalk inside the MMF. In sum-
mary, we verified that this system has certain robustness for
practical applications.

Discussion
Because the proposed scheme requires only a single photodiode
rather than pixelated sensors, it can be easily applied to other
wavelengths. For example, considering that the InGaAs-based
photodiode used here has high sensitivity over a broad band from
1 to 1.6 μm39, while the silica fiber has very low attenuation in
this band, our scheme can be easily extended to other wave-
lengths within this band. This will be highly valuable for real
applications because conventional Si-based CCD and CMOS
cameras are sensitive only to wavelengths below 1.1 μm22. Our
method also has the potential to operate in the mid-infrared or
THz bands, considering the development of photodetectors in
these bands. In the mid-infrared band, the use of a fluoride-glass
fiber can significantly reduce optical loss, which makes it possible
to develop long waveguides with high intermodal dispersion in
these bands. In addition, we can see from Fig. 4b that the MMF
length may be potentially reduced to 150 m with little degradation
of image quality. The required MMF length can be further
reduced by increasing the NA of the MMF, which increases the
intermodal dispersion. Thus, although current technology can
only fabricate fluoride-glass fibers with losses on the order of
0.1 dB/m40, the total loss can be controlled to an acceptable range.
In addition, there is still room to lower the loss in fluoride-glass
fibers according to the theoretical predictions of Shibata et al.41.
Thus, it is possible to extend the wavelength of this system to the
mid-infrared region. Also, in the THz band, much work has
focused on the development of waveguides with reduced loss and
dispersion42, which provides a certain possibility to apply the
method to this band. This will be helpful for detecting certain
materials that have strong responses only at these wavelengths
or for detection under special conditions in which only light in
these bands can be transmitted with low loss. In summary, our
scheme offers an alternative approach for observing vivid physical
phenomena in a vast number of scenarios.
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Fig. 6 Ultra-high-speed imaging. a Waveforms collected during the transient time when the DMD refreshes from an image 3 to an image 0. Insets
(a1–a17) show the images reconstructed from some of these waveforms. b Waveforms recorded with the DMD periodically displaying two images, from
which we see that each image has an exposure time of 235 μs, which is used by the DMD to load the data of the next image into the memory cells beneath
the pixels. After all data have been loaded, the DMD switches to the other image within only 3 μs, as marked by the dashed circle. The details of this region
are shown in (a). c Real images of the DMD captured during the refresh process using a commercial high-speed camera. d Structure of one pixel of the
DMD. A DMD chip has many micromirrors on its surface, which correspond to the pixels in the image to be displayed. These micromirrors can be
individually rotated by approximately ±12° to an on or off state. In the on state, the illumination light is reflected back to the fiber probe. In the off state, the
light is directed in another direction. Thus, the array of micromirrors can produce intensity modulations on the light field. When the DMD refreshes its
current image, all micromirrors move to their assigned states at the same moment. e Schematic of the patterns of digits 3 and 0 displayed on the DMD
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The performance of our demonstrated proof-of-principle sys-
tem may be further improved. The wavelength of the source used
here (1064 nm) is much longer than those adopted in most
previous studies16,26,33,34, which resulted in a much smaller
number of excited modes and, thus, much less spatial information
carried in the MMF. Hence, upon using an MMF with a larger
core and higher NA, more spatial information can be collected,
and the resolution of the recovered images will be much higher.
In addition, the shutter time can be further shortened to enable
the detection of faster events by using shorter pulses. More
importantly, with a fiber amplifier spliced to the end of the MMF,
the pulse signals can be significantly amplified, which will greatly
enhance the sensitivity of the detection system to make it suitable
for detecting very weak signals. Moreover, because the illumina-
tion zone and intensity of the applied fiber probe are limited, the
current system is only suitable for detecting small objects. For
larger-object detection, an objective can be used in front of the
fiber probe to couple more light from the object into the probe.
Additionally, for brighter illumination, auxiliary illumination can
be adopted as discussed in Supplementary Note 7.

Our scheme can be further modified to detect 3D objects by
combining it with the existing time-of-flight technique43–45, in
which ultrafast pulses are generally used to illuminate objects of
interest and an ultrafast camera is used to detect the reflected
light at different arrival times. Because the light reflected from
different depths on the object will arrive at the camera with dif-
ferent time delays, the variations in 2D images captured over time
can reveal the 3D information of the object. The system presented
in this paper is naturally compatible with the time-of-flight
method because we also adopt an ultrafast pulse laser for illu-
mination. If the fiber probe is used to detect a 3D object, the
temporal waveforms will contain both depth information and 2D
spatial information. Thus, the use of specific reconstruction
algorithms will make it possible to recover the 3D information
encoded in these ultrafast time signals.

Methods
Experiments. The laser source is a homemade Yb-doped mode-locked fiber laser
with an average output power of approximately 1W. The fiber probe is a triple-
cladding fiber with diameters of 50/70/360 μm (NUFERN FUD-4658, BD-S50/70/
360-22FA-HP). The homemade fiber coupler couples light from the source into the
second cladding layer of the probe. The fiber-end ball at the end of the probe was
produced via fusion with a fusion splicer. Because we adopted a pulse laser, con-
sidering that the DMD can only perform grayscale modulation on continuous light,
all images were binarized before loading into the DMD. The DMD (Texas
Instruments DLP4500) consists of 912 × 1140 micromirrors, each being 7.56 μm in
size. The photodetector (Thorlabs DXM30BF) has a 30 GHz response bandwidth
and a 15 ps impulse response with a sensible spectrum of 750–1650 nm. The
photodetector receives light through an OM4 (50/125 μm) fiber, which is con-
nected to the other end of the MMF. The oscilloscope (Tektronix MSO73304DX)
has a 33 GHz analog bandwidth and a sample rate of 100 G/s. Its maximum record
length is 62.5 Mega samples.

During the process of collecting waveforms of the training images, we set the
oscilloscope to automatically save waveforms at a speed of 4 waveforms per second.
We have verified that training with 10,000 samples was adequate for the network to
achieve the optimal performance (see Supplementary Note 8). Thus, the whole
collection procedure spanned 42 min. The collected raw data was processed before
fed to the neural network. Because a recorded time signal included several periods
of pulses, one period would be selected and extracted as one waveform. Finally, the
waveforms of all images were put together and converted into a matrix data. This
was processed by a MATLAB program, requiring approximately 5 min. Training
the U-Net network with 10,000 sample data required approximately 4 min. We
used the online computing resource from Google Colab that provides a Tesla P100-
PCIE GPU. In conclusion, the whole calibration process, including sample
collecting, processing, and training, required approximately 51 min.

The high-speed camera (MotionBLITZ EoSens® mini) used in the high-speed
imaging experiment has a frame rate of 40 kfps, which is too slow to record a
refresh process of the DMD in real time. Thus, the images showing this transient
process in Fig. 6c were actually not captured during a single refresh process.
Instead, they were obtained using the following method. First, we acquired a large
number of images while the DMD periodically switched between two images.
Because the time of a single refresh process occupies only a very small part of the

switching period, as shown in Fig. 6b, only a small number of images were captured
exactly during the refresh processes. Because these images tended to record
different states of the process, they could be combined to present a continuous
refresh process. The exposure time of the camera was set to the minimum to
capture these transient states.

Neural networks. The structure of the U-Net network is shown in Supplementary
Note 5. In training, the original images were all interpolated into 64 × 64 matrixes
as the output of the network, and the 4096-point waveforms were reshaped into
64 × 64 matrixes as the input. The Fully-Connected network consists of five fully
connected layers, which are one dimensional, and thus the matrixes of images
should be reshaped into vectors and thus the reshaping of the waveforms is not
required.

Data availability
The image and waveform data that are necessary to evaluate the conclusions in this study
are available in the Tsinghua cloud [https://cloud.tsinghua.edu.cn/f/
f7e530af7c6c44caaf74/?dl=1].

Code availability
The python codes used in this study are available in the Tsinghua cloud [https://
cloud.tsinghua.edu.cn/f/f7e530af7c6c44caaf74/?dl=1].
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