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Primary cilia on muscle stem cells are critical
to maintain regenerative capacity and are lost
during aging
Adelaida R. Palla 1,6, Keren I. Hilgendorf 2,5,6, Ann V. Yang1, Jaclyn P. Kerr3, Aaron C. Hinken3,

Janos Demeter 2, Peggy Kraft1, Nancie A. Mooney2, Nora Yucel1, David M. Burns1, Yu Xin Wang1,

Peter K. Jackson 2,4,7✉ & Helen M. Blau 1,7✉

During aging, the regenerative capacity of muscle stem cells (MuSCs) decreases, diminishing

the ability of muscle to repair following injury. We found that the ability of MuSCs to

regenerate is regulated by the primary cilium, a cellular protrusion that serves as a sensitive

sensory organelle. Abolishing MuSC cilia inhibited MuSC proliferation in vitro and severely

impaired injury-induced muscle regeneration in vivo. In aged muscle, a cell intrinsic defect in

MuSC ciliation was associated with the decrease in regenerative capacity. Exogenous acti-

vation of Hedgehog signaling, known to be localized in the primary cilium, promoted MuSC

expansion, both in vitro and in vivo. Delivery of the small molecule Smoothened agonist

(SAG1.3) to muscles of aged mice restored regenerative capacity leading to increased

strength post-injury. These findings provide fresh insights into the signaling dysfunction in

aged MuSCs and identify the ciliary Hedgehog signaling pathway as a potential therapeutic

target to counter the loss of muscle regenerative capacity which accompanies aging.
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Adult muscle stem cells (MuSCs), also known as satellite cells,
are crucial for skeletal muscle regeneration throughout life1.
Sarcopenia, the age-dependent loss of skeletal muscle mass

and strength, is a major public-health problem that affects an
estimated 15% of individuals 65 years or older2,3. With aging,
MuSCs undergo intrinsic changes that reduce their number and
function, which decreases the capacity of muscle to respond to
exercise and injury and efficiently repair damage to muscle fibers1.
Such MuSC intrinsic changes include atypical activation of p38-
MAPK or Jak2-Stat3 signaling4–8. Additionally, extrinsic changes
that alter the niche, or MuSC microenvironment, impact MuSC
regenerative function with aging5. Finally, maintenance of the
quiescent cell state is essential for muscle stem cell function9. With
aging, the increase in cytokines in muscles, including FGF2,
WNT3A and TGF-β alter the signaling state of aged MuSCs leading
to their premature exit from quiescence5,9–11. Despite this knowl-
edge, our understanding of the basis for MuSC dysfunction with
aging remains incomplete.

Many adult stem cells possess a primary cilium, a microtubule-
based, antenna-like structure that protrudes from the cell surface
to mediate sensory and morphogenetic signaling12. Primary cilia
transduce signaling from a growing list of G-protein coupled
receptors (GPCRs), proteins with seven transmembrane helices
capable of transducing extracellular stimuli into intracellular signals.
GPCRs are of particular interest, as they constitute a potent class of
drug targets13. A recent report showed that MuSCs and muscle
progenitor cells possess a primary cilium that is linked to their cell
cycle state14,15, but the role of primary cilia in MuSC function
in vivo has yet to be established.

One of the most characterized ciliary signaling pathways is
Hedgehog (Hh) signaling, critical for both embryonic develop-
ment and tissue homeostasis and regeneration. There are three
known mammalian Hh ligands, Sonic-Hedgehog, Indian-
Hedgehog, and Desert-Hedgehog. The primary cilium is required
to organize canonical signaling by all three ligands in most ver-
tebrate cells16. Briefly, in the absence of Hh ligand, its receptor
Patched (PTCH1) is localized to and around the primary cilium
and downstream GLI transcription factors are proteolytically
processed to a repressor form17,18. In the presence of Hh ligand,
its receptor PTCH1 exits the primary cilium, while the GPCR
SMO accumulates in the cilium and active GLI transcription
factors are released for translocation to the nucleus and expres-
sion of downstream GLI target genes, such as Ptch1 and Gli219.
Hh has previously been shown to play a role in myogenesis,
especially during embryogenesis, as canonical Hh signaling to
somites is critical for the induction of myogenic factors such as
MYOD1 and MYF520, and the subsequent induction of slow
twitch muscle fates21. In muscle progenitor cells, Hh signaling
has also been characterized as a pro-survival and proliferation
factor22.

Here, we show that genetic ablation of primary cilia in adult
MuSCs dramatically decreases their self-renewal and regenerative
capacity in vivo. Additionally, we identify loss of ciliation as an
intrinsic defect of MuSCs with aging, and that augmenting the
regenerative capacity of aged MuSCs through activation of the
ciliary Hedgehog (Hh) signaling pathway is a previously unrec-
ognized therapeutic strategy for the treatment of sarcopenia.

Results
Loss of cilia on MuSCs impairs muscle regeneration and
strength recovery. We first sought to determine if primary cilia in
MuSCs are required for their self-renewal and regenerative
capacity in response to injury. Pax7 is the hallmark transcription
factor expressed by MuSCs23. We confirmed MuSC ciliation
using a transgenic mouse model that expresses fluorescently

tagged CENTRIN2 and ARL13B to visualize the base and axo-
neme of primary cilia, respectively24,25 (Supplementary Fig. 1a).
To assess the functional significance of MuSC ciliation, we gen-
erated a Pax7CreERT2;IFT88f/f mouse model in which the intra-
flagellar transport protein IFT88, required for ciliary assembly
and maintenance26, is specifically and conditionally ablated in
Pax7-expressing MuSCs (Fig. 1a, b and Supplementary Fig. 1b).
We assessed cilia of PAX7-positive MuSCs using antibodies
directed against detyrosinated tubulin to visualize the ciliary
axoneme and the centriolar marker FGFR1OP/FOP to visualize
the ciliary base. Henceforth, we define percent ciliation as the
percentage of cells staining positive for detyrosinated tubulin.
We confirmed a decrease in the percent and length of ciliation in
tamoxifen-treated Pax7CreERT2; IFT88f/f (IFT88−/−) MuSCs
compared to littermate Pax7CreERT2;IFT88+/+ controls (control)
on isolated myofibers by immunofluorescence microscopy
(Fig. 1c, d and Supplementary Fig. 1c). Of note, heterozygous
Pax7CreERT2;IFT88+/f (IFT88+/−) MuSCs exhibited an inter-
mediate decrease in ciliation (Fig. 1c and Supplementary Fig. 1c).
To assess the functional consequence of MuSC ciliation loss, we
performed notexin-induced injury in the Gastrocnemius muscle
of young (2–4 months) control, IFT88+/−, and IFT88−/− mice
and measured strength recovery. Notexin, a widely used injury
paradigm, is a phospholipase A2 neurotoxin peptide extracted
from snake venom that acts as a myotoxin upon intramuscular
injection and promotes myofiber necrosis, but spares muscle stem
cells, which become activated and proliferate to regenerate the
injured muscle. We found that homozygous loss of IFT88 led to a
50% decrease in tetanic force 7 days post-injury and a 20%
decrease at 14 days post-injury compared to baseline, and force
was significantly reduced compared to controls (Fig. 1e, f and
Supplementary Fig. 1d, e). Similarly, muscle mass was decreased
in IFT88−/− mice at day 14 compared to controls (Supplemen-
tary Fig. 1f). Regeneration potential was assessed by histological
examination of injured muscles. To regenerate injured muscles,
MuSCs must become activated and proliferate to generate a pool
of myoblasts, which differentiate and fuse to form new myofibers
or replenish existing myofibers to repair and replace the injured
area27. A shift toward myofibers with reduced cross-sectional area
(CSA), as well as reduced mean CSA, at day 14 post-injury
quantified by immunofluorescence was observed, indicative of
either impaired or delayed regenerative capacity of IFT88−/−

MuSCs (Fig. 1g-i). The intermediate regenerative capacity of
IFT88+/− MuSCs is consistent with the partial loss of ciliation
observed in MuSCs from heterozygous mice (Fig. 1c, f and
Supplementary Fig. 1b–e). These results demonstrate that in the
absence of the primary cilium on MuSCs, muscle regeneration
is impaired, and force is not fully restored after notexin-induced
injury.

Primary cilia on MuSCs are required for MuSC proliferation
and engraftment. To elucidate the role of primary cilia in
maintaining MuSC function, we performed RNAseq analyses of
control and IFT88−/− MuSCs. Pathways related to calcium sig-
naling (i.e. Akap5, Cacna1d, Cacna1g, Cacnab, Camk1d, Camkk2,
Chrna4, Chrnb2), Gα signaling (i.e. Add1, Cnga1, Gnb5, Prkar1a,
Rapgef4, Rapgef4, Rgs2) and cell cycle (i.e. Atm, Chek2, Babam1,
Cdk13, Mcm9) were differentially expressed in IFT88−/− and
control MuSCs (Fig. 2a and Supplementary Fig. 2a, b, Supple-
mentary Data 1) in good agreement with the function of primary
cilia in other cell types25,28–30.

We confirmed by qPCR that expression of cell cycle genes, Cdk13
and Mcm9, was decreased in IFT88−/− MuSCs compared to
controls (Fig. 2b). To analyze the proliferative potential of MuSCs,
we plated them on elastic hydrogels with a stiffness equivalent to
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that of muscle tissue (12 kPa), which preserves their self-renewal
properties in culture31. IFT88−/− MuSCs exhibited a reduced
proliferative capacity compared to controls, as determined by the
total number of MuSCs after 7 days (Fig. 2c). We further confirmed
this reduction in proliferative capacity using an EdU incorporation

assay (Fig. 2d). We observed a similar phenotype when we
performed knockdown of other ciliary components which are
essential for cilia assembly, Kif3a and Cep164 (Supplementary
Fig. 2c, d), confirming the role of primary cilia in MuSC
proliferation. To elucidate if loss of ciliary signaling and consequent
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Fig. 1 Loss of primary cilia in MuSCs impairs muscle regeneration and strength recovery. a Pax7-specific Ift88 conditional knockout mice
(Pax7CreERT2;IFT88f/f, IFT88−/−), heterozygous mice (Pax7CreERT2;IFT88+/f, IFT88+/−) or control littermates (Pax7CreERT2;IFT88+/+, control, con) were treated
with tamoxifen (TAM) at 8 weeks of age. Myofibers were isolated and stained for ciliary markers. b Representative confocal images of control and IFT88−/−

myofibers showing IFT88 and FOP staining in PAX7+ MuSCs. All cells stain positive for the centrosomal marker FOP. Scale bars: 10 μm. DAPI, blue; PAX7, white;
FOP, green; IFT88, red. White arrowheads indicate the presence of IFT88 in the primary cilium on the surface of MuSCs. Blue arrowheads indicate MuSCs lacking
cilia. Quantification in Supplementary Fig. 1b. c, d Visualization of MuSC cilia using detyrosinated tubulin to stain the ciliary axoneme and FOP to visualize the
ciliary base. All cells stain positive for the centrosomal marker FOP. Absence of detyrosinated tubulin is scored as no cilia. c Percent of short (<1 µM) and long
(>1 µM) cilia on Pax7+ MuSCs quantified from isolated myofibers of control, IFT88+/− and IFT88−/− mice (n= 75 control, 79 IFT88+/−, 81 IFT88−/− total
myofibers were analyzed from 4 independent mice per genotype; average percent of ciliated MuSCs per mouse is shown, individual data points in Supplementary
Fig. 1c). d Representative confocal images of uninjured/resting EDL myofibers of control and IFT88−/−mice showing cilia immunostaining in Pax7+MuSCs. Scale
bars: 10 μm. DAPI, blue; PAX7, white; FOP, green; detyrosinated tubulin, red. e–i Control, IFT88+/− and IFT88−/− mice were injured with notexin and analysis
was performed 7 or 14 days post-injury (n= 3 control mice; n= 4 IFT88+/− and IFT88−/−; two legs per mouse). e Experimental scheme. f Plantar flexion tetanic
torque of control, IFT88+/− and IFT88−/− mice on day 7 and day 14 post-injury (values normalized to baseline torque). g Representative Gastrocnemius (GA)
cross-section at 14 days post-injury from control and IFT88−/− mice. DAPI, blue; LAMININ, green. Bar=50 µm. h Myofiber cross-sectional areas (CSA) in
control, IFT88+/− and IFT88−/− GAs (n= 3 for control, n= 6 for IFT88+/− and n= 6 for IFT88−/−). i Mean CSA. *P <0.05, **P <0.01, ***P <0.001
****P <0.0001. ANOVA test with Fisher’s LSD test for multiple comparisons (c, f, h, i). Source data are provided as a Source Data file. Means+s.e.m.
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reduction in MuSC proliferation could result from spontaneous
differentiation of MuSCs, we plated control and IFT88−/− MuSCs
on collagen coated plates. The IFT88−/− MuSCs did not differ from
ciliated controls in their spontaneous differentiation and exhibited a
comparable capacity to form MyHC positive myotubes (Supple-
mentary Fig. 2e), consistent with our hypothesis that primary cilia
mediate MuSC proliferation and expansion.

To determine if primary cilia are required for MuSC self-
renewal in vivo, we performed engraftment studies using control
and IFT88−/− MuSCs transduced with a GFP/luciferase expres-
sion vector, which enables assessment of the dynamics of MuSC
engraftment and contribution to regeneration over time by non-
invasive bioluminescence imaging (BLI). Immunodeficient Nod
Scid Gamma (NSG) mice were irradiated to deplete competing
endogenous MuSCs. Equal numbers of GFP/luc expressing
control and IFT88−/− MuSCs were then injected into the Tibialis
anterior (TA) muscles and engraftment potential measured over

time using BLI, as previously described6,32,33 (Fig. 2e). We found
that IFT88−/− MuSC engraftment was significantly reduced
compared to controls (Fig. 2f and Supplementary Fig. 2f). These
data show that cilia are crucial to the self-renewal and expansion
capacity of transplanted MuSCs in vivo.

Smoothened agonist (SAG) promotes MuSC expansion in vivo.
Primary cilia have an essential role in mediating Hh signaling in
vertebrates34. The Hh receptor Patched (PTCH1) and the down-
stream GPCR Smoothened (SMO) are highly enriched in the pri-
mary cilium and regulate Hh signaling via downstream GLI
transcription factors that have been shown to play a role in pro-
liferation and renewal of diverse stem cell types34,35. To test if Hh
signaling plays a role in MuSC self-renewal and expansion, we used
small-molecule SMO agonists (SAG1.3 and Purmorphamine) to
activate Hh signaling36. We found SAG1.3 and Purmorphamine
stimulated MuSC expansion in a dose-dependent manner (Fig. 3a).
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Fig. 2 Loss of primary cilia in MuSCs reduces proliferative and self-renewal capacity. a Heat map of differentially expressed genes (p < 0.1) in IPA
(Ingenuity Pathway Analysis) enriched pathways between control or IFT88−/− MuSCs freshly isolated from hindlimb muscles. b Expression of cell cycle
genes Cdk13 andMcm9 is decreased in IFT88−/− MuSCs compared to controls as determined by qPCR (n= 3 mice per condition). c Number of control and
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d Percentage of EdU+ MuSCs (n= 4 mice for control, n= 3 mice for IFT88−/−). e, f Engraftment of GFP/luc-labeled control and IFT88−/− MuSCs.
e Transplant scheme. f Left: Bioluminescence imaging (BLI) signal post-transplant expressed as average radiance (p s−1 cm−2 sr−1) (n= 5 replicates per
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Additionally, we found that treatment of control, but not IFT88−/−

MuSCs, with the SMO agonist SAG1.3 led to a robust increase
in proliferation (Fig. 3b). Thus, activation of the Hh signaling
pathway promotes cilia-dependent MuSC expansion. Similarly,
inhibition of Hh signaling using SMO antagonists cyclopamine or
vismodegib36,37 markedly reduced proliferation, as assessed by EdU
incorporation (Fig. 3c) or VisionBlue, a Resazurin-based dye that
becomes fluorescent upon reduction by metabolically active cells
(Fig. 3d). To further study if stimulation of the Hh pathway pro-
motes muscle regeneration in vivo, we used a transgenic mouse
model we previously developed, Pax7CreERT2; Rosa26-LSL-Luc to
monitor the dynamics of endogenous MuSC expansion over a
2-week time course using BLI32. We found that a single intra-
muscular injection of SAG1.3 significantly increased endogenous
MuSC expansion at days 10 and 14 post-injury compared to vehicle
treated (Fig. 3e, f and Supplementary Fig. 3). These results
demonstrate that ciliary Hh signaling via SMO is critical for the
proliferative capacity of MuSCs, and that stimulating SMO can lead
to increased MuSC expansion during regeneration.

Aged MuSCs exhibit decreased ciliation and expression of Hh
downstream target Gli2. Since MuSC function declines with
aging and ablation of cilia leads to a loss of young MuSC self-
renewal capacity, we hypothesized that aged MuSCs harbor a
ciliation defect that contributes to their loss of stemness and
regenerative capacity. We therefore assessed the ciliation status of
MuSCs during aging. We compared the cilia of young and aged
MuSCs present on isolated myofibers. By immunofluorescence
analysis, we identified the cilia of PAX7-positive MuSCs using

antibodies directed against detyrosinated tubulin and the cen-
triolar marker FOP (Fig. 4a and Supplementary Fig. 4a). Aged
MuSCs had a significant decrease in the number of both long and
short cilia compared to young, with only approximately 30% of
aged MuSCs remaining ciliated (Fig. 4b and Supplementary
Fig. 4b). Upon analysis of transcriptome data from young and
aged MuSCs, we identified several differentially expressed ciliary
genes (i.e. Ift122, Kif3a, Dzip1l, Stil) (Fig. 4c). Components of the
Hh signaling pathway (i.e. Ptch1, Gli2), known to signal through
the primary cilium16, were among the top hits (Fig. 4c). More-
over, expression of Hh signaling genes, the negative regulator,
Ptch1, and the downstream effector, Gli2, were dysregulated in
aged compared to young MuSCs (Fig. 4d), not only at a basal
state, but also in muscles post-injury (Fig. 4e, f and Supplemen-
tary Fig. 4c, d). In an injury time course, increased Ptch1
expression was observed at the uninjured and at 1, 3 and 16 days
post-injury in aged compared to young mice, while Ptch1
expression was transiently induced in young mice only in
response to injury (Fig. 4e, Supplementary Fig. 4c). Gli2, which is
transiently upregulated at day 3 post-injury in young, exhibits
decreased expression in aged compared to young at this timepoint
(Fig. 4f, Supplementary Fig. 4d). These data demonstrate that
aged MuSCs have a cell-intrinsic ciliation defect, which likely
results in a blunted response to Hh signaling in aged MuSCs.

SMO agonist (SAG1.3) promotes young and aged MuSC pro-
liferation and function. Aged MuSCs are known to have reduced
proliferative capacity, which correlates with reduced regeneration of
muscle post-injury. To assess if Hh stimulation in the remaining
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~30% of ciliated aged MuSCs suffices to improve muscle regen-
eration in the aged, we treated isolated MuSCs from aged mice with
SAG1.3. This resulted in a significant increase in proliferation
(Fig. 5a). To confirm this finding, we treated aged MuSCs with
other known agonists of SMO, including small molecules (pur-
morphamine and GSA-10)36, the glucocorticoid fluticasone38, and

the Sonic-Hedgehog (Shh) ligand which activates signaling by
binding PTCH1 and derepressing SMO39. We found that each of
the SMO agonists we tested significantly enhanced aged MuSC
proliferation (Fig. 5b). Moreover, we validated that SAG1.3 treat-
ment of aged MuSCs increased expression of the downstream Hh
target Gli2 (Fig. 5c).
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To determine if SAG1.3 injection could enhance the function of
endogenous aged MuSCs juxtaposed to myofibers in muscle tissue,
we injected SAG1.3 into the Gastrocnemius (GA) muscles post-
injury. Notably, we observed a significant increase in the absolute

strength, strength of each mouse relative to its baseline strength,
and muscle mass of SAG1.3-treated aged muscles post-injury
(Fig. 5d–g). Remarkably, the absolute strength of SAG1.3-treated
aged muscles post-injury was similar to that of uninjured, young
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muscle (Fig. 5e). Since other ciliated cells such as fibroadipogenic
progenitors (FAPs) are known to play a role in muscle
regeneration40–42, we tested the specificity of SAG1.3 treatment
for MuSCs in vivo post-injury. We injected the GA muscles of
Pax7CreERT2; IFT88f/f (control) or Pax7CreERT2; IFT88−/− mice
with SAG1.3 or vehicle post-injury (Fig. 5h). We found SAG1.3
increased strength only in control mice, but not in Pax7CreER-
T2;IFT88−/− in which cilia were specifically ablated on MuSCs,
confirming that SAG1.3 enhances muscle regeneration in vivo by
promotingMuSC proliferation in a cilia-dependent manner (Fig. 5i).
These studies show that pharmacological stimulation of ciliary
Hedgehog signaling in aged MuSCs significantly enhances recovery
of muscle mass and strength post-injury.

Discussion
Primary cilia are cellular protrusions found on most mammalian
cells that serve as sensory organelles that detect diverse signals
such as light, growth factors, and morphogens43. Perturbation of
ciliary proteins in all ciliated cell types leads to a broad range of
genetic disorders known as “ciliopathies”, which can affect
numerous cell types and tissues. Hypotonia and muscle flaccidity
is one common clinical manifestation, for example in Joubert
Syndrome. This is at least in part a consequence of disrupted
motor coordination44. Here, we uncover a distinct role for pri-
mary cilia on MuSCs in mediating the Hedgehog signaling
pathway to promote muscle regeneration in vivo (Fig. 6). Addi-
tionally, we provide novel evidence of the profound role of this
pathway in muscle regenerative function in aging.

There is a paucity of information regarding the significance of
ciliation in age-related diseases. Here, we demonstrate that an
absence of ciliation is a cell-intrinsic change in aged MuSCs that
diminishes their function. We propose that loss of cilia con-
tributes to a reduction in muscle regenerative capacity with aging.
We note that the age-dependent loss in ciliation is not complete,
but instead resembles the effect on MuSC ciliation of hetero-
zygous deletion of IFT88 in young adult mice. MuSC primary
cilia appear to be highly sensitive to changes in levels of ciliary
protein expression and thus particularly susceptible to aging-
related changes. We show that the decrease in ciliation in aged
MuSCs results in impairment of Hh signaling, suggesting an
important role for Hh in muscle regeneration. Although there is
limited in vivo evidence for the role of Hh signaling in muscle
regeneration, previous studies have shown that SMO inhibition
by cyclopamine treatment of injured muscles results in muscle

fibrosis and increased inflammation45. Additionally, in the con-
text of aging, transduction of a Shh-expressing vector was shown
to boost muscle repair to levels comparable to those found in
much younger mice46. Smoothened has been targeted for differ-
ent therapeutic indications, including agonists (SAG, GSA-10)
and antagonists for the treatment of basal cell carcinoma36. Here,
we provide a link between Hh signaling and ciliation in MuSCs
and show that Hh signaling is important for the regenerative
capacity of muscle in vivo. Furthermore, treatment with a small
molecule that restores Hh signaling in aged MuSCs improves
endogenous stem cell function and significantly augments muscle
regenerative capacity after injury of aged muscles (Fig. 6).
Although activation of Hh signaling can increase tumorigenesis
(including medulloblastoma and basal cell carcinomas)47, these
undesired effects may be circumvented by the transient, localized
nature of the SMO agonist treatment which we show can robustly
enhance MuSC expansion leading to increased muscle strength
after injury in aged mice.

Here, we demonstrate that disruption of cilia is an intrinsic
change in aged MuSCs that impedes their function in regenera-
tion. In the absence of ciliary Hh signaling, the repair of muscle
damage by endogenous or transplanted MuSCs is hindered, and
strength is not restored after injury. The aged niche and extrinsic
factors within the microenvironment may also play a role, and
experiments designed to determine the cell source and identity of
the endogenous Hh signals in muscle after injury are clearly
warranted. Desert Hh (DHH) has been reported to be expressed
by Schwann cells post-cardiotoxin injury41. Since loss of neuro-
muscular junctions (NMJ) plays a prominent role in the decline
in muscle function with aging48, it is possible that impairment of
Schwann cells contributes to a loss of Hh signaling and the
observed decline in MuSC function with aging. Further, we show
that there are notable differences in how Ptch1 and Gli2 expres-
sion changes with aging, such that the basal (uninjured) levels of
Ptch1 are increased in aged MuSCs, while Gli2 expression is
decreased. There are a number of potential explanations for this
divergent response, including de-repression of Hh signaling in the
absence of ciliation and the presence of Ptch1 activators that are
non-responsive to Hh49. Regardless of these differences in basal
Ptch1 and Gli2 expression in aged MuSCs, the Hh signaling
response is dramatically blunted in aged muscle in response to
injury.

Mesenchymal stem and progenitor cells are broadly ciliated and
play an important role in maintaining stem cell fate by regulating

Fig. 6 Scheme of primary cilia function in muscle regeneration. Notexin-induced muscle injury induces transient Hedgehog signaling in MuSCs, which
results in MuSC expansion, a critical step in muscle regeneration. The primary cilium is lost in a significant fraction of aged MuSCs, and exogenous
activation of Hedgehog signaling increases muscle force in aged. Created with BioRender.com.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29150-6

8 NATURE COMMUNICATIONS |         (2022) 13:1439 | https://doi.org/10.1038/s41467-022-29150-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


lineage specification, proliferation, and differentiation50–52. For
example, in adipose tissue, preadipocytes are ciliated and their
ablation leads to severe defects in white adipose tissue
expansion25,53. Cilia also play a critical role in cartilage and bone
development54. In skeletal muscle, although the function of cilia on
MuSCs was not previously discerned in vivo, the presence of cilia
was shown in another progenitor population, fibroadipogenic
progenitors, and shown to play an important role in regulating its
adipogenic fate in the context of injury and in a model of Duchenne
Muscular Dystrophy41. Thus, ciliation of multiple progenitor cell
populations may be critical to tissue homeostasis and function.

Many signaling pathways are known to be mediated by the
primary cilium. Here, we implicate one of the well-studied func-
tions of primary cilia, transduction of Hh signaling, in muscle stem
cell function. Additional ciliary signaling pathways may also play a
role in muscle regeneration. These include pathways activated in
response to inflammation, since inflammatory signaling plays a
critical role in almost all stages of muscle regeneration32,55,56 and is
known to be transduced by the primary cilium in other cell
contexts57,58. Additionally, since primary cilia are sensory orga-
nelles, they could sense chemotactic cues and direct migration of
MuSCs to sites of injury to promote regeneration as seen with other
mesenchymal stem cells59. Upon activation, MuSCs are known to
migrate to regenerate injured areas60, and cilia may well play an
essential role in sensing key chemotactic cues. Our observation that
loss of ciliation in MuSCs results in a severe dysregulation of cal-
cium and G protein-coupled signaling is consistent with the MuSC
primary cilium mediating a multitude of signaling pathways.
Indeed, how the primary cilium senses and integrates multiple
signaling pathways into ciliary effector proteins to coordinate the
initiation of myogenesis during development remains an intriguing
question12. Notably, ciliogenesis has been linked to planar cell
polarity non-canonical Wnt signaling61. Since Wnt signaling in
MuSCs has been shown to control quiescence via the planar cell
polarity pathway62 and its dysregulation in aging muscles alters
MuSC function10, loss of primary cilia may well underlie the loss of
non-canonical Wnt signaling. Our data underscore the profound
functional importance of the primary cilium in Hedgehog signaling
in MuSCs during the regeneration of damaged tissue. These find-
ings provide fresh insights into the etiology of signaling dysfunction
in aging and a potential therapeutic strategy to augment aged
muscle regeneration.

Methods
Mice. All experiments and protocols were performed in compliance with the
institutional guidelines of Stanford University and Administrative Panel on
Laboratory Animal Care (APLAC). The laboratory animal care program at Stan-
ford University is accredited by the Association for the Assessment and Accred-
itation of Laboratory Animal Care (AAALAC International). Animals were group
housed on a 12-h:12-h light:dark cycle and regulated temperature (68–79 °F) and
humidity levels (30–70%) in the Stanford University’s Veterinary Service Center
(VSC) and fed with food and water ad libitum. All studies were conducted in
accordance with the GSK Policy on the Care, Welfare and Treatment of Laboratory
Animals and were reviewed the Institutional Animal Care and Use Committee
either at GSK or by the ethical review process at the institution where the work was
performed. Aged (>24 mo.) and young (2–4 mo.) C57BL/6 mice were obtained
from Jackson Laboratory. Mouse transgenic strains were purchased from Jackson
Laboratory (NOD-SCID No. 005557; Pax7CreERT2 No. 017763; IFT88flox/flox No.
022409; Rosa26-LSL-Luc No. 005125; IFT88flox/flox No. 022409; and Centrin2-
eGFP; Arl13b-mCherry No. 02796724). Double-transgenic Pax7CreERT2;Rosa26-LSL-
Luc were generated as described previously32. Double-transgenic Pax7-
CreERT2;IFT88flox/flox (IFT88f/f) were generated by crossing Pax7CreERT2 mice
obtained from Jackson Laboratory63 and IFT88f/f obtained from Jackson
Laboratory26. For Pax7CreERT2;Rosa26-LSL-Luc and Pax7CreERT2;IFT88flox/flox

(IFT88f/f) mice experiments, we treated 8-week-old or 12-month-old male mice
with five consecutive daily intraperitoneal injections of tamoxifen (50 mg/kg; Sigma
Aldrich, catalog # 10540-29-1) and performed intramuscular notexin injury one
week after the last tamoxifen injection. We validated these genotypes by appro-
priate PCR-based strategies.

Muscle stem cell isolation. We isolated and enriched muscle stem cells as pre-
viously described (Supplementary Fig. 5)6,31–33. Briefly, hindlimb muscles were
minced and digested using a collagenase type 2 (Worthington Biochemical, catalog
# LS004177) and dispase II (Thermo Fisher Scientific, catalog # 17105041) solution
by the gentleMACs Octo Dissociator (Miltenyi). Subsequently, single cells were
depleted for hematopoietic lineage expressing and non-muscle cells (CD45−/
CD11b−/Sca1−/CD31−) (Biotin anti-CD45, BD Biosciences catalog # 553078,
clone 30F11, 1:500 dilution; Biotin anti-CD11b, BD Biosciences, catalog # 553309,
clone M1/70, 1:200 dilution, Biotin anti-Sca1 (Ly-6A/E), BD Biosciences catalog #
553334, clone E13-161.7, 1:200 dilution and Biotin anti-CD31, eBioscience catalog
# 13-0311-82, clone 390, 1:200 dilution) using a magnetic bead column (Strepta-
vidin MicroBeads, Miltenyi Biotec, catalog # 130-048-101). The remaining Lin- cell
mixture was then subjected to FACS analysis to sort for MuSCs co-expressing
CD34 (Anti-Mouse CD34 eFluor 660, clone RAM34, 1:67 dilution, eBioscience,
catalog # 50-0341-82) and Integrin-α7 (Anti-Integrin alpha 7 antibody conjugated
to phycoerythrin (PE), clone R2F2, 1:200 dilution, Ablab, catalog # 10ST215)
markers and negative for Lin (Streptavidin-APC-Cy7, 1:200 dilution, BD Bios-
ciences, catalog # 554063). We generated and analyzed flow cytometry scatter plots
using FlowJo v10.0.

Muscle stem cell transplantation. We co-injected 250 GFP/luc IFT88−/− or
control MuSCs into the tibialis anterior (TA) muscles of recipient NOD-SCID mice
as previously described6,31–33. GFP/luc IFT88−/− or control MuSCs were obtained
by isolating MuSCs from IFT88−/− or control mice (2–4 mo.) post-tamoxifen
injection and transducing with a luc-IRES-GFP lentivirus (GFP/luc virus) on day 1
of culture for a period of 24 hr before transplantation (see below “Cell culture”
section for details). We compared cells from different conditions by transplantation
into the TA muscles of contralateral legs in the same mice. Four weeks after
transplantation, mice were euthanized, and the TAs were collected for analysis.

Bioluminescence imaging. We performed bioluminescence imaging (BLI) using a
IVIS Spectrum system (Perkin Elmer), as previously described6,31–33. Briefly, we
anesthetized mice using isofluorane inhalation and administered 120 μL D-luciferin
(0.1 mmol kg−1, reconstituted in PBS; Caliper LifeSciences) by intraperitoneal
injection. We acquired BLI using a 60 s exposure at F-stop=1.0 at 5 min after
luciferin injection. Digital images were recorded and analyzed using Living Image
software (Perkin Elmer). We analyzed images with a consistent region-of-interest
(ROI) placed over each hindlimb to calculate a bioluminescence signal. We cal-
culated a bioluminescence signal in radiance (p s−1 cm−2 sr−1) value of 104 to
define an engraftment threshold. This radiance threshold of 104 is approximately
equivalent to the total flux threshold in p/s reported previously. This BLI threshold
corresponds to the histological detection of one or more GFP+myofibers6,31–33.
We performed BLI imaging every week after transplantation.

Muscle injury. We used an injury model entailing intramuscular injection of 20 or
40 μl of notexin (10 μg ml−1; Latoxan, catalog# L8104) into the TA muscle or GA
muscle respectively. Notexin is a phospholipase A2 neurotoxin peptide extracted
from snake venom that acts as a myotoxin upon intramuscular injection. It pro-
motes myofiber necrosis which promotes muscle stem cell activation and pro-
liferation to regenerate the injured muscle64. When indicated, 3 days after injury
SAG (175 µg/kg, Tocris, catalog # 4366) or vehicle control (PBS) was injected into
the GA muscle as previously described41. We collected tissues at times indicated for
analysis.

For Pax7CreERT2; Rosa26-LSL-Luc mice experiments, we treated mice with five
consecutive daily intraperitoneal injections of tamoxifen to activate luciferase
expression under the control of the Pax7 promoter. A week after the last tamoxifen
injection, mice were subjected to intramuscular injection of notexin, which we
designated as day 0 of the assay. Three days later either SAG (175 µg/kg, Tocris,
catalog # 4366) or vehicle control (PBS) was injected into the TA or GA muscle.
Bioluminescence was assayed at days 3, 7, 10, and 14 post-injury.

Immunofluorescence staining and imaging. We collected and prepared recipient
TA muscle tissues for histology as previously described32. We fixed transverse
sections from muscles using 4% PFA, blocked and permeabilized using PBS/1%
BSA/0.1% Triton X-100 and incubated with anti-LAMININ (Millipore, clone A5,
catalog # 05-206, 1:200) and then with AlexaFluor secondary Antibodies (Jackson
ImmunoResearch Laboratories, 1:200) or wheat germ agglutinin-Alexa 647 con-
jugate (WGA, Thermo Fisher Scientific). We counterstained nuclei with DAPI
(Invitrogen).

For myofibers and MuSCs, we performed fixation using 4% PFA, blocking and
permeabilization using PBS/1% BSA/0.1% Triton X-100 and staining with primary
antibodies anti-detyrosinated tubulin (abcam, catalog # ab48389, 1:100), anti-
IFT88 (ProteinTech, catalog # 13967-1-ap, 1:500), anti-PAX7 (Santa Cruz
Biotechnology, catalog # sc-81648, 1:50), anti-FOP (Abnova, catalog #H00011116-
M01, clone 2B1, 1:1000), anti-MyHC (clone MF20, Thermo Fisher Scientific,
catalog # 14-6503-82, 1:500) and then with AlexaFluor secondary Antibodies
(Jackson ImmunoResearch Laboratories, 1:500). We counterstained nuclei with
DAPI (Invitrogen).
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Confocal images of myofibers were acquired on a Marianas spinning disk
confocal (SDC) microscopy (Intelligent Imaging Innovations) with a ×40/0.9 N.A.
objective to capture multiple consecutive focal planes. Muscle transverse sections
images were acquired on a KEYENCE BZ-X700 all-in-one fluorescence microscope
(Keyence) with ×20/0.75 N.A. objectives. We analyzed the myofiber cross-sectional
area using the Keyence Software that identified the fibers and segmented the fibers
in the image to analyze the area of each fiber. For fiber area at least 10 fields of
LAMININ-stained myofiber cross-sections encompassing over 400 myofibers were
captured for each mouse. For percent ciliation and cilia length, we analyzed young
and aged MuSCs on at least 30 myofibers isolated from 5 independent mice using
Intelligent Imaging Innovations software and the measurement tool. Data analyses
were blinded. The researchers performing the imaging acquisition and scoring were
unaware of conditions given to sample groups analyzed.

Hydrogel fabrication. We used polyethylene glycol (PEG) hydrogels from PEG
precursors, synthesized as described previously31. Briefly, we produced 12-kPa
(Young’s modulus) hydrogels in 1 mm thickness functionalized with laminin to
cover the surface area of 12-well or 24-well culture plates.

Myofiber isolation and culture. EDL myofibers were isolated as previously
described65. Briefly, the extensor digitorum longus (EDL) muscle was dissected and
digested in 0.2% Collagenase type B (catalog # 11088831001, Roche) in DMEM at
37 °C for 1 h. Single myofibers were isolated by triturating the digested EDL muscle
with polished Pasteur pipettes and then fixed with PFA 4%.

Cell culture. Following FACs isolation, we resuspended MuSCs in myogenic cell
culture medium containing DMEM/F10 (50:50), 15% FBS, 2.5 ng ml−1 fibroblast
growth factor-2 and 1% penicillin-streptomycin. We added the indicated doses (see
respective Figure legends) 50 nM of SAG1.3 (Cayman Chemical Company, catalog
# 11914), 1 µM of GSA-10 (Sigma-Aldrich, catalog # SML1171), 25 nM of Fluti-
casone (Sigma-Aldrich, catalog # F9428), 5 µM of Cyclopamine (STEMCELL
Technologies, catalog #72072), 1 µM Purmorphamine (Selleck Chemical, catalog #
S3042), 100 nM of Vismodegib (Selleck Chemicals, catalog # S1082) or 0.1 µg/ml
SHH (R&D Systems, catalog # 461-SH-025) to MuSCs cultured on collagen coated
dishes for the first 24 h. The cells were then trypsinized and cells reseeded onto
hydrogels for an additional 6 days of culture. All treatments were compared to their
solvent (DMSO) vehicle control.

For IFT88−/− MuSCs transplant studies, we infected MuSCs with lentivirus
encoding elongation factor-1α promoter-driven luc-IRES-GFP (GFP/luc virus) for
24 h in culture as described previously6. Cells were assayed for GFP 48 h post-
infection using an inverted fluorescence microscope (Carl Zeiss Microimaging).

Proliferation assays. To assay proliferation, we seeded MuSCs on flat hydrogels at
a density of 500 cells per cm2 surface area. We counted cell number using a
hemocytometer. We collected cells at indicated timepoints by incubation with 0.5%
trypsin in PBS for 5 min at 37 °C and quantified them using a hemocytometer at
least 3 times. Additionally, we used the VisionBlue Quick Cell Viability Fluoro-
metric Assay Kit (BioVision, catalog # K303) as a readout for cell growth in culture.
Briefly, we incubated MuSCs with 10% VisionBlue in culture medium for 4 h, and
measured fluorescence intensity on a fluorescence plate reader (Infinite M1000
PRO, Tecan) at Ex= 530–570 nm, Em=590-620 nm. Data analyses were blinded,
where researchers performing cell scoring were unaware of the treatment condition
given to sample groups analyzed.

Dose curve on MuSC proliferation. To assess MuSC proliferation with different
drug doses, we seeded 400 MuSCs isolated from young mice (2–4 mo.) on collagen
coated 96 well plates in myogenic cell culture medium containing DMEM/F10
(50:50), 15% FBS, 2.5 ng ml−1 fibroblast growth factor-2 and 1% penicillin-
streptomycin. We performed 3-5 replicates per condition plated with 3 doses (1,
100 or 1000 nM). Each plate contained vehicle controls. Small molecules were
added at a 2X concentration to achieve the final concentration. To avoid cell-
washout effects, we did not change the medium throughout the assay. Proliferation
was assayed at 7 days post-plating by using the VisionBlue Quick Cell Viability
Fluorometric Assay Kit (BioVision, catalog # K303) as a readout for cell growth in
culture. Briefly, we incubated live MuSCs with 10% VisionBlue in culture medium
for 4 h, and measured fluorescence intensity on a fluorescence plate reader (Infinite
M1000 PRO, Tecan) at Ex= 530–570 nm, Em=590-620 nm. Proliferation was
normalized to the average value of vehicle treated for each plate. Data analyses were
blinded, where researchers performing cell scoring were unaware of the treatment
condition given to sample groups analyzed.

Quantitative RT-PCR. We isolated RNA from MuSCs using the RNeasy Micro Kit
(Qiagen). We reverse-transcribed cDNA from total mRNA from each sample using
the SensiFAST™ cDNA Synthesis Kit (Bioline). We subjected cDNA to RT-PCR
using TaqMan Assays (Applied Biosystems) or SYBR Greem PCR Master Mix
(Applied Biosystems) in an ABI 7900HT Real-Time PCR System (Applied Bio-
systems). We cycled samples at 95 °C for 10 min and then 40 cycles at 95 °C for 15 s
and 60 °C for 1 min. To quantify relative transcript levels, we used 2− ΔΔCt to

compare experimental and control samples and expressed the results relative to
Gapdh. Raw Ct values for qPCRs are provided in the Source Data file.

TaqMan Assays (Applied Biosystems) were used to quantify Gli2 (Thermo
Fisher Scientific, Catalog # Mm01293117_m1), Ptch1 (Thermo Fisher Scientific,
Catalog # Mm00436026_m1), Cep164 (Thermo Fisher Scientific, Catalog #
Mm00553106_m1), Kif3a (Thermo Fisher Scientific, Catalog # Mm01288585_m1),
Gapdh (Thermo Fisher Scientific, Catalog # Mm01162710_m1) in samples
according to the manufacturer instructions with the TaqMan Universal PCR
Master Mix reagent kit (Applied Biosystems). For Taqman qPCR, multiplex qPCR
enabled target signals (FAM) to be normalized individually by their internal Gapdh
signals (VIC).

We analyzed Mcm9, Cdk13 using SYBR Green qPCR. For SYBR Green qPCR
we used the following primer sequences: Mcm9, forward 5′-
CAAGCATCCATGAAGCAATG-3′, reverse 5′-
GATGGTGGTCCTTGTGTTCAG-3′; Cdk13, forward 5′-
AGACGTGGAACCCTCCAAA-3′, reverse 5′-TCATCAGTCATGCCCATCTG-3′;
Gapdh, forward 5′-TTCACCACCATGGAGAAGGC-3′, reverse 5′-CCCTTTTGG
CTCCACCCT-3′.

Flow cytometry. We assayed EdU as a readout of proliferation for MuSCs after
7 days in culture on hydrogels, after an initial acute (24 hr) treatment of vehicle
(DMSO), SAG, or cyclopamine, or of control and IFT88−/− MuSCs. EdU incor-
poration was assessed using the Click-iT™ EdU Pacific Blue™ Flow Cytometry Assay
Kit (Thermo Fisher Scientific, catalog #C10418) according to the manufacturer’s
recommendation. Briefly, we incubated MuSCs for 1 h with EdU for a final con-
centration of 20 μM after 7 days of proliferation on hydrogels. Cells were trypsi-
nized and fixed in 4% PFA/PBS for 15 min at room temperature, followed by 2
rinses in 1%BSA/PBS. Cells were permeabilized in cold methanol for 10 min. Cells
were kept in 1%BSA/PBS for 30 min at room temperature, followed by 2 rinses in
1%BSA/PBS. Samples were then incubated in a freshly made Click-iT reaction
cocktail for 30 min at room temperature, followed by 1 rinse in 3%BSA/PBS and 1
rinse in PBS. Samples were then incubated in 7AAD in PBS for 30 min at room
temperature followed by 1 rinse in PBS. We analyzed the cells on a FACS LSR II
cytometer using FACSDiva software (BD Biosciences). Analysis of EdU positive
cells was performed using FlowJo Software (BD Biosciences).

Knockdown using siRNA. Electroporation was performed using a Neon Trans-
fection System (Invitrogen) with ON-TARGETplus pool siRNAs against Cep164
(Cat No. L-057068-01-0005, Dharmacon), Kif3a (Cat No. L-042111-01-0005,
Dharmacon) or control non-targeting siRNAs (Cat No. D-001810, Dharmacon) to
MuSCs 24 h after isolation. After electroporation, MuSCs were plated and pro-
liferation was assessed 7 days later using a VisionBlue viability fluorescence readout
(see Proliferation assays section).

In vivo muscle force measurement. The peak isometric torque (N•mm) of the
ankle plantarflexors was assessed as previously described66,67. Briefly, the foot of
anesthetized mice was placed on a footplate attached to a servomotor (model 300C-
LR; Aurora Scientific). Two Pt-Ir electrode needles (Aurora Scientific) were
inserted percutaneously over the tibial nerve, just posterior/posterior-medial to the
knee. The ankle joint was secured at a 90° angle. The peak isometric torque was
achieved by varying the current delivered to the nerve at a frequency of 100 Hz,
0.1-ms square wave pulse, 500 ms stimulation duration. Force frequency data was
recorded by stimulating using frequencies ranging from 1 to 150 Hz with 30 s
recovery between each measurement. For relative force measurements, force of the
same animal was measured before and after treatment, and the percent change was
calculated. Force measurement acquisition was blinded where researchers were
unaware of the genotype or treatment conditions. Data were collected with the
Aurora Scientific Dynamic Muscle Data Acquisition and Analysis Software.

RNA-Seq. For RNA-seq, Integrin α7+CD34+Lin− MuSCs were isolated as
described above. RNA was isolated using Qiagen RNAEasy Micro kit from
5,000–10,000 cells and cDNA generated and amplified using NuGEN Ovation
RNA-Seq System v2 kit. Libraries were constructed from cDNA with the TruSEQ
RNA Library Preparation Kit v2 (Illumina) and sequenced to 30–40×106 × 75-bp
reads per sample on a NextSeq 500 from the Stanford Functional Genomics
Facility.

RNA-Seq analysis. For the RNA-Seq analysis, bcbio-nextgen framework (https://
bcbio-nextgen.readthedocs.io/) was used (version: 1.1.8-b): RNA sequences were
aligned against the Mus musculus genome (mm10) using STAR68. RSEM69 or
Salmon70 was used for calling transcripts and calculating transcripts per million
(TPM) values as well as total counts. A counts matrix containing the number of
counts for each gene and each sample was obtained. This matrix was analyzed by
DESeq to calculate statistical analysis of significance71 of genes between samples.
Pathway analysis of differentially expressed genes was analyzed using Ingenuity
pathway analysis (QIAGEN IPA, https://digitalinsights.qiagen.com/IPA)72.
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Statistics. A minimum of three independent experiments (or animals) were used
for all assays. Statistical analyses were performed using GraphPad Prism. We used a
paired t test for experiments where control samples were from the same experiment
in vitro. A non-parametric Mann–Whitney test was used to determine the sig-
nificance difference between control vs experimental or untreated vs treated groups
using α=0.05. ANOVA was performed for multiple comparisons with significance
level determined using Fisher’s LSD test as indicated in the figure legends. Unless
otherwise described, data are shown as the mean ± s.e.m.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are available in the main text or the supplementary materials. The RNAseq data
generated in this study have been deposited in Gene Expression Omnibus (GEO)
database under accession codes: GSE145297; GSE145312. Correspondence and requests
for materials should be addressed to H.M.B. Source data are provided with this paper.
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