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The interplay of additivity, dominance, and
epistasis on fitness in a diploid yeast cross
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In diploid species, genetic loci can show additive, dominance, and epistatic effects. To

characterize the contributions of these different types of genetic effects to heritable traits, we

use a double barcoding system to generate and phenotype a panel of ~200,000 diploid yeast

strains that can be partitioned into hundreds of interrelated families. This experiment enables

the detection of thousands of epistatic loci, many whose effects vary across families. Here,

we show traits are largely specified by a small number of hub loci with major additive and

dominance effects, and pervasive epistasis. Genetic background commonly influences both

the additive and dominance effects of loci, with multiple modifiers typically involved. The

most prominent dominance modifier in our data is the mating locus, which has no effect on

its own. Our findings show that the interplay between additivity, dominance, and epistasis

underlies a complex genotype-to-phenotype map in diploids.
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Most complex traits, including many phenotypes of
agricultural, clinical, and evolutionary significance, are
specified by multiple loci1. How alleles at these loci

collectively produce the heritable trait variation in genetically
diverse populations remains unresolved2,3. While additive loci
play a major role in most traits, non-additive genetic effects are
also likely important4–9. However, loci with non-additive genetic
effects are often difficult to detect, limiting knowledge of their
properties10,11.

The two purely genetic sources of non-additivity are dom-
inance among alleles of individual loci and epistasis between
alleles at different loci (or genetic interactions)12,13. Most
empirical studies of non-additive genetic effects have focused on
haploid or inbred individuals14–16, which provide higher statis-
tical power to detect loci due to their minimal levels of hetero-
zygosity. However, by design, these populations cannot furnish
insight into dominance or its relationship with epistasis. This is a
problem because many eukaryotic species that matter to humans,
including our species itself, exist predominantly as diploids that
outbreed and have high levels of heterozygosity17–19. Dominance
may be an important contributor to traits in these species.

When epistasis occurs in diploids, a locus may influence only
the additive effects, only the dominance effects, or both the
additive and dominance effects of its interactor(s)20–22. Such
interplay has implications for efforts to genetically dissect phe-
notypes, predict heritable traits from genotypes, and understand
the evolutionary trajectories of beneficial and deleterious alleles.
Yet, exploration of the relationship between additivity, dom-
inance, and epistasis has mainly been limited to theory because of
technical challenges in identifying non-additive loci.

The budding yeast Saccharomyces cerevisiae is a potentially
powerful system for studying non-additive genetics in diploids.
Haploid yeast segregants with known genotypes can be mated to
produce diploid strains that also have known genotypes23. This
strategy facilitates the generation of diploid mapping populations
that are roughly the square of the number of haploid progenitors.
However, phenotyping large diploid populations of more than
~10,000 individuals has been technically difficult23,24, limiting the
use of this strategy.

Here, we develop a chromosomally-encoded barcoding system
that enables phenotyping of large yeast diploid mapping popu-
lations. We fuse two genomic barcodes, one from each haploid
parent, in vivo to create a unique double barcode for each diploid
strain (Fig. 1a). This system enables linkage mapping in a
population of ~200,000 diploid strains and examination of the
relationship between additivity, dominance, and epistasis at
detected loci.

Results
Phenotyping of a large diploid cross by barcode sequencing.
We started with two S. cerevisiae isolates, the commonly used lab
strain BY4716 (BY) and a haploid derivative of the clinical isolate
322134S (3S) (Fig. 1a). These strains differ at ~45,000 SNPs
(~0.4% of genome)25,26. To ensure segregation of the mating
locus, both BY MATa x 3S MATα and 3S MATa x BY MATα
crosses were performed using isogenic strains that had been
mating type switched. From these crosses, 600 MATα and 400
MATa segregants from distinct four-spore tetrads were marked at
the neutral YBR209W locus by integrating a random barcode27,28.
At least two uniquely barcoded strains were recovered per haploid
segregant and the genome of each segregant was sequenced to
define the genotype represented by each barcode (Supplementary
Figs. 1 and 2A).

MATa and MATα strains (2 barcodes per segregant) were
mated as pairs and grown on media that induced site-directed

recombination between the MATa barcode and MATα barcode on
homologous chromosomes (Fig. 1b and Supplementary Fig. 1E)28,29.
This process resulted in a double barcode on one chromosome that
uniquely identifies both parents of a diploid strain and therefore its
presumptive genotype (Supplementary Fig. 2B). Using similar
methods, we also constructed BY/BY, BY/3S, 3S/BY, and 3S/3S
parental diploid strains.

After the matings, diploid strains were pooled and competed in
seven conditions: cobalt chloride, copper sulfate, glucose,
hydrogen peroxide, sodium chloride, rapamycin, and zeocin with
the glucose condition performed twice (Supplementary Table 1).
Cells were grown for ~15 generations in serial batch culture, with
1:8 dilution every ~3 generations and a bottleneck population size
greater than 2 × 109 cells (Fig. 1c). Double barcodes were
enumerated over 4–5 timepoints by sequencing amplicons from
the double barcode locus, and the resulting frequency trajectories
were used to estimate the relative fitness of each strain30,31.

We recovered on average 197,267 diploid strains per environ-
ment with a minimum of two biological replicates that were marked
with different barcodes within a growth pool (Supplementary
Table 2). These biological replicates showed a relatively high
correlation (average Spearman’s rho across environments= 0.67,
0.524 < rho < 0.8, Fig. 1d and Supplementary Fig. 3A). Noise
between biological replicates was primarily caused by one or more
replicates being present at a low abundance within the pool,
resulting in a less accurate fitness estimate (Supplementary Fig. 4)31.
To minimize the effects of measurement noise, the average fitness
measure of all biological replicates was used as the phenotype for
each strain. The average fitness measures of strains assayed in
replicate glucose growth cultures were also highly correlated
(Spearman’s correlation= 0.863, Fig. 1e). This suggests that our
pooled fitness assay is accurate and reproducible.

Substantial phenotypic diversity was observed in every
environment. The majority of this variation was due to genetic
factors: broad-sense heritabilities were on average 61% (52–76%
across environments), with 40% (19–53%) being additive and
21% (19–26%) being non-additive (Fig. 1f, Supplementary Fig. 5,
and Supplementary Table 3). These heritability estimates are
similar to other yeast studies in which fitness was measured using
colony growth assays on agar plates2,8,26. Every environment
contained many diploids with more extreme fitness than either
the BY/BY or 3S/3S parent (i.e., transgressive segregation). BY/3S
and 3S/BY segregants were more fit than the BY/BY or 3S/3S
diploids in all environments but one (i.e., heterozygote advantage,
Fig. 1g).

Genetic mapping within interrelated families. Using quantile
normalized fitness estimates from barcode sequencing, we map-
ped loci that contribute to growth (Supplementary Fig. 6). Due to
our experimental design, diploid strains generated from the same
haploid parent (families) are more genetically related than diploid
strains generated from different parents (Fig. 1a). Such family
structure causes false positives in genetic mapping32,33. Here, we
found that most sites throughout the genome exceeded nominal
significance thresholds when fixed effects linear models were
applied in a given environment (Supplementary Fig. 7). To enable
mapping despite the family structure, we used mixed effects linear
models, which are commonly employed in genetic mapping
studies involving populations in which individuals show non-
random relatedness34–36. Specifically, we used Factored Spectrally
Transformed Linear Mixed Models (FaST-LMM)37,38 to identify
an average of 18 loci per environment (10–26).

Contrary to expectations that larger sample sizes should yield
better statistical power and therefore more detections, the
numbers of loci identified here were comparable to studies that
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were at least 60-fold smaller2,14,23. To identify more loci, we also
used an alternative strategy that did not require explicitly
controlling for family structure. Fixed effects linear models were
conducted individually within each of 392 families of diploids
that descended from distinct MATa parents and consisted of
~600 individuals each. The family-level scans yielded an average
of 6.5 detections per family across environments (Fig. 2a, b and

Supplementary Fig. 8), which were largely reproducible between
replicate glucose cultures (Fig. 2c).

Often the same loci were detected in multiple families within an
environment, as expected if many detections within families are true
positives. Detections across the families were consolidated, resulting
in approximately 58 distinct loci per environment (49–65), >2.5-
fold more loci than detected by FaST-LMM (Fig. 2a and b). Across
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environments, these distinct loci were detected in as few as one
family and as many as 388 families (Fig. 2d). To distinguish loci
most likely to represent true positives, we identified distinct loci
showing more detections across families than expected by chance
using an approach first employed to map loci with widespread
effects on transcription39. We found on average 22 of these
enriched loci per environment (15–30; Fig. 2e).

Many of the loci identified by FaST-LMM overlapped with the
conservative set of enriched family-level loci, but there were also a
number of differences between the methods (Fig. 2d). 29% of loci
detected by FaST-LMM were detected in fewer families than the
enrichment threshold in a given environment (10% to 38%;
Fig. 2e; Supplementary Fig. 9). Similarly, 43% of loci enriched
across families were not identified by FaST-LMM (35% to 57%;
Fig. 2e). These findings likely reflect numerous complexities in
our diploid mapping population, including varying degrees of
relatedness among strains within and between families and a
potentially large number of segregating loci that vary in their
effect sizes, dominance, epistasis, and linkage to each other.
Neither FaST-LMM nor family-level scans can fully address all
these factors and thus they may produce somewhat different
results, suggesting the two methods should be viewed as
complementary.

Loci frequently show dominance effects. In diploids, non-
additivity can arise due to dominance among alleles at the same
locus, epistasis between alleles at different loci, or a mixture of the
two. To identify such non-additive loci from the aggregate data,
we extracted the non-additive portion of each diploid strain’s
phenotype (Supplementary Fig. 10)23. Using these values
accounts for family structure and enables mapping of non-
additive loci in the full segregant panel with fixed effects linear
models. Regarding dominance effects, we identified an average of
18 loci showing dominance per environment (12–30). 49% of
these loci were also identified by FaST-LMM, while 72% of these
loci were detected in the conservative set of loci from the family-
level scans. Among loci with dominance effects, the average
degree of dominance was ~51% (i.e., heterozygotes’ fitnesses were
roughly halfway between the average of the two homozygotes and
one of the homozygotes), with 82% of the loci showing incom-
plete dominance (Fig. 2f, g). Only ~7% of the loci exhibited
complete dominance, while overdominance (~8%) and under-
dominance (~3%) were seen among the remaining loci with
dominance effects. ~77% of the loci showed dominance towards
the allele conferring higher fitness (Fig. 2g), which may explain
why segregants were more fit than the BY/BY or 3S/3S diploid
strains (Fig. 1g).

Epistatic hubs govern both additivity and non-additivity. We
also used the non-additive portion of phenotype to perform

comprehensive genome-wide scans for genetic interactions. We
identified an average of 440 two-locus interactions per environ-
ment (377–538; Fig. 3a and Supplementary Fig. 11). Our large
sample size had a pronounced impact on detection: ~40-fold
more interactions per environment were detected than previous
studies that phenotyped smaller mapping populations using
conventional approaches14,23. Our large sample size also enabled
comprehensive scans for three-locus interactions with a reduced
set of markers, identifying an average of 6152 per environment
(4845–7301; Fig. 3a and Supplementary Fig. 12). Loci involved in
three-locus interactions were identified across all chromosomes
and distributed widely throughout the genome.

We next analyzed the relationship between individual loci and
their genetic interactions. We found a strong positive relationship
between the effect of a locus and its involvement in two- and
three-locus interactions (Fig. 3b). This suggests that loci with
larger effects tend to genetically interact with many loci or that
their interactions are easier to detect. We also observed a clear
linear relationship between the number of two- and three-locus
interactions of a given locus (Fig. 3c). Notably, certain loci
exhibited many more interactions than others, acting as ‘hubs’
(here defined as loci with >20 two-locus interactions in at least
one environment)8. On average, ~4.5 hubs were detected per
environment, and the same hub was often detected in multiple
environments. A majority (>54%) of all two- and three-locus
interactions involved at least one hub. Fine-mapping localized the
Chromosome VI, VIII, X, and XII hubs to genes involved in
amino acid sensing (PTR3), copper resistance (CUP1), vacuolar
protein sorting (VPS70), and a gene of unknown function
(YLR257W), respectively.

Relationships between epistasis and dominance in diploids. In
haploids, epistasis can only influence the additive effect of a locus
because there are no heterozygotes. In diploids, however, epistasis
can modify a locus’ additive effects, dominance effects, or both
additive and dominance effects20–22. To better characterize how
loci are modified, each two-locus interaction was partitioned into
additive and dominance components. We found that changes in
dominance account for ~44% of the average epistatic effect
(Fig. 3d, e), implying that interactions often affect both additivity
and dominance. However, this fraction varied depending on
whether the modifying locus was a hub. When the modifier was a
hub, dominance accounted for little of the epistatic effect (11.9%
on average), implying that hubs mostly modify the additive
component of the interacting loci. By comparison, when the
modifier was not a hub, epistasis was mostly composed of
dominance (64% of interactions had a larger dominance com-
ponent). These data suggest that epistasis commonly involves
modification of dominance in diploids and that hubs act in a
distinct manner from loci that are not hubs.

Fig. 1 Generating a large panel of diploid segregants with known genotypes that can be phenotyped as a pool. a Overview of the experimental design.
Parental haploids, BY and 3S, were mated and sporulated. The resulting MATα and MATa segregants were barcoded at a common genomic location and
sequenced. Segregants were mated as pairs to generate a panel of ~200,000 double-barcoded diploid strains with known genotypes. All diploid strains
originating from a single haploid parent are referred to as a ‘family’. b MATα and MATa barcodes were brought to the same genomic location by inducing
recombination between homologous chromosomes via Cre-loxP. c Diploid strains were pooled and grown in competition for 12–15 generations. Barcode
sequencing over the course of the competition was used to estimate the fitness of each strain. d Density plot of the raw fitness of double barcodes
representing the same diploid strain in the same pooled growth condition (Glucose 1). e Density plot of the mean raw fitness of the same diploid strain
measured in two replicate growth cultures (Glucose 1 and Glucose 2). f The mean broad-sense and narrow-sense heritability estimates for the 8
environments. The standard errors for both heritability estimates are shown as error bars for each point. g Violin plots of the fitnesses of diploid strains in 8
environments (n > 187,000 in each environment). Raw fitness estimates of BY/BY, BY/3S, 3S/BY, and 3S/3S diploid strains are shown as colored lines.
Overlaid boxplots, here and in subsequent figures, indicate the median (white dots), interquartile range (IQR; black boxes), and lower and upper adjacent
values (black lines extending from the black boxes), defined as first quartile− 1.5 IQR and third quartile+ 1.5 IQR, respectively.
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We next examined how the additive and dominance effects
of hubs were modified by genetic interactions. In most cases,
hubs genetically interacted with a small number of major
effect modifiers and many minor effect modifiers (Fig. 4a).
The major effect modifiers typically influenced only the additive
or only the dominance effect of a hub, suggesting that
distinct sets of loci govern additive and dominance effect sizes

(Fig. 4a). Whereas the most frequent major effect modifiers
of the additive effects of hubs were other hubs (Fig. 4b), the
single most frequent major effect modifier of the dominance
effects of hubs was a locus on Chromosome III. Collectively,
multiple modifier loci could cause a hub locus to show a
broad range of effect sizes across different genetic backgrounds
(Fig. 4c).
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Characteristics of the Chromosome III dominance modifier.
Although not a hub, the Chromosome III locus nevertheless had a
prominent impact on phenotype by modifying the dominance
effects of multiple variable effect loci. Interactions with the
Chromosome III locus had greater impacts on dominance than
additivity at all focal loci. For example, in hydrogen peroxide,
dominance at the Chromosome X variable effect locus depended
on the Chromosome III locus, ranging from complete to nearly
absent in a genotype-dependent manner (Fig. 5a). We delimited
the Chromosome III locus to a 3 kb region containing the mating
locus and a few other genes (BUD5, TAF2, and YCR041W).

Yeast mating types possess different nonhomologous gene
cassettes at the mating locus, which encode distinct transcription
factors that are master regulators of the MATa, MATα, and
diploid transcriptional programs40. This region of the genome is
unique because four genotype classes segregate (BY MATa, 3S
MATa, 3S MATα, and BY MATα), and as a result, the two
heterozygotes are not identical (Supplementary Fig. 13). To test if
the mating locus is the dominance modifier, we partitioned
heterozygotes at the Chromosome III locus based on their
parents-of-origin for the MATa and MATα cassettes and found a
difference: dominance at the Chromosome X locus was only
visible in the 3S MATa/BY MATα genotype class (Fig. 5a). Other
hub loci modified by Chromosome III showed the same
relationship between dominance and the parent-of-origin of the
mating loci (Fig. 5b). These results suggest that BY and 3S harbor
functional differences in one or both mating cassettes.

Discussion
We used a double barcoding system to generate and phenotype
an extremely large panel of diploid yeast strains that can be
partitioned into hundreds of interrelated families. This experi-
mental design enabled the detection of thousands of loci,
including at least an order of magnitude more genetic interactions
than discovered in previous yeast crosses. Analysis of these epi-
static loci identified a modest number of hubs that have large
effects, show pervasive epistasis, and control most phenotypic
variation across environments, as well as many other loci that
genetically interact with these hubs.

Genetic background commonly modified the magnitude of, or
completely masked, the effects of the hubs, indicating that even
loci with the largest effects are highly sensitive to genetic back-
ground. Such non-additive genetic background effects are likely
to hamper efforts to predict phenotype from genotype by limiting
the extrapolation of effect estimates from one genetic context to

others. However, our finding that large effect loci were most
impacted by other major effect loci does provide some optimism
that characterizing a limited set of interactions may account for a
substantial portion of these genetic background effects.

Because our experiments were performed in outbred diploids
rather than haploids or inbred diploids, we could detect dom-
inance effects and whether dominance is modified by epistasis.
We showed that dominance effects are common and that the
magnitude of dominance can strongly depend on the alleles of
interacting loci. The potential existence of dominance modifiers
has been discussed in theory, but to date, only a single dominance
modifier has been found in a plant self-incompatibility locus41,42.
Our results show that dominance modifiers are prevalent and
raise the intriguing possibility that sites with atypical allele
dynamics within natural populations, the yeast mating locus here
and a self-incompatibility locus in plants, are more likely to
harbor dominance modifiers with major effects.

Generally, we found that heritable traits in yeast are more
genetically complex than formerly appreciated. Relative to the
cross that we examined, natural populations may harbor sub-
stantially higher genetic diversity, meaning traits could be even
more complex and difficult to dissect. Our work supports the
premise that, to the extent possible, focusing on groups of more
closely related individuals, such as the families studied here, can
enhance statistical power and precision relative to populations
with greater diversity23,24,43. The genetic insights gained from
these more closely related groups can then be leveraged to inform
the genetic architecture of traits in more diverse populations in
which many critical genetic effects may otherwise be obscured.

Methods
Generation of haploid segregants. All haploid segregants and diploid segregants
described in this paper were generated from a cross using two isolates of Sac-
charomyces cerevisiae, the commonly used lab strain BY4716 (BY) and a haploid
derivative of the clinical isolate 322134S (3S). To generate counterselectable mar-
kers in each strain, we first introduced clean deletions of FCY1 and URA3. Each
gene was deleted using a two step approach: first, genes were replaced with a
KanMX cassette44 via lithium acetate transformation45. Next, the cassette was
targeted using CRISPR/Cas9 and a gRNA specific to the pTEF promoter region in
each cassette46. A repair template homologous to the upstream and downstream
region of the target gene was co-transformed with the CRISPR system to generate a
clean deletion. The MATa BY and 3S strains were then mating-type-switched by
transforming a plasmid containing galactose-inducible HO and URA3 using the
lithium acetate protocol47. Strains with the plasmid were selected on SCM-Ura
plates and inoculated into SCM-Ura+ 2% galactose media overnight. Individual
colonies were then obtained by plating out 102 cells onto YPD plates. Colonies were
tested for their mating type using the yeast mating halo assay48. Successfully
mating-type-switched BY and 3S MATα clones were cured of the HO plasmid by

Fig. 2 Identification of loci that affect fitness. a, b Loci mapped in CoCl2 (a) and CuSO4 (b). Panels from top to bottom are (1) loci detected using the
mixed effects linear model FaST-LMM (red bars), (2) loci with dominance effects detected using a fixed effects linear model on the non-additive portion of
each diploid’s phenotype (green bars), (3) loci enriched for detections in family-level scans (orange bars), (4) loci detected using family-tests (black or
blue points), where each row is a different MATa family, and (5) the total number of detections across families for each 20 kb interval (gray bars). c Violin
plot showing the % of loci that were detected in both glucose replicates for each family (n= 392 MATa families). d Scatterplot showing distinct loci
detected using family-level tests with permutation-based thresholds in CoCl2 and their maximal −log10(p) values in each family in which they were
identified. Red, green, and blue labels denote distinct loci in family-level scans that were also identified by FaST-LMM, dominance scans, or enrichment
tests, respectively. Distinct loci showed substantial variability in statistical significance across families and mapping methods. e Barplot comparing the
number of enriched family-level loci (red) and FaST-LMM loci (blue) detected across environments. Loci that were detected using both mapping methods
are in dark colors, while loci that were specific to either FaST-LMM or family-level scans are in light colors. f Examples of loci with only additive effects
(or low dominance), incomplete dominance, complete dominance, overdominance, and underdominance. All genotype classes had n > 41,000. Black lines
are the mean fitness of diploids subsetted by the genotype state at the focal locus. Gray lines are the standard errors. Green lines are the expected
mean fitness of heterozygotes assuming no dominance. Genotype state at each locus is denoted by colored boxes: BY/BY (blue), 3S/3S (orange), is BY/3S
(half blue, half orange). Dominance and additive effects (blue and red bars, respectively) for each subset of the data are shown next to the relevant
genotype classes. The degree of dominance at a locus is included in parentheses. g Violin plot showing the degree of dominance for all loci detected
in the dominance scan (n= 142). Loci with positive values are dominant towards the allele conferring higher fitness (green), while loci with negative
values are dominant towards the deleterious allele (red). All loci with degree of dominance >100% or <−100% exhibit overdominance and
underdominance, respectively.
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growing the cells on YPD+ 5-FOA plates. The BYMATa and MATα cross parents
were preserved at −80 °C with the unique identifiers IEY1176 and IEY1177,
respectively. The 3SMATa andMATα cross parents were preserved at −80 °C with
the unique identifiers IEY1178 and IEY1179, respectively.

To prevent aggregation of cells in pools grown in liquid, FLO8, a transcriptional
activator of many flocculins49, and FLO11, the flocculin responsible for many
aggregation phenotypes in S. cerevisiae50, were first knocked out in both mating

types of the BY fcy1Δ ura3Δ and 3 S fcy1Δ ura3Δ strains. Each parental strain was
then engineered to have a genomic ‘landing pad’27–29 containing two partially
crippled LoxP sites51, Lox71 and Lox2272/71, and a galactose-inducible Cre
recombinase52 at the YBR209W locus via CRISPR/Cas9-mediated homologous
recombination (Supplementary Fig. 1A). Earlier studies have shown that
deletion of YBR209W or incorporation of our barcoding system has no effect
on fitness27.
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Fig. 3 Interactions often affect both the additive and dominance effects of involved loci. a Interaction plots of all two-locus (left) and three locus (right)
effects for two representative environments. Significant interactions between loci are shown as connecting lines. Green bars are the absolute effect size of
a locus, calculated as the absolute difference between the mean fitness of diploids that are 3S/3S and BY/BY at the focal locus. Orange bars are the
number of interactions detected for each locus. b Scatter plot of the absolute effect size of a locus and the number of two-locus (left) and three-locus
(right) interactions in which it is involved. Local regressions are shown as blue lines. c Scatter plot of the number of two-locus and three-locus interactions
per locus. d Examples of genetic interactions with, from left to right, low (0.04), moderate (0.48), and high (0.97) fractions of epistasis involving
dominance. All genotype classes had n > 8,700. Black lines are the mean fitness of diploids subsetted by the genotype state at the two involved loci. Gray
lines are the standard errors. Green lines are the expected mean fitness of heterozygotes assuming no dominance. Genotype state at each locus is denoted
by colored boxes: BY/BY (blue), 3S/3S (orange), is BY/3S (half blue, half orange). The first locus is the locus whose effect is being modified, and the
second locus is the modifier locus. Dominance and additive effects (blue and red bars, respectively) for each subset of the data are shown next to the
relevant genotype classes. e Density plot of the fraction of epistasis involving dominance for all interactions (red; n= 3,522 genetic interactions), hub-hub
(yellow; n= 87), non-hub-hub (blue; n= 2197), hub-non-hub (green; n= 2197), and non-hub-non-hub interactions (purple; n= 1,238).
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Opposite mating types of BY fcy1Δ flo8Δ flo11Δ ura3Δ ho YBR209W::pGal1-Cre
- Lox71 - Lox2272/71 and 3S fcy1Δ flo8Δ flo11Δ ura3Δ ho YBR209W::pGal1-Cre -
Lox71 - Lox2272/71 were next mated, creating two BY/3S heterozygous diploids.
Diploids were sporulated and >500 tetrads were dissected from each diploid.
Performing these two crosses would, in theory, enable us to achieve ~50% allele
frequency at all sites, including the mating type locus (Supplementary Fig. 2).
Either one MATa segregant or one MATα segregant was then randomly selected
from each tetrad (a total of >500 each) to maximize the number of unique
recombination breakpoints. To avoid segregants carrying aneuploidies, only tetrads
that produced 4 spores were utilized.

Barcoding of haploid segregants. Segregants were uniquely barcoded using two
different methods (Supplementary Fig. 1A–D). MATα segregants were barcoded by
integrating a randomly barcoded plasmid via Cre-mediated homologous recom-
bination at lox2272/71 (Supplementary Fig. 1C). Barcoded plasmids were made by
modifying the pBAR6 plasmid28. First, pBAR6 was digested with KpnI and EcoRI

(Supplementary Fig. 1B). Linearized pBAR6 was then assembled by Gibson
assembly with a PCR product containing a Lox2272/66 site, a random 20-mer
barcode sequence, and a partial TruSeq read 2 adapter sequence. The resulting
product was transformed into chemically competent NEB 10-beta cells using
standard heat shock protocol, and transformants were selected on LB+ 50 μg/ml
Carbenicillin plates. To ensure high barcode complexity, ~100,000 transformants
were scraped and pooled prior to plasmid extraction. Purified barcoded plasmids
(300 ng) were then transformed into the yeast cells using the lithium acetate
protocol45. After transformation, the barcoded plasmids were recombined into the
yeast genome by inducing the galactose-inducible Cre recombinase by growing the
yeast cells in YP+ 2% galactose media. Homologous recombination between the
two partially crippled Lox2272 variants, Lox2272/66 and Lox2272/71, resulted in
the formation of a fully crippled Lox2272/66/71 and a fully functional Lox2272.
Transformants with successful integration were selected on YPD+ 200 μg/ml G418
agar plates.

MATa segregants were barcoded by CRISPR/Cpf1-driven53 homologous
recombination at the genomic landing pad (Supplementary Fig. 1D). The genomic
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region containing the two partially crippled Lox sites, Lox71 and Lox2272/71, was
replaced with a DNA fragment containing (in the following order) a 60 bp
sequence homologous to the region upstream of the Lox sites, an HphMX
cassette54, the 5′ end of a split URA3 marker, a 5′ artificial intron splice site, a
partial TruSeq read 1 adapter sequence, a random 20-mer barcode sequence, a
partially crippled Lox66 site, and a 60 bp sequence homologous to the region
downstream of the Lox sites. To integrate the randomly barcoded DNA fragment
in the yeast genome, 200 ng of the DNA fragment, 200 ng of a PCR amplicon
containing pTEF-CPF1 flanked by 2 nuclear localization sequences, and 200 ng of a
PCR amplicon containing a polyA-tailed pSNR52−20-mer guide sequence were co-
transformed into the yeast cells using lithium acetate45. Transformants with
successful integration were then selected on YPD+ 300 μg/ml Hygromycin B agar
plates.

For each segregant transformation, we chose ~5 colonies that presumably
represented independent integration events and barcodes. In addition to the
segregants, both mating types of the parental strains were barcoded in the same
manner as the segregants and ~50 colonies were picked for each parental strain.

Whole-genome sequencing of parental haploid segregants. Clones containing
different barcodes for 1003 MATα and 500 MATa segregants were pooled and
these pools were whole-genome sequenced at low-coverage (~10×) to determine
where crossover events occured. A sequencing library was prepared using the
Illumina Nextera Kit with custom multiplexing barcodes2,15,26. Libraries from
different segregants were pooled in equimolar fractions and these multiplex pools
were size selected using the Qiagen Gel Extraction Kit. Multiplexed samples were
then sequenced on an Illumina HiSeq 2500 using 150 bp × 150 bp paired-end reads.
For each strain, reads were mapped against the S288c genome using BWA with
default settings55. Alignments were converted to a bam format and sorted using
SAMTOOLS (default settings)56. Read duplicates were then removed and bam files
were converted to pileups using SAMTOOLS (default settings). Base calls and
coverage values were obtained from the pileup files for 43,865 high-confidence
SNPs that segregate in the BYx3S cross. Any segregants that showed signs of cross-
contamination, where the allele frequency at the SNP markers significantly
deviated from the expected 0% or 100% 3S allele, were excluded from further
analysis. To avoid segregants with aneuploidy, all segregants whose average cov-
erage of each individual chromosome or segments of the chromosome significantly
deviated from the overall average coverage were also removed. Additionally, all
segregants with a mean coverage of less than 2 were removed. In total, 76 MATα
and 11MATa segregants were removed after filtering for quality. For the remaining
927MATa and 489MATα segregants, a vector containing the fraction of 3S calls at
each SNP was generated and used to make initial genotype calls with sites above
and below 50% classified as 3S and BY, respectively. This vector of initial genotype
calls was then corrected with a Hidden Markov Model (HMM), implemented using
the HMM package version 1.057 in R58. We used the following transition and
emission probability matrices: transProbs = matrix(c(0.9999, 0.0001, 0.0001,
0.9999), emissionProbs =matrix(c(.0.25, 0.75, 0.75, 0.25). All SNP markers within
the first and last 30 kb of each chromosome were omitted because we observed
higher sequencing error rate and/or lower read mapping quality for these specific
regions. Adjacent SNPs in the HMM-corrected genotype calls that lack recombi-
nation in the segregants were collapsed into a single SNP, reducing the number of
SNP markers in subsequent analysis from 43,865 to 7742.

Determining the barcode sequences. For all segregants, the associated barcodes
were determined by pooling all clones and sequencing the genomic region con-
taining the barcode using Novogene Illumina HiSeq 2500 150 bp × 150 bp paired-
end reads at ~2000× coverage per barcode. For the MATa segregants, the genomic
region containing the barcode was PCR amplified using primer pairs where one
primer was located on the partial TruSeq read 1 adapter sequence and the other
primer was located downstream of the barcode. Similarly, barcodes for MATα
segregants were PCR amplified using primer pairs where one primer was located
on the partial TruSeq read 2 adapter sequence and the other primer was located
upstream of the barcode. PCR products were purified using a Qiagen MinElute
PCR purification kit, amplified using Illumina P1 and P2 primers, and then size
selected via gel extraction prior to sequencing. The 20-mer barcode sequences for
each segregant were then extracted from the sequencing reads and barcodes within
a Hamming distance of 2 were clustered with Bartender30. Only barcode clusters
comprising >5% of the total reads for each sample were considered true barcodes.
One possible concern with using random barcodes is that sequencing errors from
an abundant barcode could erroneously contribute to read counts of a barcode with
a similar sequence. To prevent this, we determined the number of mismatches
away from a nearest neighbor for each barcode. All barcodes were at least 4
mismatches away from each other. Thus, a sequencing read was unlikely to be
assigned to the wrong barcode cluster unless it contained 3 or more errors. Overall,
we recovered 403 MATa segregants and 679 MATα segregants with good genotype
calls and at least 3 barcodes that are unique from all others.

Generation of diploid segregants. 400 MATa and 600 MATα segregants were
mated to create a panel of ~240,000 diploid segregants, each labeled with 4 unique
pairs of barcodes (~960,000 total double barcodes). To minimize skews in the

initial frequency distribution of genotypes, each MATa segregant was individually
mated to each MATα segregant to generate the panel of diploid segregants. Spe-
cifically, two barcoded versions of each segregant were first grown to saturation and
mixed in equal proportion. Each MATa segregant mixture was then systematically
mated with a MATα segregant mixture using a LabCyte Echo 550 acoustic liquid
handling robot. For each pairwise mating, the Echo transferred 100 nl of MATa
and MATα segregants onto overlapping positions on a new YPD plate, resulting in
the formation of diploid segregants labeled with ~4 double barcodes. After growing
the cells overnight at 30°C, successfully mated diploids were isolated from unmated
haploids by pinning the colonies onto YPD+ 200 μg/ml G418+ 300 μg/ml
Hygromycin B agar plates using Singer ROTOR pinning robot and grown for
2 days. Haploid strains carried either KanMX or HphMX, therefore only mated
diploids that carry both selection markers should grow. In addition to the diploid
segregants, different barcoded versions of the homozygous and heterozygous
parental diploid strains were made as controls, using the same approaches
described for segregants (total of 81 unique pairs of barcodes per parental diploid
strain).

Translocating barcodes onto the same chromosome. After mating, the two
barcodes are located on different chromosomes (Supplementary Fig. 1E). To bring
the barcodes onto the same chromosome, site-directed chromosomal translocation
was induced via Cre-LoxP-mediated site-specific recombination. To do this, mated
diploid colonies were pinned onto YP+ 2% galactose plates and grown for 2 days.
Presence of galactose induces the expression of the galactose-inducible Cre
recombinase, causing Cre-mediated homologous recombination at the LoxP site
and translocation of the chromosomes, bringing the two barcodes to close proxi-
mity. In addition to the barcodes, chromosomal translocation brings the two halves
of the split URA3 marker onto the same chromosome, resulting in the recon-
stitution of a functional URA3 marker. Diploids that have undergone successful
recombination were selected by pinning the diploid colonies onto SCM -Ura agar
plates and growing for 2 days. To minimize bias due to differences in growth rate
between diploids, the colonies were then pinned onto fresh SCM -Ura plates and
pooled immediately with SC -Ura media. The pooled sample of ~960,000 double
barcoded segregants was then spun down, re-suspended in SC -Ura media at a
concentration of 2 × 109 cells/ml, and frozen in 25% glycerol for later use. In
parallel, the BY/BY, 3S/3S, BY/3S, and 3S/BY parental diploids were generated in
the same manner and stored at the same concentration as the segregants.

Growth assays. The panel of diploid segregants was evolved for 15 generations by
serial batch culture under carbon limitation in 100 ml of SC -Ura media with 4%
ammonium sulfate and 2% dextrose. First, 2 ml of the segregant frozen stock
(2 × 109 cells/ml) was inoculated in 198 ml of SC -Ura media and then grown in a
500 ml flask at 30 °C with 300 rpm shaking for 48 h. At saturation, the cell con-
centration was 1.5 × 108 cells/ml for a total of 3 × 1010 cells, or ~3 × 104 cells per
double barcode. In parallel, 10 μl of the parental frozen stocks were inoculated in
990 μl of SCM-Ura media and grown at 30 °C with 300 rpm for 48 h. The parental
diploids were then spiked into the segregant culture at a concentration of 10−5.
This mixed culture served as the seed culture (time point 0 or T0) for subsequent
growth time points.

Next, one-eighth or 12.5 ml of the T0 culture (~3.75 × 103 cells per double
barcode at bottleneck) was transferred into eight 500 ml flasks, each containing
87.5 ml of SC -Ura media supplemented with different drugs or chemicals
(Supplementary Table 1). Two flasks contained no supplement (Glucose 1 and
Glucose 2) and served as growth replicates for the experiment. The remaining T0
culture was spun down at 3000 rpm and frozen down for subsequent DNA library
preparation. Each culture was grown in serial batch conditions for 15 generations,
bottlenecking every ~3 generations. For each transfer, cultures were grown at 30°C
with 300 rpm shaking for 48 h until saturation. One-eighth (12.5 ml) of the culture
was then transferred into new 500 ml flasks, each containing 87.5 ml of the
appropriate media. The remaining 87.5 ml of culture was frozen down for
subsequent DNA library preparation. At each transfer, the number of cells was
counted using a hemocytometer. Contamination checks for bacteria or other non-
yeast microbes were performed regularly by observing the cultures under a
microscope.

Library preparation. Frozen cultures were thawed and DNA was extracted for
library preparation using the MasterPure Yeast DNA Purification kit. Any
remaining RNA was removed by adding RNaseA (10 mg/ml) and incubating the
sample at 37 °C for one hour. DNA was then cleaned by adding one volume of
phenol:chloroform:isoamyl alcohol (25:24:1). The sample was gently mixed using a
tube rotator at 30 rpm for 10 min and then centrifuged at 16,000 × g for 10 min.
The upper aqueous layer was transferred to a new tube and cleaned of phenol by
adding one volume of chloroform:isoamyl alcohol (24:1). The sample was again
mixed at 30 rpm for 10 min, centrifuged at 16,000 × g for 10 min, and the upper
aqueous layer was transferred to a new tube. Finally, to remove residual chloro-
form, the DNA sample was ethanol precipitated using one-tenth volume of 3M
sodium acetate (pH 5.5) and 2.5 volume of 100% ethanol. The resulting DNA pellet
was washed with ice-cold 70% ethanol twice, and dissolved in 10 mM Tris-HCl pH
8.0. After the DNA was extracted and cleaned, a two-step PCR was used to amplify
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the double barcodes for sequencing. Because only a small fraction of the total
genome contains relevant information (~250 bp amplicon out of a 12 Mb genome
size), we amplified 30 µg of template per time point sample, which corresponds to
~2 × 109 genomes or ~2000 copies per double barcode.

First, a 4-cycle PCR with OneTaq polymerase (New England Biolabs) was
performed in 60 wells of 96-well PCR plates, with ~500 ng of DNA template,
4.5 mM MgCl2, 3% DMSO, and 125 µL total volume per well. Primers for this
reaction were: AATGATACGGCGACCACCGAGATCTACACNXXXXXNNACA
CTCTTTCCCTACACGACGCTCTT and CAAGCAGAAGACGGCATACGAGA
TNXXXXXNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT.

The Ns in these sequences correspond to any random nucleotide and are used
as unique molecular identifiers (UMIs) in downstream analysis to identify PCR
duplicates. The Xs correspond to one of several multiplexing tags, which were used
to distinguish different samples when loaded on the same sequencing flow cell.
Multiplexing tags were designed to have a Levenshtein distance of 3 from each
other, such that reads with 1 or less sequencing errors in the multiplexing tag can
be assigned to the correct sample.

After amplification, 16 wells of PCR products were pooled (4 pools total), run
through a NucleoSpin PCR cleanup column, and eluted in 120 μL of elution buffer.
The pooled PCR products were then cleaned for the second time to remove any
residual primers using a NucleoSpin column and eluted in 120 μL of elution buffer.
A second 22-cycle PCR was performed with PrimeStar HS DNA polymerase
(Takara) in 16 reaction tubes, with 30 μl of cleaned product from the first PCR as
template and 125 μL total volume per tube. Illumina primers P1 and P2 were used
for this reaction.

PCR products from all reaction tubes were concentrated into 100 μl using
ethanol precipitation. The appropriate PCR band (264 bp) was isolated by agarose
gel electrophoresis and quantified by Bioanalyzer (Agilent) and Qubit fluorometer
(Life Technologies).

Barcode sequencing. Sequencing (150 bp paired-end) was performed on an Illu-
mina HiSeq 4000 or NovaSeq 6000. Each flow cell contained at least 2 multiplexed
time points and 25% genomic DNA or PhiX. Genomic DNA/PhiX was included to
increase the read complexity for proper calibration of the instrument since most of
the bases in each barcode read are fixed. Sequencing reads were analyzed using
custom written code in Python and R, which are available on GitHub. Reads were
sorted by their multiplexing tags (the Xs in the primers above) and removed if they
failed to pass either of two quality filters: 1) The average Illumina quality score for
the double barcode insert region must be greater than 30, and 2) the double barcode
region must contain the fixed sequence ATAACTTCGTATAATGTATGCTAT with
less than 2 mismatches. After filtering, MATa and MATα barcodes were extracted
from the sequencing reads and fused into one double barcode.

We next used Bartender to cluster similar sequences into consensus double
barcodes, with the maximum allowable sequence distance (-d) set to 230. One
source of bias in these counts that we wanted to avoid is PCR duplicates or other
non-linearities between the amount of template for a double barcode and the
number of sequences observed for that double barcode. We removed these errors
by using UMIs (the Ns in the primers above). Specifically, 2 random 3-mers were
attached to each template DNA molecule in the first few rounds of PCR (see
section ‘Library preparation’ for more detail). Because the total sequence space of 2
random 3-mers (4^6= 4,096 possibilities) is much larger than the target coverage
for each double barcode (~100×), it is unlikely that any two template DNA
molecules from the same time point that contain the same double barcode will be
attached to identical pairs of 3-mers. Thus, sequence reads for a double barcode
that contained the same pair of 3-mers were counted as PCR duplicates and
removed from our final counts.

After the double barcode clusters were counted and filtered, only double
barcode clusters carrying the previously determined MATa and MATα segregant
and parental barcodes were extracted. All double barcodes with an average read
count of <5 across the 4–5 time points were removed, as accurately estimating
fitness for samples with very low read counts is difficult (Supplementary Fig. 4)31.
In total, ~227,999 unique genotypes with an average of ~2.82 barcode replicates per
genotype were detected across conditions (Supplementary Table 4). These numbers
are lower than the theoretical number of double barcodes, 240,000 diploids × 4
biological replicates= 960,000. This discrepancy may be due to segregants failing
to mate during the generation of diploid segregants or being lost during rearraying
procedures.

Counting double barcode reads. Previous studies have shown that PCR ampli-
fication of DNA sequences containing two variable regions (for this study the
MATa and MATα barcodes) separated by a fixed region can lead to formation of
undesired chimeric molecules due to template switching28,29. This can result in
erroneous double barcode counts, leading to errors in fitness estimation.

To identify PCR chimeras in each sample, we pooled data from all 4–5 time
points and counted the number of reads that contain each combination of a
parental barcode and an haploid segregant barcode. Because the parental strains
were never mated to the haploid segregants, these parental-segregant double
barcodes must be due to a PCR chimera. We next counted the number of times
each single barcode is present in the entire data set regardless of the barcode it is
paired with. We then fit a linear model between the count of each PCR chimera

and the product of the total counts of each single barcode within the pool: # of
copies of PCR chimera ~ # of copies of barcode1 x # of copies of barcode2. Because
template switching occurs randomly, we expect to see a linear relationship between
the number of PCR chimeras and the abundance of the involved barcodes (average
R2 ≈ 0.623 across environments) (Supplementary Table 5). Using this linear model,
the expected number of PCR chimeras for each double barcode was calculated. The
expected number of PCR chimeras were subtracted from the actual read counts to
calculate the corrected counts. We estimate that the PCR chimera rate was 0.11%
across environments (Supplementary Table 5). Corrected counts less than 0 were
set to 0. All double barcodes with an average corrected read count of <5 across the
4–5 time points were removed.

Fitness estimation. The corrected read counts from the 4–5 time points were used
to estimate fitness for each double barcode using a maximum likelihood algorithm
PyFitSeq using default settings31. Fitness estimates with low maximum likelihood
scores were removed, as these fitness estimates are most likely technical artifacts.
Outliers with low maximum likelihood scores were defined as data scores that are
more than 1.5 interquartile range below the first quartile. Additionally, for strains
with three or more replicates, outlier replicates with significantly different fitness
estimates were removed. Outlier replicates were determined by examining all
pairwise differences in fitness estimates between barcode replicates for the same
strain. Based on this distribution, outlier replicates were defined as replicates whose
fitness is more than 0.5 fitness units different from the other replicates. For strains
with only two replicates, if the fitness estimate difference between the two replicates
was greater than 0.5, both replicates were removed. Finally, all strains with only 1
replicate were omitted from further analysis as we have no way to assess the quality
of the fitness estimate. Overall, fitness estimates for ~548,046 (~190,604 genotypes
with average of ~2.88 replicates per genotype) double barcodes per environment
were used for the remaining downstream analysis (Supplementary Table 2).

Heritability estimates. Broad-sense heritability was estimated using the repro-
ducibility of phenotype across replicates. The linear model, fitness ~ genotype was
used, where genotype is a categorical value corresponding to the 2–4 biological
replicates for each diploid segregant. Broad-sense heritability was calculated by
taking the sum of squares of genotype and dividing it by the total sum of squares.
Because large memory overhead is required to calculate broad-sense heritability for
the entire dataset, we calculated 1,000 broad-sense heritability estimates for a
smaller subset of randomly selected 2500 genotypes. The reported broad-sense
heritability and standard errors are the mean value and the standard error across
the 1000 tests.

Variances explained by additive, dominance, and epistasis effects were
estimated using the ‘sommer’ package in R59. The additive, dominance, and
epistasis relationship matrices were calculated using the A.mat(), D.mat(), and
E.mat() functions, respectively. Variances explained by additive, dominance, and
epistasis were then estimated by dividing the variance of the respective components
by the total variance. Similar to the broad-sense heritability estimates, we calculated
1,000 variance estimates for a smaller subset of randomly selected 2500 genotypes.
The reported variance estimates and standard errors are the mean value and the
standard error across the 1000 tests.

Quantile normalization of fitness. For each genotype in each condition, the
average fitness estimate across all barcode replicates was calculated. Because the
distribution of the average fitness estimates was slightly left skewed, average fitness
estimates were quantile normalized such that the data is normally distributed using
the ‘bestNormalize’ R package (Supplementary Fig. 6)60. This quantile normalized
fitness estimate was used as the fitness phenotype for all downstream analysis.

Genome-wide scan for one-locus effects. Our experimental design resulted in
genotypes that are not equally related to each other. For example, two diploid
segregants that share a parental haploid segregant are more related to each other
than two diploids that do not share a parental haploid segregant. We found that
differences in relatedness had a large effect on the fitness of the diploid segregants.
Thus, failing to account for family structure could inflate type I error and result in
false positives. To account for these potential errors, we detected one-locus effect
loci using FaST-LMM37,38, which runs a mixed effects linear model (MLM) with a
spectrally decomposed genetic similarity matrix (GSM).

We used FaST-LMM’s single_snp function to perform a genome-wide linear
mixed effect analysis. The genotype table was reformatted as a binary biallelic
genotype table (BED) prior to running FaST-LMM using PLINK version 1.0761. To
avoid proximal contamination, all SNP markers that are located on the same
chromosome as the SNP marker that is being tested were omitted from the
calculation of the GSM by setting the leave_out_one_chrom function as TRUE. To
determine appropriate significance thresholds, 1000 permutations were conducted
with the correspondence between genotypes and phenotypes randomly shuffled
each time. Among the minimum p values obtained in the permutations, the fifth
quantile was identified and used as the threshold for determining significant loci.

To detect loci that are closely linked to a nearby locus, we ran multiple rounds
of stepwise forward regression in FaST-LMM. For the second round of forward
regression, we included the most significant SNP marker from each chromosome
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that was above the significance threshold from the initial genome-wide scan as a
covariate in the mixed effect linear model. In the third round, all SNP markers
detected in the first two rounds were added as covariates in the mixed effect model.
This process was repeated until no significant SNP markers were detected. The
confidence interval of a locus was defined as the region surrounding a peak marker
in which the significance of detection was within three −log10(p-value) of the
maximal significance observed at the peak position (hereafter referred to as “3-
LOD drop”).

Family-level scans for one-locus effects. We also performed scans for one-locus
effects within families generated from the same MATa haploid parental strain.
Results from families generated from the same MATα haploid parental stains were
not used as the difference in sample size (~600 diploids in MATa families vs ~400
diploids in MATα families) had a huge impact on the statistical power to detect
loci. Because all genetic differences between diploids within a family are random,
they do not need to be corrected for family structure prior to mapping. Genome-
wide mapping was conducted in each family using a fixed effects linear model in R
using the lm() function: lm(fitness ~ locus). The fitness term corresponded to the
vector of quantile normalized fitness values of individuals within a family and the
locus term corresponded to the vector of these individuals’ genotypes at a given
marker. Because diploids within a family are derived from the sameMATa haploid,
they possess only two possible genotype states: BY/BY and BY/3S or BY/3S and 3S/
3S, depending on the allele present in the MATa progenitor. Although the locus
term was encoded as a categorical variable here, the coding of the locus term should
not matter. The categorical coding should be equivalent to a count of an allele
because either defines two categories. The p-value of the locus term was obtained
using the summary.aov() in R. Among markers exceeding a significance threshold,
the most significant marker from each chromosome was identified and utilized in
subsequent rounds of forward regression. Specifically, identified loci were included
in the fixed effects linear model as a covariate, e.g. fitness ~ known_locus1+
known_locus2+… known_locusN+ locus. This process was repeated until no
additional locus terms were discovered within an environment. The significance
threshold for these forward scans was established by pooling the p values from
1000 permutations of 10 randomly selected families. In each permutation, the
correspondence between genotype and phenotype was shuffled within a family.
From the resulting distribution of minimum p-values obtained in each permuta-
tion, the fifth quantile was identified and used as the significance threshold. After
calling peaks, loci detected in multiple families were consolidated using 3-LOD
drops within each family.

Identification of loci enriched for detections across families. We identified
distinct loci that were enriched for detections across families39. We divided the
genome into nonoverlapping 20 kb bins and determined the maximum number of
detections expected by chance at a Bonferroni-corrected p= 0.05/(the number of
20 kb nonoverlapping bins). The threshold was then obtained from a Poisson
distribution with λ= (# of detections across all families within the environment)/
(the number of 20 kb nonoverlapping bins tiling the genome) using the qpois()
function in R, with lower.tail set to FALSE.

Removing additive effects and correcting for family structure. For detection of
dominance effects and interactions, family structure was corrected using a pre-
viously described strategy23. Specifically, we first estimated the fitnesses of each
parental haploid segregant by calculating the mean fitness of all diploids that
originated from each parental strain (additive genetic background contribution to
fitness). Next, the expected midparent value for each diploid was obtained by
taking the average of the 2 parental fitnesses. If phenotypic variation is due to only
additive effects, then we expect the fitness of a diploid to be the same as its
midparent value. Deviations from the midparent value were then determined by
fitting a linear model between fitness and the midparent value, fitness ~ midparent
value, and taking the residuals (hereafter referred to as ‘residuals’). Not only does
this correct out the additive portion of each diploid’s phenotype, it also effectively
accounts for family structure (Supplementary Fig. 10)23. These residuals, or the
non-additive portions of each diploid’s phenotype, were used as phenotype for the
subsequent scans for loci involved in non-additivity, such as dominance and
genetic interactions.

Genome-wide scans for loci with dominance. To detect loci with one-locus non-
additive effects (e.g. dominance), we ran multiple rounds of forward regression. In the
first round, a genome-wide scan was conducted using the following fixed effects linear
model: residuals ~ locus, where locus is the genotype of the diploids at a given SNP
marker encoded as a categorical variable. Here, the significance of the locus term was
tested. The significance threshold was determined by conducting 1000 permutations
with the correspondence between genotypes and residuals shuffled each time. Among
the minimum p values obtained in the permutations, the fifth quantile was identified
and used as the threshold for determining significant loci. The most significant SNP
marker from each chromosome that was above the significance threshold was iden-
tified as a significant locus. For subsequent rounds of forward regression, identified
loci were included in the fixed effects linear model as a covariate, e.g. residuals ~
known_locus1+ known_locus2+… known_locusN+ locus. The most significant SNP

marker from each chromosome that was above the significance threshold was again
identified as a significant locus. This process was repeated until no additional locus
terms were discovered for an environment.

Degrees of dominance. For each locus detected in the scan for dominance effects, the
magnitude of dominance was calculated in the following manner. First, the data was
subsetted based on the genotype state at the focal locus (e.g., BY/BY, BY/3S, 3S/3S).
Then, the mean fitness value for each genotype state was calculated. Additive effect sizes
of the 3S allele were calculated by subtracting the mean fitness of diploids that are BY/
BY at the focal locus from the mean fitness of diploids that are 3 S/3 S at the focal locus
and dividing by two. Dominance effect sizes for each focal locus were calculated by
subtracting the mean fitness of diploids that are BY/3S at the focal locus from the
average of the mean fitness of diploids that are BY/BY and 3S/3S at the focal locus (i.e.,
the additive expectation for heterozygotes). Dominance effect sizes were then nor-
malized based on the absolute additive effect sizes of the 3S allele relative to the BY allele
at the same loci. Normalized dominance values ranging from −0.9 to 0 were classified
as incomplete dominance for the deleterious allele, while values ranging from 0 to 0.9
were classified as incomplete dominance for the allele conferring higher fitness. Values
that were between −0.9 to −1.1 or 0.9 to 1.1 were classified as complete dominance for
the deleterious and fit allele, respectively. Values <−1.1 or >1.1 were classified as
underdominant or overdominant, respectively.

Comprehensive scan for pairwise interactions. We conducted a genome-wide
scan for pairwise interactions using the following linear fixed effect model:
residuals ~ locus1+ locus2+ locus1:locus2. Here, the significance of the
locus1:locus2 interaction term was tested. Simpler terms were included in each
model to ensure that variances due to one-locus non-additive effects (e.g., dom-
inance) were not erroneously attributed to more complex terms. All locus terms
were treated as categorical values, including the locus1:locus2 interaction term, such
that all 9 genotype classes (BY/BY-BY/BY, BY/BY-BY/3S, BY/BY-3S/3S, BY/3S-BY/
BY, BY/3S-BY/3S, BY/3S-3S/3S, 3 S/3S-BY/BY, 3S/3S-BY/3 S, 3S/3S-3S/3S) are
treated as independent categories rather than continuous numerical values. The
significance threshold was determined by conducting 1,000 permutations with the
correspondence between genotype and residuals shuffled each time. Among the
minimum p-values obtained in each permutation, the fifth quantile was identified
and used as the significance threshold for our comprehensive scan of all two-loci
interactions. To reduce computational time, 10,000 random pairs of loci were
randomly selected for each permutation rather than all possible pairs of loci. All
significant pairs of loci where both loci were within 3-LOD drop of each other were
consolidated. For each set of overlapping loci, the SNP marker with the most
significant p-value was used for downstream analysis while less significant markers
were recorded but treated as the same genetic effect and not used downstream.

During our comprehensive scan for pairwise interactions, we detected several hubs
that were involved in large numbers of interactions. These interactions often spanned
the entire length of the genome, making it difficult to differentiate sites interacting
with these hubs. In such cases, a forward regression approach was conducted.
Specifically, we first ran the same fixed effects linear model as the comprehensive scan
for pairwise interactions, but with locus1 fixed for a hub locus, e.g., residuals ~
hub+ locus2+ hub:locus2. The significance of the hub:locus2 interaction term was
tested. Significance thresholds were determined using the same permutation strategy
as the comprehensive scan. The most significant interacting locus from each
chromosome that was above the significance threshold was identified as a significant
interactor of a hub locus. For subsequent rounds of forward regression, all identified
interactions were included in the fixed effects linear model as covariates, including the
simpler terms, e.g. residuals ~ hub+ locus2+ known_locus1+ known_locus2+…
known_locusN+ hub:known_locus1+ hub:known_locus2+… hub:known_locusN+
hub:locus2. The most significant interacting locus from each chromosome that was
above the significance threshold was again identified as a significant interactor with a
hub locus. This process was repeated until no additional hub:locus2 terms were
discovered for each environment. To avoid double counting interactions, all pairwise
interactions identified in the comprehensive scan that involved a locus within 50 kb of
a hub were removed.

Scan for three-locus effects. A comprehensive scan for three-locus effects using
all SNP markers is computationally expensive. Instead, we scanned for three-locus
effects using a smaller subset of 579 SNP markers, where each SNP marker was
at least 5 cM apart. The following fixed effects linear model was used: residuals ~
locus1+ locus2+ locus3+ locus1:locus2+ locus1:locus3+ locus2:locus3+
locus1:locus2:locus3. Similar to the scan for pairwise interactions, all locus and
interaction terms were treated as categorical values. Here, the significance of the
locus1:locus2:locus3 interaction term was tested. Simpler terms were included in
each model to ensure that variances due to one-locus non-additive effects (e.g.,
dominance) and pairwise interactions were not erroneously attributed to more
complex terms. As before, the significance threshold was determined by conducting
1000 permutations with the correspondence between genotype and residuals
shuffled each time. Among the minimum p-values obtained in each permutation,
the fifth quantile was identified and used as the significance threshold for our
comprehensive scan of all two-loci interactions. Similar to the pairwise interaction

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29111-z

12 NATURE COMMUNICATIONS |         (2022) 13:1463 | https://doi.org/10.1038/s41467-022-29111-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


scan, for each permutation, 10,000 trios of loci were randomly selected for each
permutation rather than all possible trios of loci.

Resolving hub loci. Hub loci were resolved using data from family-level
scans in each of the MATa families. The peak position of each hub was
defined as the most significant marker for that locus across all families. Family-
level detections with confidence intervals overlapping the peak position of
a hub were identified. The first and last coordinates of all confidence intervals
overlapping a peak position were compared, and the coordinates closest to
each side of a peak position were recorded as the minimum bounds for a
given hub.

Estimating the fraction of epistatic effects that involve dominance. To
understand how a locus modifies the effect of an interacting locus in a pairwise
interaction, each pairwise interaction was partitioned into four epistasis types:
additive-additive, dominance-additive, additive-dominance, and dominance-
dominance62. The following linear fixed effect model was used: residuals ~
locus1+ locus2+ additive_locus1:additive_locus2(a1:a2)+ dominance_locus1:
additive_locus2(d1:a2)+ additive_locus1:dominance_locus2(a1:d2)+ dominance_
locus1:dominance_locus2(d1:d2). Additive_locus terms were treated as numerical
values, while locus and dominance_locus terms were treated as categorical values.
The percent variance explained (PVE) by each of the four epistatic types was then
estimated by taking the sum of squares of each interaction term and dividing it by
the total sum of squares. Using these PVE values for each interaction term, the
fraction of epistatic effect involving dominance was then calculated. To estimate
the fraction in which locus1’s modifying effect on locus2 acts on dominance, the
following equation was used: (d1:a2+ d1:d2)/(a1:a2+ d1:a2+ a1:d2+ d1:d2).
Conversely, to estimate the fraction in which locus2’s modifying effect on locus1
acts on dominance, the following equation was used: (a1:d2+ d1:d2)/
(a1:a2+ d1:a2+ a1:d2+ d1:d2).

Examining how combinations of modifiers explain effect size variance of hubs.
Using the PVE values for the four epistatic types (see section ‘Estimating the
fraction of epistatic effect that involves dominance’), we examined how loci that
interact with a hub contribute to additive and dominance effect size variance across
different genetic backgrounds. For each two-locus interaction involving a hub, the
magnitude in which the hub modifier affects the additive component of the hub
(‘add_mod’) was determined by adding the PVE of a1:a2 and a1:d2 interaction
terms, where locus1 is the hub. The magnitude in which the hub modifier affects
the dominance component of the hub (‘dom_mod’) was determined by adding the
PVE of d1:a2 and d1:d2 interaction terms. Significantly large outliers in add_mod
or dom_mod, defined as values more than 1.5 interquartile range above the third
quartile, were identified as major effect modifiers.

To examine how modifiers collectively change the effect size of hubs, four
modifiers with the largest modifying effects on additivity and dominance were
chosen for each hub. Data was then subsetted into 81 genotype classes based on the
genotype state at the four modifiers. For each genotype class, the data were further
subsetted based on the genotype state of the focal hub locus. Additive effect sizes
for each genotype class were calculated by subtracting the mean fitness of diploids
that are BY/BY at the focal hub from the mean fitness of diploids that are 3S/3S at
the focal hub. Dominance effect sizes for each genotype class were calculated by
subtracting the mean fitness of diploids that are heterozygous at the focal hub from
the average of the mean fitness of diploids that are BY/BY and 3S/3S at the
focal hub.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article
(and its Supplementary information files). A Data availability statement is included in the
manuscript. Raw barcode sequencing data are available from the NCBI Sequence Read
Archive as accession PRJNA781980. Data used in analyses are available in Mendeley data
(https://data.mendeley.com/datasets/96ghpptzvf). S288C reference genome ver R9-1-1
was used in this study and is available at http://sgd-archive.yeastgenome.org/sequence/
S288C_reference/genome_releases/.

Code availability
All code used to analyze data, perform statistical analyses, and generate figures is
available at Github (https://github.com/tmatsui2/Matsui-et-al.−2021-Supplemental-
Information).
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