ARTICLE

https://doi.org/10.1038/s41467-022-29034-9

OPEN

AI_{13}^{-} and $B@AI_{12}^{-}$ superatoms on a molecularly decorated substrate

Masahiro Shibuta¹, Tomoya Inoue², Toshiaki Kamoshida², Toyoaki Eguchi³ & Atsushi Nakajima ^{® 1,2™}

Aluminum nanoclusters (Al_n NCs), particularly AI_{13}^{-} (n = 13), exhibit superatomic behavior with interplay between electron shell closure and geometrical packing in an anionic state. To fabricate superatom (SA) assemblies, substrates decorated with organic molecules can facilitate the optimization of cluster-surface interactions, because the molecularly local interactions for SAs govern the electronic properties via molecular complexation. In this study, AI_n NCs are soft-landed on organic substrates pre-deposited with *n*-type fullerene (C₆₀) and *p*-type hexa-*tert*-butyl-hexa-*peri*-hexabenzocoronene (HB-HBC, C₆₆H₆₆), and the electronic states of AI_n are characterized by X-ray photoelectron spectroscopy and chemical oxidative measurements. On the C₆₀ substrate, AI_n is fixed to be cationic but highly oxidative; however, on the HB-HBC substrate, they are stably fixed as anionic AI_n^- without any oxidations. The results reveal that the careful selection of organic molecules controls the design of assembled materials containing both AI_{13}^- and boron-doped B@AI₁₂⁻ SAs through optimizing the cluster-surface interactions.

¹Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. ² Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. ³ Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan. ^{\boximext} Agamatical Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan. ^{\boximext}

hrough the deposition of size-selected atomic clusters consisting of a few to thousands of atoms on well-defined substrates, nanostructured surfaces can be produced through bottom-up fabrication, which is a promising method for creating low-dimensional nanomaterials with atomic-scale structural precision¹⁻⁴. The properties of functionalized nanostructured surfaces can be controlled by designing cluster-surface interactions, which facilitates a nanoscale approach to developing nanomaterialbased modified electrodes for application in electrochemistry⁵. The cluster-surface interaction is a fundamental characteristic of such nanostructured materials^{3,6}, and has been a focus in the preparation of heterogeneous catalysts through control of the physical and chemical properties, size, and dimensionality⁷⁻¹⁰. For example, Haruta indicated the importance of choosing a substrate in enhancing the catalytic activity of gold (Au) nanoparticles for lowtemperature CO oxidation⁷. In addition, the substrate acidity has been reported to control the catalytic activity of size-selective platinum (Pt) clusters¹⁰. In these studies, localized cluster-surface interactions are enhanced using metal oxide substrates^{8,9} to avoid the generation of weakly bound nanoclusters (NCs) on a clean surface, because these NCs generally behave as a two-dimensional gas, ultimately resulting in aggregation⁶.

Interactions that take place through charge transfer (CT), or more explicitly, electron transfer¹¹, are important in chemical reactions between two reactant molecules since they lead to the formation of intermolecular CT complexes that exhibit a new electronic transition known as a CT band¹². Their segregated stacking can lead to molecular electrical conductivity, including superconductivity^{13,14}. Such CT processes play an important role in cluster–surface interactions. More specifically, due to the CT interactions with predeposited organic molecules on a substrate, the NCs can exist in a monodisperse state on the surface^{15,16}.

Among various gas phase NCs and their characteristic functionalities explored during the past several decades, NCs formed with a highly symmetrical geometry and an electronically closed shell are known as "superatoms" (SAs), which mimic the chemical properties of atoms with clusters^{17–25}. In particular, anionic aluminum (Al) NCs with 13 atoms, i.e., Al_{13}^- , are promising candidates for the fabrication of SA assembled nanomaterials^{26–31}, because Al_{13}^- simultaneously satisfies both icosahedral packing and the electronic shell closing^{32,33} of 40 electrons as $(1S)^2(1P)^6(1D)^{10}(2S)^2(1F)^{14}(2P)^6$, thereby facilitating the bottom-up fabrication of nanostructures with desired functionalities, similar to the case of building nanoblocks^{34–36}.

In this study, we show that the choice of organic substrate can allow molecular control of the CT interactions at the cluster-surface interface and stabilize SAs on the surface. Since the localized interactions between the pre-decorated organic molecules and the deposited NCs are enhanced compared to those of a clean bulk metal or semiconductor substrate, the organic substrate is key to immobilization of the deposited NCs, in which the NC aggregation caused by two-dimensional gas behaviors is suppressed 16,25. Thus, we deposit Al13⁻ and boron-doped B@Al12⁻ SAs^{17,26,37,38} on organic substrates of *n*-type C₆₀ and *p*-type hexa-tert-butyl-hexa-peri-hexabenzocoronene (HB-HBC, C₆₆H₆₆ (see Supplementary Fig. 1 and Supplementary Note 1)). Spectroscopic characterization by X-ray photoelectron spectroscopy (XPS) and oxidative reaction measurements of the Al13⁻ and B@Al12⁻ SAs on the organic substrates are then conducted to reveal that superatomic behavior can be observed on the p-type organic substrates through CT interactions.

Results

Charge state of the Al_n NCs on *n*-type C₆₀ and *p*-type HB-HBC substrates. Through magnetron sputtering (MSP) of the Al targets, the generated Al_n^- NCs possessed a mass-to-charge ratio

(m/z) predominantly in the range of 200–800 (see Supplementary Fig. 2). With an ion current of 300 pA, samples containing 2.9×10^{13} mass-selected NCs (~0.6 monolayers (MLs)) could be prepared within 3 h (see "Methods" section and Supplementary Note 2). The morphology of the deposited NCs on the organic substrate was confirmed by scanning tunneling microscopy (STM) imaging^{16,25}, wherein the SAs were found to be mono-dispersively immobilized without aggregation (see Supplementary Fig. 3).

Figure 1a, b show the XPS spectra around Al 2*p* core levels for (a) Al₁₃ on C₆₀ and (b) Al₁₃ on HB-HBC before (lower) and after (upper) O₂ exposure, respectively. The binding energies (BEs) of Al 2*p*_{3/2} for the bulk Al (Al⁰) and oxidized Al (Al³⁺) have been previously reported (marked by vertical bars in the figure)³⁹. As can be seen, without O₂ exposure, the Al atoms on the C₆₀ substrate are completely oxidized, while the Al atoms on HB-HBC are not oxidized. Following O₂ exposure, the Al atoms on C₆₀ remain unchanged, while Al atoms on HB-HBC are oxidized to Al³⁺. As shown in Fig. 1c, d, the corresponding O 1 *s* component can be observed in the lower trace of Fig. 1c even without O₂ exposure. These results show that the Al₁₃ NCs present on the C₆₀ substrate are so reactive that the nascent NCs are oxidized after deposition by some residual gas in the vacuum chamber (<10⁻⁵ Pa) during the deposition process.

The contrasting oxidation behavior of these two systems correlates well with the C 1s XPS peaks from the underlying C₆₀ or HB-HBC on highly oriented pyrolytic graphite (HOPG), where the C 1s signals are mainly derived from the topmost molecular layer (Fig. 1e, f). As shown in Fig. 1e, after the deposition of Al_{13} on C_{60} , the C 1s peak shifts toward a lower BE by ~0.30 eV. Although Al13 is nascently oxidized, the shift to a lower BE shows that an anionic C_{60}^{-} state is formed by Al_{13} oxides through a CT interaction^{16,40}; the degree of shift corresponds well to the formation of C₆₀⁻ as reported in the literature⁴¹ (see Supplementary Note 3 and Supplementary Fig. 4). A similar C 1s shift has been reported when the alkali-like Ta@Si16 SA25 is deposited on C60, wherein a shift attributable to Ta@Si₁₆+ C_{60}^- is observed^{40,41}, as denoted in Fig. 1e. More quantitatively, when the C₆₀-derived C 1s peak is deconvoluted into two peak components corresponding to C_{60} alone (non-interacted) and bound with the Al_n oxide (interacted), the BE of the interacted C₆₀ peak is 0.33 eV lower than that of non-interacted C₆₀ (Supplementary Fig. 4). In addition to Al_{13} , the Al_7 NCs deposited on C_{60} is nascently oxidized, as can be observed from the Al 2p XPS spectrum, although Al₇⁺ is regarded to complete the 2S shell (i.e., 20 e^{-})²¹. In contrast, after the deposition of 0.6 MLs of Al_{13} on the HB-HBC substrate, the C 1s peak shown in Fig. 1f shifts toward a higher BE by ~0.25 eV. Since a similar behavior can be observed for the deposition of the halogen-like Lu@Si16 SA25 onto HB-HBC, this shift suggests the formation of a cationic HB-HBC⁺ state, and in turn, an Al13⁻/HB-HBC⁺ CT complex.

In addition to Al_{13}^{-} , all Al_n^{-} NCs (n = 7-24) can be sizeselectively deposited onto C_{60} and HB-HBC substrates. More specifically, the Al 2*p* XPS spectra show that these Al_n NCs were successfully deposited onto HB-HBC without undergoing any oxidation reactions (see Supplementary Fig. 5). However, complete oxidation was observed for the Al_n NCs deposited on C_{60} . It should be emphasized that this contrast in the reactivity of Al_n results from the different types of organic substrate molecules, i.e., *n*-type and *p*-type for C_{60} and HB-HBC, respectively. In the Al 2*p* XPS spectra for the Al_n NCs on HB-HBC, peaks were observed in the range of 73.0–73.2 eV, which is close to the peak position for bulk Al (i.e., 73.0 eV)³⁹ (see Supplementary Fig. 6). In addition, the small size dependence is consistent with that in the Al 2*p* core-level BEs for Al_n^+ (n = 12-15) obtained from the soft X-ray photoionization efficiency curves⁴². More precisely, the

Fig. 1 XPS spectra for Al₁₃ on the C₆₀ and **HB-HBC substrates. a**-**d** XPS spectra around the Al 2*p* core levels for **a** Al₁₃ on C₆₀ and **b** Al₁₃ on HB-HBC before (lower) and after (upper) O₂ exposure (at 5×10^{10} Langmuir (L = 1.33×10^{-4} Pa·s)), along with **c**, **d** the O 1s spectra for each state. **e**, **f** The XPS spectra around the C 1s core level for the underlying **e** C₆₀ and **f** HB-HBC are also shown for the deposition of Al₁₃ and Ta@Si₁₆ or Lu@Si₁₆. Reference binding energies (BEs) of Al 2*p*_{3/2} for the bulk Al (Al⁰ and Al³⁺) and O 1s (O²⁻) are marked by vertical bars. The BEs for Al 2*p* show zerovalent Al⁰ only for Al₁₃ on the HB-HBC substrate before O₂ exposure, while the other BEs are in the vicinity of Al³⁺. After the deposition of 0.6 ML Al₁₃ (blue) or Ta@Si₁₆ (black) on C₆₀, the C 1s peak in (**e**) shifts by ~0.3 eV toward a lower BE from that before deposition (**f**) shifts by ~0.25 eV toward a higher BE from that before deposition (pink), indicating the presence of a cationic HB-HBC⁺ state.

charge states of the Al atoms for the deposited Al_n NCs can be discussed in terms of their Al 2p peak positions; the BEs of Al 2p for all Al_n NCs are slightly higher than that of the bulk Al (zerovalent Al⁰), suggesting that the Al_n NCs on HB-HBC are anionic rather than neutral. Recently, Kambe et al. have reported the Al 2p XPS spectra for several Al_n species (n = 4, 12, 13, 28, and 60) synthesized with dendrimers43, and they revealed a sizedependent behavior in the Al 2*p* XPS spectra from 71.2 (n = 4) to 72.3 eV (n = 13) along with a particular shift of more than 0.6 eV between n = 12 and 13. However, our Al 2p spectra exhibit a cluster-size dependence within only 0.3 eV for n = 7-24, and no particular peak shift can be observed around n = 13. It should be noted here that the peaks in the C 1s XPS spectra for the Al_n NCs on the C60 and HB-HBC/HOPG substrates exhibit a similar contrast shift; namely a decrease in the BE for the Al_n NCs on C_{60} (-0.30 eV) and an increase in the BE for the Al_n NCs on HB-HBC (+0.25 eV), with a small size-dependent shift being observed (see Supplementary Fig. 7).

Oxidative reactivity of Al_n **on the HB-HBC substrate**. As shown in Fig. 1b, the Al_n NCs deposited on HB-HBC are oxidized upon O₂ exposure, and the oxidative rates are dependent on the NC size. Figure 2 shows the Al 2*p* XPS spectra for the Al₁₃ on HB-HBC at several different O₂ exposure amounts (i.e., $0-5 \times 10^{10}$ L), where the O₂ exposure amounts (in Langmuir units, L = 1.33×10^{-4} Pa·s)) are noted on the right-hand side in of the figure. With increasing the amount of O₂ exposure, the intensity of the peak corresponding to the zerovalent Al⁰ component decreases, while that of the oxidized component Al³⁺ increases along with that of the O 1s component. The oxidative reactivity can therefore be quantitatively evaluated on the basis of its dependence on the O₂ exposure amount from 0 to 1×10^4 L. It should be noted here that at 1×10^4 L O₂, the Al⁰ component survives only in the case of n = 13(Supplementary Fig. 5), which is peculiarly unreactive compared to NCs of other sizes and with Al single crystal surfaces, which are completely oxidized when exposed to 400 L O₂ at room temperature⁴⁴. Furthermore, both the Al 2*p* and O 1s peaks shift to a lower BE when the O₂ exposure amount is increased from 1×10^4 to 5×10^{10} L, thereby implying that a structural change relevant to a phase transition from amorphous to crystalline Al₂O₃ takes place, such as the formation of α - or γ -Al₂O₃⁴⁵.

The chemical reactivity of the Al_n NCs toward O₂ gas was then evaluated based on the oxidation rate, O_{Aln} , which is a simple index for investigating the size-dependent behavior of the oxidation reaction. More specifically, the peak area ratio, R_{Aln} , of the non-oxidized component (S_{Al^0}) to the oxidized component ($S_{Al^{\beta+}}$) for the Al 2p spectra is plotted against the logarithm of the O₂ exposure amount in L (log₁₀ O₂), and the linear slope is evaluated as O_{Alm} , where R_{Aln} is expressed as follows:

$$R_{Al_n} = \frac{S_{Al^0}}{S_{Al^0} + S_{Al^{3+}}} \tag{1}$$

In this analysis, the oxidation of Al atoms by O_2 is modeled in terms of the dissociative adsorption of O_2 on a single crystal Al

Fig. 2 Oxidative behaviors in the AI 2p **and O 1s XPS spectra for AI₁₃ on the HB-HBC substrate. a**, **b** XPS spectra around **a** AI 2p and (**b**) O 1s. With increasing O₂ exposure (from top red to bottom blue), the intensity of the zerovalent component (AI⁰) decreases, while those of the oxidized component (AI³⁺) and the O 1s component increase accordingly. **c** The oxidative reactivity is evaluated by the slope of the dependence against the logarithmic O₂ exposure amount from O L to 1 × 10⁴ L. At the highest exposure of 5 × 10¹⁰ L, the AI 2p peak shifts to a lower BE, likely due to a structural change relevant to the phase transition of aluminum oxide (see the main text for further details).

Fig. 3 Size dependent relative reactivities of Al_n (n = 7-24) and B@Al₁₂ on the HB-HBC substrate against the O₂ exposure. The oxidative reactivity rates for Al_n on the HB-HBC substrate are plotted (red open circles), and a clear local minimum is observed at n = 13 along with a small minimum at n = 19, while there is no apparent local minimum at n = 23. B@Al₁₂ shows a low oxidative reaction rate (red solid square), similar to that of Al₁₃.

surface, whose XPS peak appears at a BE close to that of the Al^{3+} component (i.e., 75–76 eV)⁴⁴:

$$Al_n \cdot xO_2 + O_2 \rightarrow Al_n \cdot (x+1)O_2, (x=0, 1, 2, \cdots)$$
 (2)

The oxidation rates, O_{Aln} , are evaluated by considering the conversion of $1 L \rightarrow 1s$ because the exposure amount can be converted to the corresponding reaction time for elementary reactions. The intersection of the linear line with the x-axis in Fig. 2c gives the O₂ exposure amount of $V_{Al13}(O_2)$ that is required to completely oxidize the Al_n NCs; for Al₁₃, $3.45 \times 10^4 L O_2$ is obtained as the value of $V_{Al13}(O_2)$. The higher the reactivity, the smaller the quantity of oxygen required to completely oxidize the Al_n NCs; for example, $V_{Aln}(O_2)$ at n = 12 is $2.36 \times 10^3 L O_2$, thereby showing that Al₁₂ is 14.6 times more reactive than Al₁₃ (further details regarding the O_{Aln} and $V_{Aln}(O_2)$ values can be found in Supplementary Note 4 and Supplementary Table 1).

Figure 3 shows the size dependence of the oxidative rates on the Al_n NCs (n = 7-24) deposited on the HB-HBC substrate, where the relative reactivity is evaluated by dividing the $V_{Aln}(O_2)$ value at n = 13 by each individual $V_{Aln}(O_2)$ value. A local minimum is clearly found at n = 13, and a small local minimum is also found at n = 19, while an even-odd alternation relevant to spin conservation⁴⁶ observed in the gas phase reaction^{17,30,47,48} is not obvious. According to previous experimental and theoretical works^{17,30,38,49–51}, electronically stabilized Al_n anions should appear at n = 19 and 23 as well as at n = 13. Since its interactions with HB-HBC induces an anionic character in the deposited Al_n NCs, Al₁₃ and Al₁₉ complete their 2P (40 e⁻) and 1G (58 e⁻) shells, respectively. However, such stabilization was not observed for Al₂₃ despite this species completing its 3S (70 e⁻) shell (see Fig. 3), and this was attributed to the fact that Al₂₃ is geometrically deformed on the substrate owing to its relatively low rigidity having structural C_s symmetry^{50–52}.

Oxidative reactivity of B@Al₁₂ on the HB-HBC substrate. The structural rigidity of icosahedral Al_{13}^- is demonstrated by the boron (B) doped B@Al₁₂⁻ SAs. Boron belongs to the same group as Al in the periodic table, and it has been reported B@Al₁₂⁻ can be preferentially formed as an SA both experimentally and theoretically because the isoelectronic and geometrically small B atom facilitates relaxation of the icosahedral geometric strain when used as a central atom^{37,38,53,54}. Thus, using a B-mixed Al target, B@Al₁₂⁻ was formed by MSP and was deposited onto the C₆₀ and HB-HBC substrates (Supplementary Fig. 8).

Figure 4a, b show the XPS spectra around the Al 2*p* core levels for the $B@Al_{12}$ deposited on C_{60} and the $B@Al_{12}$ deposited on HB-HBC, respectively, before (lower) and after (upper) O_2 exposures, similar to the spectra in Fig. 1. These XPS spectra show that Al atoms on C_{60} are substantially oxidized without O_2 exposure, but the tailing peak in the Al⁰ region implies that some Al atoms survive without oxidation. In contrast, the Al atoms of $B@Al_{12}$ deposited on HB-HBC are not oxidized in the same manner as those of Al_{13} , as shown in Fig. 1b.

Upon O_2 exposure, the Al 2*p* XPS peak for the Al atoms deposited on C_{60} becomes shaper upon oxidation, while the Al atoms on HB-HBC are sequentially oxidized to Al³⁺. As shown in Fig. 4c, d, the corresponding O 1*s* component can be observed in the lower trace of Fig. 4c even without O_2 exposure, but the peak intensity is lower than that observed for the Al₁₃ on C_{60} (see Fig. 1c). In fact, the intensity of the O 1*s* peak increases with O_2 exposure, as shown in Fig. 4c. These results show that the B@Al₁₂ NCs on C_{60} are reactive, but that the oxidation rate is surpressed because of the geometrical stabilization induced by B atom encapsulation.

As shown in Fig. 4e, f, the B 1s XPS spectra show the effect of such B atom encapsulation. More specifically, despite a similar oxidative reactivity between the Al and B atoms^{55,56}, the B 1s peak for the B@Al₁₂ on C_{60} shows that a non-oxidized B⁰

Fig. 4 XPS spectra for B@Al₁₂ on the C₆₀ and HB-HBC substrates. a-d XPS spectra around the core Al 2*p* levels for **a** B@Al₁₂ on C₆₀ and **b** B@Al₁₂ on HB-HBC before (lower) and after (upper) O₂ exposure (at 5×10^{10} L), along with **c**, **d** O 1s for each state. **e**, **f** XPS spectra around the B 1s core levels for **e** B@Al₁₂ on C₆₀ **f** B@Al₁₂ on HB-HBC before (top) and after (lower) O₂ exposure. **g**, **h** XPS spectra around the C 1s core levels of the underlying **g** C₆₀ or **h** HB-HBC are also shown for the depositions of B@Al₁₂ and Al₁₃. The reference binding energies (BEs) of Al 2*p* and B 1s for the bulk Al and B (Al⁰/B⁰ and Al³⁺/B³⁺) and O 1s (O²⁻) are marked by vertical bars. The BEs for Al 2*p* show the presence of zerovalent Al⁰ only for Al₁₃ on HB-HBC before O₂ exposure, while the other BEs are in the vicinity of Al³⁺, indicating the presence of oxidized Al atoms. After the deposition of 0.6 ML B@Al₁₂ (violet) and Al₁₃ (blue) on C₆₀, the C 1s peak in (**g**) shifts by ~0.3 eV toward a lower BE from that before deposition (light blue), showing an anionic C₆₀⁻ state. After the deposition of 0.6 ML B@Al₁₂ (orange) and Al₁₃ (red) on HB-HBC, the C 1s peak in (**h**) shifts by ~0.25 eV toward a higher BE than that before deposition (pink), showing a cationic HB-HBC⁺ state. Importantly, with B atom doping, B@Al₁₂ is stabilized even in the cationic form, as shown by the tailing peak of Al 2*p* in (**a**) and the non-oxidized B⁰ component in (**e**).

component can be observed even for the nascent B@Al₁₂ on C₆₀, showing that the oxidation of B atoms to achieve the B³⁺ state is significantly slower than the corresponding oxidation of Al atoms under O₂ exposure. More importantly, the B 1*s* peak for the B@Al₁₂ on HB-HBC can be observed at an O₂ exposure amount up to ~1 × 10⁴ L, at which point the majority of Al atoms are oxidized. Furthermore, Fig. 4g, h show the C 1*s* XPS spectra of B@Al₁₂ on the C₆₀ and HB-HBC substrates, respectively, wherein a behavior similar to that of Al₁₃ deposition can be observed. More specifically, for the B@Al₁₂ on C₆₀, the C 1*s* peak (Fig. 4g) shifts toward a lower BE by ~0.25 eV, while for the B@Al₁₂ on HB-HBC, the C 1*s* peak (Fig. 4h) shifts toward a higher BE by ~0.25 eV, suggesting the formation of a B@Al₁₂⁻/HB-HBC⁺ CT complex.

When the oxidation rate of $\mathbb{B}@Al_{12}$ is similarly evaluated based on the peak area ratio of the non-oxidized component (S_{Al^0}) to the oxidized component ($S_{Al^{3+}}$) (see Supplementary Fig. 9), the $O_{\mathbb{B}@Al12}$ value is the same with the O_{Al13} value within experimental uncertainties, resulting in similar $V_{\mathbb{B}@Al12}(O_2)$ and $V_{Al13}(O_2)$ values, as plotted in Fig. 3. Upon B atom encapsulation, all Al atoms become surface Al atoms of the Al₁₂ cage, while in contrast, Al₁₃ consists of twelve surface Al atoms and one central Al atom. The same oxidative rates observed for $\mathbb{B}@Al_{12}$ and Al_{13} therefore indicate that $\mathbb{B}@Al_{12}$ is more robust because these equivalent rates were obtained despite the contribution of the central Al atom of Al_{13} .

Theoretical calculations on the charge distributions for the 13mer anions and cations. For Al_{13}^- , $B@Al_{12}^-$, Al_{13}^+ , and $B@Al_{12}^+$, although theoretical calculations have been reported by several groups^{36,38,57,58}, density functional theory (DFT) calculations are collectively performed to explain the different oxidation behaviors observed for $Al_{13}/B@Al_{12}$ on the C₆₀ and HB-HBC substrates. The results are presented in Fig. 5, and the Cartesian coordinates are summarized in Supplementary Table 4. For the equilibrium structures, the averaged Al–Al bond lengths are 0.2794 nm for icosahedral Al_{13}^- and 0.2675 nm for icosahedral $B@Al_{12}^-$. The shortened Al–Al bond in $B@Al_{12}^-$ is ascribed to relaxed geometric strains due to the presence of a small central B atom inside the Al_{12} cage. For both Al_{13}^+ and $B@Al_{12}^+$, the structural symmetry is lowered, giving C_1 symmetry for Al_{13}^+ and C_i symmetry for $B@Al_{12}^+$, and this was attributed to the electron deficiency of 2P shell closure.

In terms of the charge distributions of $Al_{13}^{-}/B@Al_{12}^{-}$ and $Al_{13}^{+}/B@Al_{12}^{+}$, natural population analysis (NPA) shows that the central Al/B atom is negatively charged, while the surface Al atoms (ρ (Al)) have a positive charge of +0.06/+0.15 for

Fig. 5 Calculated NPA charge distributions for Al₁₃ and B@Al₁₂. a-**d** Natural population analysis (NPA) distributions for **a** A_{13}^- , **b** A_{13}^+ , **c** $B@Al_{12}^-$, and **d** $B@Al_{12}^+$ for the optimized structures using PBEO with 6-311+G(d) for Al_{13}^- and $B@Al_{12}^-$ or with 6-311G(d) for Al_{13}^+ and $B@Al_{12}^+$. Along with the representative values, the charge amount is expressed by the color gradation: positive in red and negative in blue. The icosahedral I_h symmetries for Al_{13}^- and $B@Al_{12}^-$ are lowered to C_1 for Al_{13}^+ and C_i for $B@Al_{12}^+$ owing to electron deficiency in the 2P shell. In general, a central Al/B atom is negatively charged, with the surface Al atoms are positively charged, with the exception of a top Al atom in the distorted Al_{13}^+ in (**b**).

Al₁₃⁻/B@Al₁₂⁻. Compared to the central Al atom (ρ (Al) = -1.67), the central B atom is more negatively charged (ρ (B) = -2.68), and the surrounding twelve Al atoms (ρ (Al) = +0.15) are more positively charged than those in Al₁₃⁻ (ρ (Al) = +0.06). For Al₁₃⁺/B@Al₁₂⁺, the positive charges are delocalized over all Al atoms in the cluster, with the exception of one negatively charged Al atom. Therefore, these theoretical calculations show common electronic features wherein the negatively charged central atoms are masked by the surrounding Al atoms.

Discussion

Charge state of the $Al_{13}/B@Al_{12}$ deposited on a *p*-type substrate and reaction mechanism. The charge states of the deposited $Al_{13}/B@Al_{12}$ SAs were found to be significantly influenced by the cluster-surface interactions, which in turn are affected by the molecular character of the organic substrate. More specifically, the *p*-type organic substrate of HB-HBC was found to electronically stabilize the halogen-like $Al_{13}/B@Al_{12}$ NCs on the surface by donating an electron, which led to electron shell closure.

The ultraviolet photoelectron spectroscopy (UPS) reveals the electronic states of the organic substrates (see the UPS spectrum for HB-HBC in Supplementary Fig. 10). More specifically, before the deposition of Al_n , the HOMO energies of the C_{60} and HB-HBC are 2.3 eV⁵⁹ and 1.6 eV (at the peak maximum) below the Fermi level $(E_{\rm F})$, respectively. In addition, the LUMO levels can be accessed by two-photon photoemission spectroscopy; LUMO energies of C_{60} and HB-HBC are 0.7 eV⁵⁹ and 1.4 eV above the E_F for C_{60} and HB-HBC, respectively (see Supplementary Fig. 11). These HOMO and LUMO energies indicate that C₆₀ (HB-HBC) can be regarded as *n*-type (*p*-type) substrates, wherein C_{60} accepts an electron to its LUMO, while HB-HBC donates an electron from its HOMO. Indeed, the quantitative evaluations carried out for the energetics of CT complexation between Al₁₃/B@Al₁₂ and C_{60} /HB-HBC reasonably explain the formation of $Al_{13}+C_{60}$ -/ $B@Al_{12}+C_{60}^{-}$ and $Al_{13}^{-}HB-HBC^{+}/B@Al_{12}^{-}HB-HBC^{+}$ (see Supplementary Note 5 and related contents, i.e., Supplementary Fig. 12, Supplementary Table 2, and Supplementary Table 3).

In the context of O_2 chemisorption on the surfaces, the adsorbed O_2 molecules with two unpaired electrons accept an electron from the surface, forming superoxide (O_2^{-}) or peroxide (O_2^{2-}) ions^{60,61}. Furthermore, the adsorption energy of two O atoms is larger than the dissociation energy of a single O_2

molecule⁶², and therefore, O atoms are preferentially bound to the surface via a dissociative electron attachment process⁶¹. When O_2 molecules react with CT complexes on a substrate, the O_2 molecules preferentially attack the electron-rich sites of the anions. At the deposition of Al13-/B@Al12- SAs onto the C60 and HB-HBC substrates, as mentioned above, an electron transfer takes place to form $Al_{13}+C_{60}-B@Al_{12}+C_{60}-$ on C_{60} and Al₁₃⁻HB-HBC⁺/B@Al₁₂⁻HB-HBC⁺ on HB-HBC. Comparing the electron affinities (EAs) of the C₆₀ $(2.68 \text{ eV})^{63}$ and Al₁₃/ B@Al₁₂ SAs $(3.1-3.6 \text{ eV})^{33,64,65}$, it is easier to transfer an electron from C_{60}^- to O_2 than from $Al_{13}^-/B@Al_{12}^-$. In other words, C_{60} , which is generated by the deposition of Al₁₃/B@Al₁₂, facilitates the dissociative electron attachment of O2, resulting in the immediate oxidation of $Al_{13}^+/B@Al_{12}^+$ cations with O_2^- or O⁻ through a Coulombic attraction. Therefore, the SA nature of $Al_{13}^{-}/B@Al_{12}^{-}$ is reinforced by *p*-type molecular decoration, which renders it possible to fabricate assembled surfaces of chemically robust Al-based SAs.

To conclude, we have successfully characterized the series of Al_n NCs deposited on an *n*-type C_{60} and *p*-type HB-HBC substrates. The XPS results reveal that the *n*-type C_{60} substrate possessing a high *EA* withdraws an electron from the Al_n NCs, resulting in a deviation from the electron shell closure. In contrast, the *p*-type HB-HBC substrate donates one electron the Al_n NCs, generating electronically stable $Al_{13}^-/B@Al_{12}^-$ SAs (40 e⁻). The chemical stabilities of the deposited Al_n examined by step-by-step O_2 exposure are shown to be significantly influenced by their charge states on the surface, wherein the stability is enhanced in the 40 e⁻ systems of $Al_{13}/HB-HBC$ and $B@Al_{12}/HB-HBC$ along with icosahedral rigidity.

Overall, we have demonstrated the importance of optimizing the cluster–surface interactions to achieve stable depositions of $Al_{13}^{-}/B@Al_{12}^{-}$ SAs. It has also been demonstrated that the molecular decoration of a substrate aids in controlling the local electronic state through the generation of such cluster–surface interactions. We believe that this molecular strategy for the stable deposition of $Al_{13}/B@Al_{12}$ could facilitate the fabrication of SA assemblies for all functional SAs generated in the gas phase.

Methods

Sample preparation. The samples of Al_n or Al_nB_m NCs deposited on organic C₆₀ and HB-HBC substrates were prepared in an integrated vacuum chamber, including an MSP source, NC deposition, organic evaporation, and photoelectron spectroscopy systems^{16,40,41}. The organic C₆₀ and HB-HBC substrates were prepared on cleaned HOPG by thermal evaporation in ultrahigh vacuum (UHV) conditions (<3 × 10⁻⁸ Pa). The thicknesses were controlled at 2 and 5 MLs for C₆₀

and HB-HBC, respectively, and were monitored using a quartz crystal microbalance. Commercially available C_{60} (Aldrich, sublimed, 99.9%) was used, while HB-HBC was synthesized (see Supplementary Note 1)⁶⁶.

Anionic Al clusters (Al_n) were generated using an MSP system (Ayabo Corp. nanojima-NAP-01)²⁵, in which the Al targets were sputtered with Ar⁺ ions in the MSP aggregation cell. After clustering atomic Al vapors into Al_n⁻ in a cooled (77 K) He gas flow, the Al_n^- NCs were introduced into a quadrupole (Q) mass filter (Extrel CMS; MAX-16000) through ion optics. The production conditions were optimized by monitoring the mass spectra of Al_n^- (see Supplementary Fig. 2) to maximize the ion intensities at the chosen m/z ratios. The mass-selected Al_n NCs were then deposited on the C₆₀ and HB-HBC substrates with a mass resolution of $m/\Delta m \sim 70$, which was sufficient to exclude the co-deposition of minor products with neighboring m/z values (see Supplementary Fig. 2). The collision energy of the Al_n^- ions was controlled by applying a bias voltage to the substrates (typically +5 V), satisfying the soft-landing conditions (<10 eV/cluster). The number of deposited Al_n^- ions was counted as 2.9×10^{13} clusters, where the coverage of Al_n on the substrates was estimated as 0.6 MLs, assuming a deposition area of 2.8×10^{13} nm² (6 mm in diameter) and an Al_n size estimated by a cubicroot interpolation between the sizes of the Al atom (n = 1) and the icosahedral Al_n (n = 13 and 55) (i.e., 0.62 nm for n = 7 and 0.98 nm for n = 24 in diameter). The estimated coverage was verified by XPS and UPS measurements with the step-bystep deposition of NCs^{40,41}. The deposited samples were transferred to the photoelectron spectroscopy system connected to the cluster deposition system while maintaining UHV conditions. More detailed procedures for sample preparation were described in Supplementary Note 2.

Photoelectron spectroscopy. XPS measurements were performed using an Mg Ka (hv = 1253.6 eV) X-ray source. Photoelectrons emitted from the sample surface were collected with a hemispherical electron energy analyzer (VG SCIENTA, R3000) at a detection angle of 45° from the surface normal. The BE was calibrated using the Au 4 f core level (84.0 eV). It was ensured that no charging effect was observed during any of the XPS measurements. In the XPS analyses, after subtracting the Shirley background, peak fitting was performed by instrumental broadening determined from the Au 4f peak profile (Voigt function with a full width at half maximum (FWHM) of 1.09 eV; the Gaussian and Lorentzian widths were 0.75 and 0.56 eV, respectively). A He–I discharge lamp (hv = 21.22 eV) was used for the UPS measurements.

To examine the oxidative reactivities of the deposited Al_n NCs, the samples were exposed to O₂. The amount of O₂ exposure was defined as Langmuir units (L = 1.33 × 10⁻⁴ Pa·s). The O₂ gas was introduced into the XPS/UPS system using a variable leak valve for low exposure levels (\leq 10⁴ L). At higher exposure levels (>10¹⁰ L), the sample was exposed to O₂ in a UHV chamber isolated from the XPS/UPS system. All XPS/UPS measurements and O₂ exposures were performed at room temperature.

Density functional theory (DFT) calculations. Geometry optimizations for the Al_{13}^- , $B@Al_{12}^-$, Al_{13}^+ , and $B@Al_{12}^+$ cluster ions with singlet spin states were performed by DFT implemented in the Gaussian 16 program⁶⁷. All equilibrium geometries were optimized until no imaginary frequencies were found. The hybrid exchange-correlation function PBE0^{68,69} was employed at 6-311+G(d) for Al_{13}^- and $B@Al_{12}^-$ and at 6-311G(d) for Al_{13}^+ and $B@Al_{12}^+$. Population analyses were performed using NPA⁷⁰ for the total electron density obtained at the same level of DFT calculations.

Data availability

The data that support the findings of this study can be found in the manuscript, Supplementary information, or are available from the corresponding author upon request.

Code availability

The codes used for the analysis in the current study are available from the corresponding author upon request.

Received: 20 September 2021; Accepted: 17 February 2022; Published online: 14 March 2022

References

- Cleveland, C. L. & Landman, U. Dynamics of cluster-surface collisions. Science 257, 355–361 (1992).
- Bromann, K. et al. Controlled deposition of size-selected silver nanoclusters. Science 274, 956–958 (1996).
- Landman, U. Materials by numbers: computations as tools of discovery. Proc. Natl Acad. Sci. USA 102, 6671–6678 (2005).
- Johnson, G. E., Gunaratne, D. & Laskin, J. Soft- and reactive landing of ions onto surfaces: concepts and applications. *Mass Spectrom. Rev.* 35, 439–479 (2016).

- Zhu, C., Yang, G., Li, H., Du, D. & Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. *Anal. Chem.* 87, 230–249 (2015).
- Popok, V. N., Barke, I., Campbell, E. E. B. & Meiwes-Broer, K.-H. Cluster-surface interaction: From soft landing to implantation. *Surf. Sci. Rep.* 66, 347–377 (2011).
- Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. *Cattech* 6, 102–115 (2002).
- Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au₈ clusters on MgO. Science **307**, 403–407 (2005).
- Landman, U., Yoon, B., Zhang, C., Heiz, U. & Arenz, M. Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime. *Top. Catal.* 44, 145–158 (2007).
- Crampton, A. S., Rötzer, M. D., Landman, U. & Heiz, U. Can support acidity predict sub-nanometer catalyst activity trends? ACS Catal. 7, 6738–6744 (2017).
- Marcus, R. A. Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angew. Chem. Int. Ed. 32, 1111–1121 (1993).
- 12. Wang, Y. Photophysical properties of fullerenes/N,N-diethylanaline charge transfer complexes. J. Phys. Chem. 96, 764–767 (1992).
- Akamatsu, H., Inokuchi, H. & Matsunaga, Y. Electrical conductivity of the perylene-bromine complex. *Nature* 173, 168–169 (1954).
- 14. Yamada, J., Akutsu, H., Nishikawa, H. & Kikuchi, K. New trends in the synthesis of π -electron donors for molecular conductors and superconductors. *Chem. Rev.* **104**, 5057–5084 (2004).
- Duffe, S. et al. Penetration of thin C₆₀ films by metal nanoparticles. *Nat. Nanotechnol.* 5, 335–339 (2010).
- Nakaya, M., Iwasa, T., Tsunoyama, H., Eguchi, T. & Nakajima, A. Formation of a superatom monolayer using gas-phase-synthesized Ta@Si₁₆ nanocluster ions. *Nanoscale* 6, 14702–14707 (2014).
- 17. Castleman, A. W. Jr. & Khanna, S. N. Clusters, superatoms, and building blocks of new materials. J. Phys. Chem. C. 113, 2664–2675 (2009).
- Castleman, A. W. Jr. From elements to clusters: the periodic table revisited. J. Phys. Chem. Lett. 2, 1062–1069 (2011).
- Jena, P. Beyond the periodic table of elements: The role of superatoms. J. Phys. Chem. Lett. 4, 1432–1442 (2013).
- Tomalia, D. A. & Khanna, S. N. A Systematic framework and nanoperiodic concept for unifying nanoscience: Hard/soft nanoelements, superatoms, meta-atoms, New emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. *Chem. Rev.* 116, 2705–2774 (2016).
- Luo, Z. & Castleman, A. W. Jr. Special and general superatoms. Acc. Chem. Res. 47, 2931–2940 (2014).
- Reber, A. C. & Khanna, S. N. Superatoms: electronic and geometric effects on reactivity. Acc. Chem. Res. 50, 255–263 (2017).
- Jena, P. & Sun, Q. Super atomic clusters: design rules and potential for building blocks of materials. *Chem. Rev.* 118, 5755–5870 (2018).
- Ferrari, P., Vanbuel, J., Janssens, E. & Lievens, P. Tuning the reactivity of small metal clusters by heteroatom doping. *Acc. Chem. Res.* 51, 3174–3182 (2018).
- Tsunoyama, H., Shibuta, M., Nakaya, M., Eguchi, T. & Nakajima, A. Synthesis and characterization of metal-encapsulating Si₁₆ cage superatoms. *Acc. Chem. Res* 51, 1735–1745 (2018).
- Bergeron, D. E., Castleman, A. W. Jr., Morisato, T. & Khanna, S. N. Formation of Al₁₃I⁻: evidence for the superhalogen character of Al₁₃. *Science* **304**, 84–87 (2004).
- Reveles, J. U., Khanna, S. N., Roach, P. J. & Castleman, A. W. Jr. Multiple valence superatoms. *Proc. Natl Acad. Sci. USA* 103, 18405–18410 (2006).
- Reber, A. C., Khanna, S. N. & Castleman, A. W. Jr Superatom compounds, clusters, and assemblies: ultra alkali motifs and architectures. J. Am. Chem. Soc. 129, 10189–10194 (2007).
- Pal, R. et al. Probing the electronic and structural properties of doped aluminum clusters: M Al₁₂⁻ (M=Li, Cu, and Au). J. Chem. Phys. 128, 024305 (2008).
- Leuchtner, R. E., Harms, A. C. & Castleman, A. W. Jr Aluminum cluster reactions. J. Chem. Phys. 94, 1093–1101 (1991).
- Yin, B. & Luo, Z. Thirteen-atom metal clusters for genetic materials. Coord. Chem. Rev. 400, 213053 (2019).
- Li, X., Wu, H., Wang, X.-B. & Wang, L.-S. s-p Hybridization and electron shell structures in aluminum clusters: a photoelectron spectroscopy study. *Phys. Rev. Lett.* 81, 1909–1912 (1998).
- 33. Knight, W. D. et al. Electronic shell structure and abundances of sodium clusters. *Phys. Rev. Lett.* **52**, 2141–2143 (1984).
- Khanna, S. N. & Jena, P. Assembling crystals from clusters. *Phys. Rev. Lett.* 69, 1664–1667 (1992).
- Claridge, S. A. et al. Cluster-assembled materials. ACS Nano 3, 244–255 (2009).
- Yin, B. & Luo, Z. Coinage metal clusters: from superatom chemistry to genetic materials. *Coord. Chem. Rev.* 429, 213643 (2021).

ARTICLE

- Nakajima, A., Kishi, T., Sugioka, T. & Kaya, K. Electronic and geometric structures of aluminum-boron negative cluster ions (Al_nB_m⁻). *Chem. Phys. Lett.* 187, 239–244 (1991).
- Akutsu, M. et al. Experimental and theoretical characterization of aluminumbased binary superatoms of Al₁₂X and their cluster salts. *J. Phys. Chem. A* 110, 12073–12076 (2006).
- Bianconi, A., Bachrach, R. Z., Hagstrom, S. B. M. & Flodström, S. A. Al-A1₂O₃ interface study using surface soft-x-ray absorption and photoemission spectroscopy. *Phys. Rev. B* 19, 2837–2843 (1973).
- Shibuta, M. et al. Chemical characterization of an alkali-like superatom consisting of a Ta-encapsulating Si₁₆ cage. J. Am. Chem. Soc. 137, 14015–14018 (2015).
- Ohta, T., Shibuta, M., Tsunoyama, H., Eguchi, T. & Nakajima, A. Charge transfer complexation of Ta-encapsulating Ta@Si₁₆ superatom with C₆₀. J. Phys. Chem. C. 120, 15265–15271 (2016).
- Walter, M. et al. Experimental and theoretical 2p core-level spectra of sizeselected gas-phase aluminum and silicon cluster cations: chemical shifts, geometric structure, and coordination-dependent screening. *Phys. Chem. Chem. Phys.* 21, 6651–6661 (2019).
- Kambe, T., Haruta, N., Imaoka, T. & Yamamoto, K. Solution-phase synthesis of Al₁₃⁻ using a dendrimer template. *Nat. Commun.* 8, 2046 (2017).
- Martinson, C. W. B. & Flodstrom, S. A. Oxygen adsorption on aluminum single crystal faces studied by AES, XPS and LEED. *Surf. Sci.* 80, 306–316 (1979).
- van Heijnsbergen, D., Demyk, K., Duncan, M. A., Meijer, G. & von Helden, G. Structure determination of gas phase aluminum oxide clusters. *Phys. Chem. Chem. Phys.* 5, 2515–2519 (2003).
- 46. Burgert, R. et al. Spin conservation accounts for aluminum cluster anion reactivity pattern with O₂. *Science* **319**, 438–442 (2008).
- 47. Sweeny, B. C. et al. Thermal kinetics of $Al_n^- + O_2$ (n = 2-30): measurable reactivity of Al_{13}^- . J. Phys. Chem. A **123**, 6123–6129 (2019).
- Sweeny, B. C. et al. Redefining the mechanism of O₂ etching of Al_n⁻ superatoms: an early barrier controls reactivity, analogous to surface oxidation. J. Phys. Chem. Lett. 11, 217–220 (2020).
- Nakajima, A., Hoshino, K., Naganuma, T., Sone, Y. & Kaya, K. Ionization potentials of aluminum-sodium bimetallic clusters (Al_nNa_m). *J. Chem. Phys.* 95, 7061–7066 (1991).
- Aguado, A. & López, J. M. Structures and stabilities of Al_n⁺, Al_n, and Al_n⁻ (n = 13-34) clusters. J. Chem. Phys. 130, 064704 (2009).
- 51. Drebov, N. & Ahlrichs, R. Structures of Al_m its anions and cations up to n = 34: a theoretical investigation. J. Chem. Phys. **132**, 164703 (2010).
- Iwasa, T. & Nakajima, A. Geometric, electronic, and optical properties of a boron-doped aluminum cluster of B₂Al₂₁⁻. *Chem. Phys. Lett.* 582, 100–104 (2013).
- Smith, J. C., Reber, A. C., Khanna, S. N. & Castleman, A. W. Jr. Boron substitution in aluminum cluster anions: magic clusters and reactivity with oxygen. J. Phys. Chem. A 118, 8485–8492 (2014).
- Chauhan, V., Reber, A. C. & Khanna, S. N. Strong lowering of ionization energy of metallic clusters by organic ligands without changing shell filling. *Nat. Commun.* 9, 2357 (2018).
- Bauer, S. H. Oxidation of B, BH, BH₂, and B_mH_n species: thermochemistry and kinetics. *Chem. Rev.* 96, 1907–1916 (1996).
- Garland, N. L. & Nelson, H. H. Temperature dependence of the kinetics of the reaction of Al+O₂→AlO+O. *Chem. Phys. Lett.* 191, 269–272 (1992).
- Gong, X. G. & Kumar, V. Enhanced stability of magic clusters: A case study of icosahedral Al₁₂X, A=B, Al, Ga, C, Si, Ge, Ti, As. *Phys. Rev. Lett.* 70, 2078–2081 (1993).
- Zhao, J., Du, Q., Zhou, S. & Kumar, V. Endohedrally doped cage clusters. *Chem. Rev.* **120**, 9021–9163 (2020).
- 59. Shibuta, M. et al. Direct observation of photocarrier electron dynamics in C_{60} films on graphite by time-resolved two-photon photoemission. *Sci. Rep.* **6**, 35853 (2016).
- Höfer, U., Morgen, P., Wurth, W. & Umbach, E. Metastable molecular precursor for the dissociative adsorption of oxygen on Si(111). *Phys. Rev. Lett.* 55, 2979–2982 (1985).
- Libisch, F., Huang, C., Liao, P., Pavone, M. & Carter, E. A. Origin of the energy barrier to chemical reactions of O₂ on Al(111): Evidence for charge transfer, not spin selection. *Phys. Rev. Lett.* **109**, 198303 (2012).
- Toyoshima, I. & Somorjai, G. A. Heats of chemisorption of O₂, H₂, CO, CO₂, and N₂ on polycrystalline and single crystal transition metal surfaces. *Catal. Rev. Sci. Eng.* 19, 105–159 (1979).
- Huang, D. L., Dau, P. D., Liu, H. T. & Wang, L. S. High-resolution photoelectron imaging of cold C₆₀⁻ anions and accurate determination of the electron affinity of C₆₀. *J. Chem. Phys.* **140**, 224315 (2014).

- Ganteför, G., Gausa, M., Meiwes-Broer, K. H. & Lutz, H. O. Photoelectron spectroscopy of jet-cooled aluminium cluster anions. Z. Phys. D. 9, 253–261 (1988).
- 65. Kawamata, H., Negishi, Y., Nakajima, A. & Kaya, K. Electronic properties of substituted aluminum clusters by boron and carbon atoms (Al_nB_m^{-/} Al_nC_m⁻); New insights into s-p hybridization and perturbed shell structures. *Chem. Phys. Lett.* 337, 255–262 (2001).
- Rathore, R. & Burns, C. L. A practical one-pot synthesis of soluble hexa-perihexabenzocoronene and isolation of its cation-radical salt. J. Org. Chem. 68, 4071–4074 (2003).
- 67. Frisch, M. J. et al. Gaussian 16 Revision A.03 (Gaussian, Wallingford, CT, USA, 2016).
- Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).
- 69. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* 77, 3865–3868 (1996).
- Reed, A. E., Weinstock, R. B. & Weinhold, F. Natural population analysis. J. Chem. Phys. 83, 735–746 (1985).

Acknowledgements

We are grateful to Professor Hideyuki Tsukada (Yokohama City University) for supplying the HB-HBC samples, to Professor Takashi Yokoyama (Yokohama City University) for providing information regarding the molecular deposition of HB-HBC, and to Dr. Hironori Tsunoyama for providing some calculation results. This work is partly supported by JSPS KAKENHI of Grants-in-Aid for Scientific Research (A) No. 19H00890 (A.N.) and Scientific Research (C) No. 18K04942 (M.S.), for Challenging Research Nos. 17H06226(A.N.) and 21K18939 (A.N.), and for Transformative Research Areas (A) "Hyper-Ordered Structures Science" (21H05573) (A.N.).

Author contributions

M.S., T.I., T.K., T. E., and A.N. contributed to the experimental processes. M.S., T.I., and A.N. carried out the simulations and theoretical interpretations. A.N. supervised the overall project. All authors have given approval to the final version of the manuscript.

Competing interests

A.N. is an inventor on JAPAN patent JP 5493139, submitted by the JST agency and Ayabo Corp., which covers a nanocluster generator. The remaining authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-29034-9.

Correspondence and requests for materials should be addressed to Atsushi Nakajima.

Peer review information *Nature Communications* thanks Zhixun Luo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2022