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DIAMetAlyzer allows automated false-discovery
rate-controlled analysis for data-independent
acquisition in metabolomics
Oliver Alka 1,2✉, Premy Shanthamoorthy3,4, Michael Witting 5,6,7, Karin Kleigrewe 8,

Oliver Kohlbacher 1,2,9 & Hannes L. Röst 3,4,10✉

The extraction of meaningful biological knowledge from high-throughput mass spectrometry

data relies on limiting false discoveries to a manageable amount. For targeted approaches in

metabolomics a main challenge is the detection of false positive metabolic features in the low

signal-to-noise ranges of data-independent acquisition results and their filtering. Another

factor is that the creation of assay libraries for data-independent acquisition analysis and the

processing of extracted ion chromatograms have not been automated in metabolomics. Here

we present a fully automated open-source workflow for high-throughput metabolomics that

combines data-dependent and data-independent acquisition for library generation, analysis,

and statistical validation, with rigorous control of the false-discovery rate while matching

manual analysis regarding quantification accuracy. Using an experimentally specific data-

dependent acquisition library based on reference substances allows for accurate identification

of compounds and markers from data-independent acquisition data in low concentrations,

facilitating biomarker quantification.
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Mass spectrometry (MS) is a flexible tool that allows for
the acquisition of data in either an untargeted or a
targeted fashion. While the untargeted approach aims

at detecting as many metabolites as possible, the targeted
approach focuses on the most accurate quantification of a small
subset of metabolites. Thus, targeted methods such as Multiple
Reaction Monitoring (MRM) or Parallel Reaction Monitoring
(PRM) are limited in analyte coverage but provide a precise
quantification. Untargeted approaches often use data-dependent
acquisition (DDA), which selects a large number of metabolites
for fragmentation in a data-driven manner, based on the pre-
cursor selection. Data-independent acquisition (DIA) cycles
through a series of predetermined mass ranges (DIA or SWATH
windows) to acquire a high-resolution MS2 spectrum, thus
boosting reproducibility by sampling the entire mass range. This
allows for the systematic, unbiased acquisition of fragmentation
spectra, at the cost of acquiring highly multiplexed spectra since
the mass isolation range for each DIA window is generally larger
than for other methods. A comparison of DDA and DIA data
acquisition revealed that DDA excels in MS2 spectrum quality,
whereas DIA shows a better performance in quantitative preci-
sion and MS2 spectrum coverage1. A major challenge of DIA for
the field is the measurement of multiplexed spectra, which are
considered lower quality.

Two distinct strategies exist to analyse DIA metabolomics data.
Most of the current algorithms use an untargeted strategy based
on deconvolution and either specialize in identification via
spectral library search or in quantification via targeted extraction
based on their deconvoluted pseudo-MS2 spectra2–4.

In a targeted analysis strategy, the compounds to quantify are
defined in advance. This requires knowledge of suitable analyte
assays, i.e., retention times, and precursor masses with corre-
sponding fragment masses (transitions). These transitions are
collected in a so-called assay library which is then used to pro-
duce fragment-level extracted ion chromatograms (XICs) for each
analyte fragment ion around the expected chromatographic
retention time. These XICs (one for each fragment ion) then have
to be verified for quality and compared with an internal (spiked-
in) or external standard, which is currently a laborious and
manual task that requires specialized expertize and training.
While both the creation of assay libraries for DIA analysis and the
processing of XICs has been automated in other fields5, this is not
the case in metabolomics. Additionally, a main challenge in tar-
geted metabolomics is the detection of false positive metabolic

features in the low signal-to-noise ranges of DIA results that are
unable to be filtered1.

Here, we present a workflow based on the targeted strategy
which solves these issues, first integrating a complete end-to-end
pipeline including assay library generation into a widely used
software suite (OpenMS6) and secondly implementing a proce-
dure to estimate robust and accurate false-discovery rates (FDRs)
for DIA metabolomics. Our DIAMetAlyzer software combines
DDA and DIA metabolomics data by deriving libraries based on
high quality DDA MS2 spectra with few interferences and then
subsequently uses DIA to perform quantification, exploiting the
improved MS2 coverage and superior quantification performance
of DIA1. Fully automated construction of the assay library per-
mits the discovery and quantification of unknown metabolites
and still achieves the quantification accuracy of a manually
curated targeted approach. A combination of semi-supervised
machine learning and on-the-fly decoy generation permits the
estimation of statistically well-calibrated FDRs for the resulting
data sets.

Results
DIAMetAlyzer workflow. The workflow takes advantage of an
experiment-specific assay library curated based on available DDA
data and is thus tailored to a specific question and instrument. In
metabolomics, annotating fragment ions with the underlying
structure is not trivially possible, unlike proteomics. We use
SIRIUS to annotate fragments using their compositional frag-
mentation tree approach7,8. The method models the fragmenta-
tion process based on available MS2 spectra and the chemical
composition of the precursor9. In proteomics, decoys can then be
generated using common approaches to alter the peptide
sequence to determine the FDR10. Following the idea of a target-
decoy approach, we use Passatutto as the basis for re-rooting of
fragmentation trees to generate high-quality decoys11. The
resulting target-decoy assay library allows for the targeted
extraction and scoring of targeted transitions from the DIA data
with FDR control.

The workflow follows multiple steps (Fig. 1). Candidate
identification. Feature detection, adduct grouping, and accurate
mass search are applied to DDA data. Library construction. The
knowledge determined about the compound identification,
potential adducts, and the corresponding fragment spectra are
used to perform fragment annotation via compositional
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Fig. 1 DIAMetAlyzer - a pipeline for assay library generation and targeted analysis with statistical validation. DDA data is used for candidate
identification containing feature detection, adduct grouping and accurate mass search. Library construction uses fragment annotation via compositional
fragmentation trees (SIRIUS) and decoy generation using a fragmentation tree re-rooting method (Passatutto) to create a target-decoy assay library. This
library is used in a second step to analyse metabolomics DIA data by performing targeted extraction (OpenSWATH), scoring and statistical validation
(PyProphet).
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fragmentation trees by using SIRIUS and extract transitions to
build an assay library. FDR estimation is based on the target-
decoy approach, with decoys being generated using the recently
proposed re-rooting of fragmentation trees by Passatutto, which
reduces bias in decoy generation. Targeted extraction. The assay
library is then used to analyze DIA data. Targeted extraction
involves chromatogram extraction and peak group scoring in
OpenSWATH5 (Supplementary Fig. 1). We modified Open-
SWATH to support targeted extraction of metabolomics data.
This feature is included in the latest release of OpenSWATH (see
online documentation). Here, chromatograms in a user-specified
retention time window are extracted from the DIA data based on
the transition entries in the assay library. They encompass
precursor and its isotope traces as well as the specified MS2
fragment traces. All extracted traces are grouped in so-called peak
groups, which represent a possible analyte with MS1 and MS2
traces. For each peak group, a score matrix is generated based on
different scores, such as co-elution and chromatogram shape. A
detailed description of the OpenSWATH scores can be found in
the original publication. Statistical validation. FDR estimation
originated from the increasing amounts of data in the genomics
field. It is the expected ratio of false positive classifications (false
discoveries) to the total number of positive classifications. The
“discovery” stands for the items that you label as “positive”, and
hence could be true positives or false positives, in the gene
expression sense as the genes that you label as differentially
expressed12. In 2007, Elias et al. introduced the concept of target-
decoy FDR in proteomics10, where it is used to distinguish correct
from incorrect peptide identifications. In the targeted field
experimental specific targets and decoys are added to the assay
library (prior knowledge database) used for targeted extraction.
For available targets and decoys, peak groups are extracted and
scored. We use semi-supervised learning to build a composite
score (discriminant score) out of individual peak group scores
and estimate q-values by fitting a null distribution using a version
of PyProphet adopted to metabolomics13–15. To prevent over-
fitting, we chose a straightforward linear model (LDA) for target-
decoy discrimination using peak group scores with a low cross-
correlation, which resulted in an excellent performance on our
benchmark dataset (Supplementary Fig. 2).

FDR filtering and library coverage. To assess FDR estimation
accuracy and quantification performance, the developed pipeline
was used for assay library generation and the subsequent analysis
of the benchmark dataset (Methods). The analysis was performed
automatically via DIAMetAlyzer and benchmarked against the
manually annotated ground truth extracted via Skyline16. Using
the DIAMetAlyzer workflow, we were able to reduce the number
of false positive peak groups by 91% (from 1471 to 125) when
applying a 5% FDR threshold to our results (Fig. 2a). The number
of true positive peak groups were only reduced by 12% by the
filtering step (from 3479 to 3071). Applying a 1% FDR filter, false
positive peak groups were reduced by 98% (from 1471 to 19), and
true positive peak groups by 28% (from 3479 to 2523). This
demonstrates that our workflow can reduce the number of false
positive detections/quantifications through an accurate target-
decoy based false-discovery rate approach for DIA data analysis
in metabolomics.

Following the pipeline from the start, first, an assay library was
generated using reference mixes (Agilent Pesticide Mix, APM)
diluted in solvent, measured using DDA acquisition and analyzed
using the DIAMetAlyzer workflow (Fig. 2b). Since the goal was
accurate identification and quantification, only high-quality assays
were included in the library. In addition to 9% undetected
pesticides, we filtered 14% of compounds that could not be detected

via MS1 or did not possess a valid MS2 spectrum (fewer than four
peaks, to allow for fragment annotation). In the library construction
step, filtering by the number of transitions greatly affects the
coverage of metabolites (three transitions: 60% coverage, two
transitions: 71% coverage, one transition: 77% coverage). By using
data from multiple collision energy ranges (20–50 eV and
50–80 eV), coverage of the assay library can be increased by 11%
to 71% (three transitions) (Supplementary Fig. 3).

To ensure the development of a high-quality assay library,
theoretical simulations were used to determine the number of
transitions required to reduce ambiguity and improve the number
of unique identifications. Using the pesticides dataset with the
NIST 17 LC/MS library as a combined background metabolome,
MS methods were simulated with varying accuracy for both the
precursor and fragment m/z windows, while alternating the
selected number of transitions for each compound. Scoring both
MS levels using three transitions increased the number of
uniquely identified compounds in our simulation by ~2.8-fold
and ~1.5-fold in comparison to MS1-only and MRM-based
analyses, demonstrating the importance of both high-resolution
MS1 and MS2 data (Supplementary Fig. 4a, rightmost bars).
Based on these results, an assay library with three transitions has
been chosen for downstream analyses.

Second, the developed assay library was used to perform the
analysis of 30 DIA samples with APM spiked-in human blood
plasma acquired in DIA mode using sequential window
acquisition of all theoretical mass spectra (SWATH) (Supple-
mentary Table 1). The pesticide mix was measured in triplicates
and spiked into human plasma in a 4-fold dilution series,
spanning over five orders of magnitude in dynamic range
(Supplementary Table 2, Supplementary Fig. 5). Data was
measured in a 10-step concentration series at two collision
energy ranges. The targeted extraction was performed auto-
matically via DIAMetAlyzer and benchmarked against the
manually annotated ground truth extracted via Skyline.

Accuracy of FDR estimation. To evaluate the accuracy of our
FDR estimates, the automatic and manual analyses were com-
pared to determine the deviation of the ground truth FDR from
the FDR estimated by the DIAMetAlyzer (Fig. 3a). We found that
the FDR estimated by fragmentation tree re-rooting is slightly
conservative, with a slight overestimation for data acquired at
lower ranges of collision energy (20–50 eV). In comparison, FDR
estimates for data acquired at higher ranges of collision energy
(50–80 eV) demonstrated an increased abundance of overlapping
fragments, resulting in more ambiguous analyses (Supplementary
Fig. 6). To assess the accuracy of the classifier, we determined the
precision and recall based on different estimated FDR thresholds
using the best peak group rank (Fig. 3b). Our approach produced
an area under the precision-recall curve (AUC) of 0.96, resulting
in over 75% recall at 95% precision (or 5% FDR).

Quantification performance. To determine the quantification
performance, the results were filtered using a 5% FDR threshold
and normalized for each metabolite adduct combination by the
intensity of their highest concentration. More than half of the
initial metabolites could be detected at half maximal dilution
(1:1,024), based on the last dilution step a metabolite was
observed in (Fig. 3c, Supplementary Fig. 7). The limit of detection
of the individual metabolites were assessed using the unfiltered
results, based on an S/N threshold of 10 (Supplementary Table 3).
Comparing the quantification of manual and automatic analyses,
the precision of the automated method matches manual analysis
and outperforms it in some dilution steps (Fig. 3d). In all tech-
nical replicates, the median coefficient of variation (CV) of non-
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normalized quantified signals was smaller than 0.2 (Fig. 3e,
Supplementary Fig. 8).

Comparison to state-of-the-art algorithms. To benchmark the
performance of the DIAMetAlyzer against state-of-the-art analysis
algorithms, we compared it to MS-DIAL2 and MetaboDIA17. MS-
DIAL is a tool specialized in untargeted SWATH analysis based
on spectral deconvolution, using computationally constructed
pseudo-MS2 spectra for identification via spectral library search.
Similar to the DIAMetAlyzer, the functionality of MS-DIAL is
dependent on the spectral library space provided to the software.
Here, to allow a fair comparison between the tools, we used our
ground truth APM dataset specifying our assay library as a
spectral library (Supplementary Fig. 9). The DIAMetAlyzer was
able to identify 156 true positives and 3 false positive compounds
in comparison to the ground truth (at 5% FDR). MS-DIAL was
able to identify 84 true positives, 5 false positives and was not able
to identify 70 compounds (false negatives). In this setting, we
could show the advantage of the DIAMetAylzer targeted extrac-
tion strategy with false-discovery rate control based on reference
compounds in comparison to untargeted deconvolution.

MetaboDIA is a tool capable of building a consensus MS/MS
library based on DDA data using MS-based identification and
subsequent quantification via DIA-MS/MS in a non-targeted
manner. We used a publicly available age-related macular
degeneration (AMD) data set (MetaboLights accession MTBLS417)
along with HMDB18 and LIPIDMAPS19 for identification via
accurate mass to construct a library with each tool. The library was
filtered for features found in at least 20% of samples with a
minimum of three MS/MS peaks available.

Libraries generated by both tools show a significant overlap
(66%) of features with agreeing on molecular formula, adducts,
and retention time (Fig. 4a). DIAMetAlyzer generates a larger
number of features compared to MetaboDIA (46 % improvement;
695 compared to 476). Differences between the two libraries are
likely attributable to improved feature detection and more
stringent filtering in the assay library creation step in our pipeline.

Using our targeted quantification with the generated libraries, we
were able to quantify almost twice as many features (811 vs. 440)
with our library in comparison to the MetaboDIA library (Fig. 4b,
Supplementary Fig. 10). When restricting quantification to
identified features, DIAMetAlyzer could still increase quantification
by 25% compared to a MetaboDIA-derived library. Interestingly,
we found 144 features uniquely identified by MetaboDIA from the
DDA data, allowing us to build a combined library which results in
a total of 682 quantified features. These exclusive features were
either not detected by our pipeline or were filtered out in the assay
library generation step. Additional details on the feature detection,
feature linking, and quantitative comparison with MetaboDIA are
given in the supplementary material (Supplementary Figs. 11–14).

To assess the biological significance, we used the quantified
features from the DIAMetAlyzer workflow at a 5% FDR
(FDRDIAMetAlyzer). LIMMA20 was used with a Benjamini &
Hochberg correction for multiple testing12 to identify differen-
tially expressed features between the conditions control, choroidal
neovascularization (CNV), and polypoidal choroidal neovascu-
larization (PCV). We found a total of 118 differentially expressed
features (FDRlimma < 0.05), comparable to the 113 features found
using our workflow together with the MetaboDIA library. We
were able to report additional differentially expressed features
using the combined library (162 features) and found the largest
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number of differences (220 differentially expressed features) using
our identification-free pipeline, almost doubling the number of
differentially expressed features.

Biomarker detection. Next, we analyzed the differentially
expressed features to identify individual compounds that could
serve as biomarkers of AMD or be involved in disease etiology
(Supplementary Figs. 15–17). We found major differences

between control and patients in compounds associated with the
classes glycerophospholipids, organic heterocyclic compounds,
sterol lipids, fatty acids, amino acids, and dipeptides. Carnitines
and their metabolites are mainly involved in fatty acid metabo-
lism. Oleoylcarnitine (PCNV= 0.002, PPCV= 0.01), as well as
L-Palmitoylcarnitine (PPCV= 0.02), are upregulated by around
1.5 times in contrast to the control in both or PCV, respectively.
These findings are consistent with previous research suggesting
alterations in the carnitine shuttle pathway in macular
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and manual analysis (CV < 20%)). For c, d, and e, only metabolites detected in triplicates and below a 5% FDR threshold were analyzed and only true
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degeneration21. Our findings suggest that Linoelaidylcarnitine
(PCNV= 0.04; PPCV= 0.03), which showed a similar increase in
addition to the others might be a potential biomarker for AMD.
We found additional biomarker candidates using our
identification-free pipeline at m/z 601.271468 and retention time
579 s (PCNV= 0.0002; PPCV= 0.000008) with an intensity
increase of 5.2 and 5.7 in comparison to the control and at m/z
944.360964 and 311 s (PCNV= 0.005; PPCV= 0.03) with an
intensity increase of 1.7 and 1.9 respectively. In addition to the
findings above, we detected previously reported potential bio-
markers associated with AMD, such as phenylalanine, hypox-
anthine, tyrosine22. We found hypoxanthine levels were
significantly increased in CNV (PCNV= 0.006) by 3.9 times in
contrast to the control, which affects the purine nucleotide cycle
and can lead to apoptosis of photoreceptors23,24. In addition,
gamma-Glutamylphenylalanine (PCNV= 0.002; PPCV= 0.0006),
gamma-Glutamylisoleucine (PCNV= 0.01; PPCV= 0.04) and
dityrosine (PCNV= 0.002; PPCV= 0.03) were deregulated in both
patient groups. Increased serum gamma-glutamyl transferase
(GGT) levels have previously been reported as risk factors for
AMD25. This suggests that gamma-Glutamylphenylalanine with
increased intensity by around 1.6 times in contrast to the control
and gamma-Glutamylisoleucine (1.7 times increase) could

constitute useful metabolic markers for AMD. Additional bio-
markers for AMD could lead to the development of predictive
and or diagnostic models, allowing a deeper understanding of the
disease and an earlier diagnosis, leading to a more timely treat-
ment. In addition, it could allow the identification of potential
therapeutic targets. As a validation, dityrosine, which we found
increased around 1.7 to 2.4 times in contrast to the control, plays
a role in oxidative stress and is associated with macular
degeneration26. Interestingly, the significantly deregulated com-
pounds 5,8,11,14-Eicosatetraenoic acid (EPA) (PPCV= 0.01;
PCNV= 0.04) and 4,7,10,13,16,19-Docosahexaenoic acid (DHA)
(PPCV= 0.006; PCNV= 0.008) demonstrate an increase of 1.4 to
2.0 times in contrast to the control. These have previously been
associated with a reduced risk for neovascular AMD27 (Fig. 4c, d).
An explanation for this finding in the patients could be an
Omega-3 fatty acids rich diet, which is often advised to AMD
patients due to their anti-inflammatory properties28,29. The
identification results of the differential expression analysis are
based on putative identifications via MS1 accurate mass search
and MS2 fragment annotation, corresponding to a level 3
identification30. Here, to reach a level 1 identification, additional
experiments in follow up studies are necessary to validate the
potential biomarkers.
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based on features (molecular formula, adduct and retention time). 66% of the features overlap between the tools (DIAMetAlyzer: green, MetaboDIA: gray,
Overlap: orange). b Number of quantified features using the various libraries in combination with the targeted extraction of DIAMetAlyzer. MetaboDIA,
DIAMetAlyzer, the library of both tools (Combined), DIAMetAlyzer with the functionality to use known unknowns without prior MS1 identification
additionally to the ones with identification (DIAMetAlyzer + Unknowns). c Significant deregulated compound 5,8,11,14-Eicosatetraenoic acid (EPA -
C20H32O2 - based on putative identification) (PCNV= 0.04; PPCV= 0.01) with an increase in mean intensity of 1.4 and 1.7 times in contrast to the control.
d Significant deregulated compound 4,7,10,13,16,19-Docosahexaenoic acid (DHA - C22H32O2 - based on putative identification) (PCNV= 0.008;
PPCV= 0.006) with an increase mean intensity of 1.7 and 2.0 times in contrast to the control. c, d The identification of the compounds is based on MS1
accurate mass search and MS2 fragment annotation. Differential expression was assessed using limma with Benjamini-Hochberg correction. Box plots
indicate median, 25th and 75th percentiles (middle line, Q1 and Q3 within the box, respectively), including 1.5x interquartile range whiskers and outliers
(single points outside this range). Control: gray, n= 20 biologically independent samples, CNV (choroidal neovascularization): green, n= 20 biologically
independent samples, PCV (polypoidal choroidal neovascularization): blue, n= 20 biologically independent samples.
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Discussion
It can be deemed as a limitation that DDA and DIA data have to
be measured for an experiment. The main purpose of the DIA-
MetAlyzer workflow is to perform accurate quantification in a
targeted manner. Here, the DDA data - for example - reference
standards would be measured once to construct the assay library.
This library can then be reused for DIA data analysis measured
with the same experimental setup. In a targeted setting, it is
generally necessary to invest resources to build accurate assays in
order to achieve high-quality targeted results. While DDA is
generally biased towards high abundant analytes, this will not
impact measurements of low complexity, such as pure standards.
When building assay libraries from complex samples, the library
will be biased towards highly abundant analytes. We suggest to
counteract this bias by enhancing such assay libraries with
reference compounds measured from pure standards.

DIAMetAlyzer uses SIRIUS for fragment annotation, so the
limitations in terms of high-resolution instruments and molecular
masses of SIRIUS apply to the workflow as well. High mass
compounds can, in some cases, not be processed by SIRIUS in a
timely manner. The user can set a threshold of 100 s (default) per
compound, to restrict the runtime. As a reference, the assay
library generated from 67 DDA samples, with prior MS1 iden-
tification took around 2.5 h using 10 cores (Intel(R) Xeon(R)
Gold 6140 CPU @ 2.30 GHz). With allowing unknown features, it
took around 12.5 h using 28 cores. The runtime of the complete
KNIME workflow for the targeted pesticide mix experiment,
using one core (Intel Core i7 @ 3.50 GHz), was 36 min. All
runtime improvements of SIRIUS in the future will also impact
the runtime of the workflow.

With the integration of the AssayGeneratorMetabo Node into
OpenMS, we provide an easy-to-use solution for target-decoy
assay library generation in OpenMS using the fragmentation re-
rooting method11. Combining multiple feature detection methods
similar to the combined MetaboDIA and DIAMetAlyzer library is
not straightforward due to interoperability issues between the
tools. For this purpose, we provide means to add decoys at the
assay library level (DecoyGeneratorMetaboTool). For further
details regarding the decoy methods on library level please see
Supplementary Figs. 18 and 19. The so generated target and decoy
assay library can then be appended to the one from the Assay-
GeneratorMetabo. The combined library can be used in the
DIAMetAlyzer workflow for the DIA data analysis.

In conclusion, we present an analysis workflow for metabo-
lomics DIA data that introduces accurate control of the FDR. Our
workflow is based on industry-grade computational libraries and
workflow engines (OpenMS6 and KNIME31,32) and builds on
existing open-source software. It is possible to use the OpenMS
command line tools and algorithms to build the workflow in any
scripting environment, cluster, or cloud infrastructure. Our
adaptive machine learning approach integrates the signal from
MS1 and MS2 levels to optimally separate true signal from noise
and provides a well-calibrated estimate of the FDR. In the past,
without reliable estimates of precision in the reported data, DIA
data was very difficult to analyse for mass spectrometry practi-
tioners and available tools could result in vastly different results.
Our introduction of a standardized workflow that utilizes a sta-
tistically well-calibrated FDR will allow practitioners to analyze
and compare DIA data on equal footing. This extension allows for
improvements in the reliability and robustness of metabolomics
discovery. Importantly, our pipeline can be used in a targeted
setting (quantifying known compounds) as well as in an untar-
geted setting (quantifying unknown compounds using their m/z
patterns). In comparison to MS-DIAL, a software for untargeted
deconvolution, we were able to detect almost twice as many
compounds in the targeted setting. In comparison to MetaboDIA,

a tool for consensus spectral library building for metabolomics
data from DDA data, we were able to almost double the number
of quantified features. In our analysis of a DIA dataset comparing
serum of AMD patients to controls, our workflow allowed us to
identify several previously undetected putative biomarkers for
AMD. Specifically, the use of an experimentally specific DDA
library based on reference substances allows for the accurate
identification of compounds and markers from DIA data in low
concentrations, facilitating biomarker quantification.

Methods
Chemicals. Lyophilized human plasma was obtained from Sigma-Aldrich and
prepared according to the supplied instructions (Sigma-Aldrich, Taufkirchen,
Germany). LC-MS grade solvents were obtained from Sigma-Aldrich (Sigma-
Aldrich, Taufkirchen, Germany). The Agilent LC/MS Pesticide Comprehensive
Mix was obtained from Agilent Technologies (Agilent Technologies, Waldbronn,
Germany).

Sample preparation. Benchmark samples were prepared by spiking different
commercially available pesticide mixes (Agilent Technologies, Waldbronn, Ger-
many) into human plasma metabolite extracts. Human plasma metabolite extracts
were prepared by mixing one part of human plasma (Sigma-Aldrich, Taufkirchen,
Germany) with three parts of precooled acetonitrile (ACN) (4 °C). After cen-
trifugation at 15,871 x g at 4 °C for 15 min the supernatant was transferred, the
solvent evaporated and the residue redissolved in 20% ACN at the original volume
of the used plasma aliquot. This matrix was used to dilute the pesticide mixes in a
dilution series according to Supplementary Table 2. Due to the molecular weight
range of the pesticide mix, the different steps cover a concentration gradient of 5
orders of magnitude (Supplementary Fig. 5). For the preparation of the DDA data,
each pesticide mix was diluted to 1 ng/µL with either solvent or plasma matrix. For
the DIA data, a stock solution of all eight pesticide mixes in the plasma matrix was
prepared with a concentration of 1 ng/µL.

LC-MS/MS analysis. The analysis was performed using a Nexera UHPLC system
(Shimadzu) coupled to a Q-TOF mass spectrometer (TripleTOF 6600, AB Sciex).
Separation of metabolites from the spiked human plasma metabolite extracts was
performed using a UPLC BEH C18 2.1 × 100, 1.7 µm analytic column (Waters
Corp.). The mobile phase was 0.1% formic acid in water (eluent A) and 0.1%
formic acid in ACN (eluent B). The gradient profile was 5% B from 0 to 0.5 min,
100% B at 10 min for 3 min and 5% B at 13.5 to 16 min. A volume of 5 µL of the
sample was injected. As indicated above different samples were measured in DDA
and DIA/SWATH. MS settings were as follows: Gas 1 55, Gas 2 65, Cur 35,
Temperature 500 °C, Ion Spray Voltage 5500 V, declustering potential 80 V
Information Dependent Acquisition was used for the generation of assay libraries.
The IDA duty cycle was 200 ms for MS1, 80 ms for MS2. The mass range of the
TOF MS and MS/MS scans were 50–2000 m/z and the collision energy was ramped
from 20–50 V or 50–80 V depending on the sample. SWATH acquisition was
performed with one TOF MS survey scan (240 ms) followed by 8 SWATH scans
(90 ms). The fragment ion window for SWATH was from 100 to 900 m/z. Here,
variable windows were used, optimized on the plasma matrix using the SWATH
Variable Window Calculator (SCIEX) (Supplementary Table 1).

Analysis. The initial DDA data processing for assay library generation was per-
formed as shown previously, using Proteowizards qTofPeakPicker for centroiding
and msconvert for the conversion to mzML33. Details regarding the conversion are
available in the additional code repository (https://github.com/oliveralka/
DIAMetAlyzer_additional_code/tree/master/convert_bash). The DIA data were
converted using msconvert. The data was analysed using the described workflow
with additional manual validation to acquire the ground truth data. Comparisons
of ground truth data and additional statistical analysis was performed using python
and R (https://github.com/oliveralka/DIAMetAlyzer_additional_code)34. For a
visual inspection of representatives for DDA and DIA data, please see Supple-
mentary Fig. 20.

Workflow. Our workflow is composed of steps for candidate identification, library
construction, targeted extraction, and statistical validation (Fig. 1). Candidate
identification. Data acquired using DDA is used as input for feature detection,
adduct grouping, and accurate mass search. Feature detection is the process of
annotating analytes based on their mass-to-charge, retention time, intensity, and
charge35. Based on the feature space, adduct grouping is used to find possible
adducts36. Annotated features and assigned adducts are then used by accurate mass
search to extract potential compositions from a compound database. Library
construction. Assay library generation is crucial for the targeted analysis of
metabolomics DIA data37. In this context, we provide a tool called AssayGener-
atorMetabo. It is implemented using the OpenMS C++ library6. The tool uses
MS1 and MS2 spectral information and preprocessed feature information to
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perform precursor correction and filtering based on the number of isotopic traces
(data reduction). Afterward, feature mapping is performed to assign MS2 spectra to
a specific feature. To ensure the validity of fragments, fragment annotation assigns
fragments to their compatible metabolite substructures. In this approach, SIRIUS is
used to assign compatible fragments to associated precursors8. From the fragment
annotated spectra, n highest intensity fragments are automatically extracted to
generate potential transitions, which are used for assay library construction. At this
stage, a targeted library is available. For the generation of the MS2 decoys, the
fragmentation tree-based re-rooting method via Passatutto ensures the consistency
of decoy spectra11, which allows the estimation of a false-discovery rate later in the
pipeline. The constructed assay library can be re-used to analyse a multitude of
DIA/SWATH samples. Target-decoy assay libraries from other tools could also be
used for the next step of the pipeline. Targeted extraction. The target-decoy assay
library is used to analyse DIA/SWATH data. Targeted extraction involves chro-
matogram extraction and peak group scoring. This step is performed using a
metabolomics-extended version of OpenSWATH5, a well-established workflow
commonly used in proteomics enabling the targeted analysis of DIA data. Statis-
tical validation. FDR estimation is performed using the target-decoy library in
combination with PyProphet13–15, which was extended to deal with compound
information. In PyProphet the OpenSWATH results were merged, scored on MS1
and MS2 levels using the metabolomics score filter and exported using the export-
compound function. The pipeline is available as KNIME31,32 workflow using
OpenMS6, pyOpenMS38, SIRIUS48, and Passatutto11. For further details, see
Supplementary Fig. 21. The workflow is available in the OpenMS Tutorials (https://
github.com/OpenMS/Tutorials) and on the OpenMS website (https://
www.openms.de/comp/diametalyzer/). Additional details about the workflow can
be found in the supplementary information.

Assay library generation. For assay library generation, the tool AssayGener-
atorMetabo was implemented in C++ using the OpenMS Library6. It uses spectra
information (.mzML) and preprocessed feature information (.featureXML). First
precursor m/z and intensity are reannotated, then preprocessing such as filtering
based on the number of isotope traces can be performed. Afterward, a feature
mapping is used to assign a precursor and its MS2 spectra to a specific feature.
After meta-information extraction, fragment annotation is performed using
SIRIUS48. From the annotated spectra, n transitions are extracted based on a
minimum/maximum intensity threshold. The same metabolite and adduct com-
bination may be found multiple times in one sample using accurate mass search,
for example, due to experimental reasons, such as column saturation or isobaric
metabolites. Currently, the ambiguity is resolved by using the spectrum with the
highest precursor intensity. The constructed target library can be exported in
various formats (tsv, traML, pqp).

Decoy generation. The fragmentation tree-based method from Passatutto11 was
used for decoy generation. The fragmentation trees were acquired using fragment
annotation via SIRIUS48. The SIRIUS4 tree format had to be parsed into a Pas-
satutto compatible format. After re-rooting, the decoy spectra were used to extract
transitions. For overlapping transition and decoy transition masses after extraction,
a -CH2 mass was added to the overlapping decoy transition. To ensure the same
number of targets and decoys, if re-rooting of the tree failed or the fragments were
similar to the target ones, -CH2 was added to the original fragment masses as a
fallback mechanism to ensure the generation of a decoy. These fallbacks were used
in around 13% and 5% of the cases, respectively (Supplementary Figs. 18 and 19).
Afterward, the n highest intensity peaks were extracted to use in the target-decoy
assay library. On MS1 no additional decoy was generated.

Manual validation. The assay library was converted to a transition list using an in-
house script (https://github.com/oliveralka/MetaboAssayLibToSkylineTransitionList
Conversion). The manual validation was performed using Skyline (19.1.0.193)16.
Using default settings unless specified differently. The following transition settings
were used. Fragments and precursors were used with the adducts ([M+H][M+K]
[M+Na]) and all matching transitions were automatically selected. The instrument
was set to 10m/z (min) and 900m/z (max) and a retention time from 0 to 16min.
MS1 filtering (up to 3 isotope traces) and MS/MS DIA with custom SWATH win-
dows (Supplementary Table 1) were used. Scans within 2min of MS/MS IDs
were used.

Assessment of the FDR calibration. We annotated each peak group from our
assay library manually. Here, a visual inspection was performed of the peak groups’
presence, co-elution, and chromatographic shape. A true positive peak group is
present if the precursor and transitions are properly co-eluting and show a chro-
matographic profile and the peak group is aligned within the dilution dataset
(decreasing intensity along the dilution series). If the peak group was not of high
quality (i.e., noise), it was excluded from the ground truth. Next, the FDR cali-
bration was assessed by comparing the manually validated peak groups with those
automatically detected. We constructed a confusion matrix for a predicted FDR
threshold from 0.1% to 30% FDR. The confusion matrix reveals how many true
and false hits we have detected based on the ground truth. We report a false
positive when our software found a peak group where none was manually

annotated or if the retention time deviation was higher than 5 s. From the manual
annotation, we compute the true false discovery rate: FDR= FP / (FP+ TP).
Finally, the true FDR was compared to our estimated FDR using DIAMetAlyzer to
assess its calibration. In addition, the matrix was used to determine other metrics
such as precision and recall.

Comparison with MS-DIAL. The comparison between tools was based on the
MTBL1108 dataset using MS-DIAL (Version 4.60). The data was preprocessed, and
the assay library was converted to a spectral library. Results were filtered by
available MS2 reference and were then compared to the ground truth and the 5%
FDR filtered DIAMetAlyzer results. Please see the supplementary information for
further details.

Comparison with MetaboDIA. The comparison between tools was based on the
MTBLS417 dataset using MetaboDIA (Version 1.3) and a DIAMetAlyzer OpenMS
development version (14f627e). Data was preprocessed39–42. Libraries were gen-
erated by both tools, with identification based on an accurate mass database
including HMDB18 (4.0) and LIPIDMAPS19 (092020). All libraries were used for
targeted extraction. Furthermore, statistical validation was performed and the
results were reassessed based on chromatographic retention time alignment43. In
the following, features with an FDR below 0.05 and the highest scoring peak group
(rank 1) were used for post-processing analysis. The identification of the top sig-
nificant features was assessed using MASST Search44 (Supplementary Table 4).
Please see the supplementary information for further details.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The spike-in benchmark dataset is publicly available in MetaboLights under accession
code MTBLS1108. Comparison with MetaboDIA was performed using publicly available
data MTBLS417. Databases used were HMDB 4.0 [https://hmdb.ca/], LIPIDMAPS
(092020) [https://www.lipidmaps.org/].

Code availability
OpenMS as open-source software is distributed under a BSD three-clause license and
is available on Github (https://github.com/OpenMS/OpenMS). Additional code for
re-analysis of the pipeline can be found on Github (https://github.com/oliveralka/
DIAMetAlyzer_additional_code) [Version 1.1: https://doi.org/10.5281/
zenodo.5913236]34.
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