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A kinetic model predicts SpCas9 activity, improves
off-target classification, and reveals the physical
basis of targeting fidelity
Behrouz Eslami-Mossallam1,6,10, Misha Klein1,7,10, Constantijn V. D. Smagt 1,7, Koen V. D. Sanden 1,

Stephen K. Jones Jr. 2,3,4,8, John A. Hawkins 2,3,4,5,9, Ilya J. Finkelstein 2,3,4 & Martin Depken 1✉

The S. pyogenes (Sp) Cas9 endonuclease is an important gene-editing tool. SpCas9 is directed

to target sites based on complementarity to a complexed single-guide RNA (sgRNA).

However, SpCas9-sgRNA also binds and cleaves genomic off-targets with only partial

complementarity. To date, we lack the ability to predict cleavage and binding activity

quantitatively, and rely on binary classification schemes to identify strong off-targets. We

report a quantitative kinetic model that captures the SpCas9-mediated strand-replacement

reaction in free-energy terms. The model predicts binding and cleavage activity as a function

of time, target, and experimental conditions. Trained and validated on high-throughput bulk-

biochemical data, our model predicts the intermediate R-loop state recently observed in

single-molecule experiments, as well as the associated conversion rates. Finally, we show

that our quantitative activity predictor can be reduced to a binary off-target classifier that

outperforms the established state-of-the-art. Our approach is extensible, and can char-

acterize any CRISPR-Cas nuclease – benchmarking natural and future high-fidelity variants

against SpCas9; elucidating determinants of CRISPR fidelity; and revealing pathways to

increased specificity and efficiency in engineered systems.
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CRISPR-Cas9 (Clustered Regularly Interspaced Short
Palindromic Repeats—CRISPR-associated protein 9) has
become a ubiquitous tool in the biological sciences1,2, with

applications ranging from live-cell imaging3 and gene knock-
down/overexpression4,5 to genetic engineering6,7 and gene
therapy8,9. Streptococcus pyogenes (Sp) Cas9 can be programmed
with a ~100 nucleotide (nt) single-guide RNA (sgRNA) to target
DNAs based on the level of complementarity to a 20 nt segment
of the sgRNA10. Wildtype SpCas9 (henceforth Cas9) induces site-
specific double-stranded breaks and the catalytically dead Cas9
(dCas9) mutant allows for binding without cleavage3,5. Apart
from complimentary on-targets, Cas9-sgRNA also binds and
cleaves non-complementary off-targets11–18. Off-target cleavage
risks deleterious genomic alterations, which has so far impeded
the widespread implementation of the CRISPR toolkit in human
therapeutics19.

Strong off-target sites are identified in silico by a growing set of
tools. These tools use bioinformatics20,21, machine learning22,23,
or heuristic12,14,24,25 approaches to rank genomic sites based on
distinctive off-target activity scores. Though such models can
identify strong off-targets, they are not quantitative and cannot
assess activity on the many lesser off-targets; nor can they predict
how activity changes with exposure time and enzyme con-
centration—even though these parameters are frequently exploi-
ted to limit off-target activity in cells26.

To implement quantitative activity prediction, Cas9 targeting
must be modelled in physical terms. Existing physical
models24,27,28 assume binding equilibration before cleavage, and
it remains unclear what predictive power such approaches can
ultimately deliver in this non-equilibrium system29,30. To account
for the nonequilibrium nature of the targeting reaction, we con-
struct a mechanistic model that captures binding and cleavage
reactions in kinetic terms. To gain insights into general
mechanisms, we train and validate our model on high-
throughput datasets that capture both binding and cleavage in
bulk experiments15,31. Though we restrict our training to off-
targets with two or less mismatches, we accurately predict the
activities on all more highly mismatched off-targets in the same
datasets, as well as those reported in two independent high-
throughput datasets11.

To reveal the physical basis of Cas9 fidelity on genomic scales,
we extract the free-energy landscapes that control PAM binding,
strand-replacement, and cleavage on any target. Our character-
ization of Cas9 supports the notion that observed differences in
binding and cleavage activities32–41 stem from a relatively long-
lived DNA-bound RNA-DNA hybrid (R-loop) intermediate. This
R-loop intermediate was recently observed directly in single-
molecule experiments42, and our model predicts both its location
and its conversion rates.

Though the strengths of our model lies in that it allows us to
calculate how (d)Cas9 activity evolves in time under various
conditions, we also sought to compare our approach to existing
binary off-target classifiers that identify strong off-targets. To this
end, we reduce our quantitative activity predictor to a binary off-
target classifier that outperforms the leading tools used
today12,24,28,43.

Results
The kinetic model. In Fig. 1a we show the reaction pathway that
underpins the Cas9 targeting reaction on every target44. The
reaction starts with Cas9-sgRNA ribonucleoprotein complex
exiting the solution state to specifically bind to a 3nt protospacer
adjacent motif (PAM) DNA sequence—canonically 5’-NGG-3’—
via protein-DNA interactions44,45. Binding to the PAM sequence
(state 0) opens the DNA double helix, and allows the first base of

the target sequence to hybridize with the sgRNA44,45, forming the
first R-loop state (state 1). The DNA double helix further dena-
tures as the RNA-DNA hybrid is extended in the guide-target
strand-replacement reaction46–49 (state 2-20). The hybrid grows
and shrinks in single-nucleotide steps, until it is either reversed
and Cas9 dissociates, or it reaches completion at 20 base pairs
(bp) in state 20. If the full hybrid is formed, Cas9 can use its HNH
and RuvC nuclease domains to cleave both DNA strands50.

If we know the conversion rates in Fig. 1a for a particular guide
and target, the reaction scheme can be solved to calculate the
binding and cleavage probabilities at any time (Methods). Fully
parameterizing the model over all guide and target sequences
requires the estimation of ~1026 rates. To render parameter
estimation tractable, we make four mechanistic-model assumptions:

(1) Mismatch positions are more important than mismatch
types (e.g. G-G vs. G-A). This can be directly inferred from
data11,15, and we treat all 12 mismatch types equally.

(2) Mismatch energies are determined by local interactions.
The energetic cost of multiple mismatches is taken to be
equal to the sum of the energetic costs of the individual
mismatches.

(3) dCas9 differs from Cas9 only in that dsDNA bond-cleavage
catalysis is completely suppressed (kcat = 0); all other rates
are taken to be identical51,52.

(4) All selectivity is governed by the hybrid-bond-reversal rates.
Hybrid-bond-formation rates are treated as equal, inde-
pendent of complementarity and location.

These assumptions reduce the total number of microscopic
parameters to 44 (see Methods): the (concentration dependent)
rate of PAM binding from solution (kon) and the associated free-
energy gain (F0); a single internal forward bond-formation rate
(kf); 20 free energies dictating R-loop progression at the on-target
(F1; ¼ ; F20); 20 free-energy penalties for mismatches at different
R-loop positions (δϵ1; ¼ ; δϵ20); and the rate at which the final
cleavage reaction is catalyzed for Cas9 (kcat). Once model
parameters are estimated, all possible off-target free energies
can be directly calculated using assumptions 1–4 above. In Fig. 1b
we illustrate the calculation taking us from the on-target (pink) to
the off-target (blue) free-energy landscape with mismatches
entering the hybrid at the 3rd and 15th bp. How to translate
between free energies and rates is detailed in Methods.

Base-pairing interactions, protein-DNA interactions52, and
induced conformational changes50,51,53,54 all contribute to the
stability of the Cas9-sgRNA-DNA complex. To account for the
varying nature of these interactions, we allow for varying gains
and losses in the on-target free-energy landscape as the hybrid is
extended. These variable gains and losses allow for the formation
of metastable states on the on-target, and constitutes an essential
extension of our previous fixed-gain model for RNA-guided
nuclease kinetics30, as well as of models describing DNA
displacement reactions occurring in solution55–58.

Training on binding and cleavage for moderately mismatched
targets. We seek to reveal general properties of SpCas9 DNA
targeting on genomic scales. To this end, we train and validate
our model on data from two highly reproducible bulk-
biochemical experiments performed on a large library of mod-
erately to highly mismatched off-targets. The first set15 (Nucle-
aSeq) has 97% correlation between replicated experiments, and
estimates the effective cleavage rates (keffclv) for a library of off-
targets exposed to Cas9-sgRNA for 16 hours. The second set15,31

(CHAMP) has 94% correlation between replicated experiments,
and reports on the effective association constant (Keff

A ) over the
same library and guide, but this time exposed to dCas9-sgRNA
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for 10 min. In Methods we detail how the experiments are
modeled.

We estimate the model parameters by minimizing the total
experimental-error weighted residue between prediction and
experiment for off-targets (see Methods) with no more than two
mismatches in the NucleaSeq (Fig. 2a–c) and CHAMP (Fig. 2d–f)
experiments. The rates and association constants from different
types of mismatches are averaged (see Methods and Supplemen-
tary Data 1), and the optimal solution is sought with a Simulated
Annealing algorithm59 (see Methods).

The two training sets differ significantly (Fig. 2, and
Supplementary Fig. 1a). Our model still reproduces effective
cleavage rates (Fig. 2a–c) and effective association constants
(Fig. 2d–f) with a Pearson correlation of 93% and 98%
respectively, and quantitatively captures the difference between
binding and cleavage activity. The time and concentration
dependence of (d)Cas9 activity can be explored through a
dashboard we provide (see Code Availability).

Validation on highly mismatched targets and independent data
sets. Apart from the data we use for training (two or less mis-
matches), the NucleaSeq15 and CHAMP15,31 sequence libraries
also includes block-mismatched targets with more than two
mismatches. In Fig. 3a, b we show that we quantitatively predict
effective association constants on these highly mismatched targets
at a correlation of 98%. Our method also successfully separates
out the single dominating off-target present among highly mis-
matched targets in the NucleaSeq experiments (Supplementary
Fig. 1b), resulting in a perfect correlation.

To further validate our model, we test against two data sets from
HiTS-FLIP experiments reported in the literature11. The first
independent validation set records the association rate relative to
the on-target, estimated over 1500 seconds of exposure to dCas9-
sgRNA at 1 nM concentration (Fig. 3c–e). The second independent
validation set records the dissociation rate relative to the on-target,
estimated over 1500 seconds following 12 hours of exposure to a
saturating dCas9-sgRNA concentration (Fig. 3f–h). Our model
quantitatively captures the relative association rates for all reported
targets with 82% correlation (Fig. 3e). For the relative dissociation
rates, the correlation is more modest at 46% (Fig. 3h), and the
quantitative agreement is lost in some regions (Fig. 3f–h). We still

seem to capture the general trends on moderately mismatched
targets (Fig. 3f, g), though our model will never give binding/
dissociation rates above/below that of the on-target, as is reported for
some highly mismatched targets (Fig. 3e, h)

Physical characterization of SpCas9 and the intermediate
R-loop state. As our model parameters carry physical meaning,
estimating them from data amounts to characterizing the system
in physical terms. For Cas9, it has been experimentally shown
that R-loop progression is controlled by an intermediate meta-
stable state on the on-target42. We expect this intermediate state
to show up as a local minimum in our estimated on-target free-
energy landscape. The free energy of any metastable state will
have a strong influence on the observed dynamics, and we expect
such energies to be well constrained by the data. We expect
barriers between metastable states to be harder to resolve, as the
details of barrier regions matter less for the observable dynamics.

We here report 33 near-equivalent optimization runs that all
resulted in a residue that fell within 15% of the best solution
found (see Supplementary Video 1). In Fig. 4a we plot the
resulting on-target free-energy landscapes, with the optimal
solution highlighted in pink. As expected, we see metastable states
in the on-target free-energy landscape. With Cas9 in solution or
PAM-bound, we have a well-defined free-energy minimum where
the R-loop is closed (C). The on-target free energy (Fig. 4a)
increases substantially when forming the first hybrid bp in state 1,
and remains relatively high and poorly constrained up to and
including state 8. The energy of state 9-12 are well constrained,
and among them we find a second local minimum. We identify
these states as belonging to an intermediate (I) R-loop state. For
hybrids of length 13 to 19 bp we again see an ill-constrained
barrier, ending when we enter a well-constrained local minimum
of a fully formed hybrid at state 20. This last minima defines the
open (O) R-loop.

Mismatch penalties are all around 5kB T (Fig. 4b), but show
reproducible variation along the hybrid. Comparing Fig. 2a, d
with Fig. 4b, it is clear that variations in mismatch penalties in the
first 8 states correlate strongly with the measured effective
cleavage rate/dissociation constant on targets with a single seed
mismatch at the corresponding hybrid position. It is not clear if
these variations are due to varying interactions with the protein,
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Fig. 1 The reaction scheme and the implications of the model assumptions. a The general microscopic reaction scheme for PAM (blue rectangle) binding
from solution, followed by strand replacement and eventual cleavage (Cas9 only). The bound states are labeled 0-20, starting with the PAM bound state,
and ending with the state having a fully open R-loop (20 bp hybrid). b An example on-target free-energy landscape Fn (pink), and the resulting free-energy
landscape when using our mechanistic-model assumptions on an off-target where mismatches enter the hybrid at length 3 and 15 bp (blue). Each
mismatch (dashed red line) has an energetic cost ϵn (red arrow) added onto the free energy of all later R-loop states. The solution state is chosen as a
reference for the free energy, and set to 0kBT (black point).
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or reflects the fact that the possible mismatch types vary with
position. In Fig. 4c we show the remaining rates needed to predict
Cas9 cleavage activity at any target, time, and Cas9-sgRNA
concentration (see Methods).

R-loop dynamics captures single-molecule experiments. The
recent direct observation of the R-loop dynamics between meta-
stable states42 allows us to further test our model against quanti-
tative single-molecule data. To this end, we define a coarse-grained
model (Fig. 5a) and calculate the effective rates between metastable
states from our microscopic free-energy landscapes (see Methods).
In Supplementary Fig. 2 we show that predictions based on our
coarse-grained model replicate those of the microscopic model.

Using effective rates between metastable states, we can rationalize
the broad strokes of Cas9 fidelity by considering a few important
examples42. For on-targets (Fig. 5b), the transition between the

PAM bound state and the intermediate R-loop state is reversible
(kPI � kIP) (Fig. 5c). Complexes that enter the intermediate state
typically also enter the fully opened state (kIP � kIO). The
transition from intermediate to open R-loop configuration is
irreversible (kIO � kOI), and entering the open configuration
guarantees cleavage (kOI � kcat). Taken together, the on-target
reaction is essentially unidirectional toward cleavage, once the
intermediate state is entered. The transition into the intermediate
R-loop state is rate-limiting (kPI � kIO � kcat) for cleavage.

Mismatches between the target DNA and the sgRNA have
differential effects on R-loop propagation depending on position.
A PAM-proximal mismatch (position 1–8) (Fig. 5d) strongly
suppresses the rate of transition from a closed to intermediate
R-loop state (Fig. 5e). In contrast, a PAM-distal mismatch
(position 12–17) (Fig. 5f) limits the effective rate of cleavage by
reducing the intermediate to open transition rate (Fig. 5g), and
allowing for re-closure of the R-loop before entering the open
state (kIO � kIP).

These observations are in agreement with the experimental
observation42, and in Fig. 5c, e we use purple triangles to indicate
measured rates42 when available at zero torque. We quantitatively
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predict the conversion rates out of the intermediate R-loop state.
The model also captures the position of the on-target inter-
mediate state as being around hybrid length 9-12. Our model
does not capture the rate of the open to intermediate transition,
and future work will have to determine if this is due to a
difference in experimental conditions or because our choice of
training data is ill-suited to determine the free energies past the
intermediate state.

Our model predicts rates on all off-targets, and so extends and
refines the long-established rule of thumb that off-target rejection
in the PAM proximal seed requires only one mismatch, while off-
target rejection outside the seed region requires multiple
mismatches10. In particular, our model quantifies the intermedi-
ate activity resulting from PAM distal mismatch, and so enables
prediction of activity titration.

R-loop dynamics resembles conformational dynamics. Next, we
wondered what structural properties of Cas9 give rise to the free-
energy landscape of Fig. 4a. A comparison between DNA-bound
and unbound Cas9-sgRNA structures have revealed that Cas9
repositions its HNH and RuvC nuclease domains to catalyze
cleavage45,60,61. Ensemble FRET experiments detected two
dominant Cas9 conformers with distinct HNH states50, and
single-molecule FRET studies have identified a third intermediate
conformer51,53,54.

The relative position and occupancy of the HNH states is
affected by R-loop mismatches51,53,54, and Ivanov et al.42 suggest
that the intermediate R-loop state is linked to the intermediate
structural state seen in FRET experiments51. To test this
hypothesis, we mimicked the experiments of Dagdas et al.51,
and considered the time evolution of the occupancy of our
metastable R-loop states for two target sequences (Fig. 6). The

HNH-domain completes its conformational change within
seconds after Cas9-sgRNA binds to on-target DNA51, and our
model demonstrates a similar behavior for R-loop progression
(Fig. 6a). The intermediate structural state is visited only
transiently51, as is the intermediate R-loop state in our model
(Fig. 6a). Compared to the on-target, PAM-distal mismatches
maintain the entry rate into the intermediate structural state,
while increasing the time spent in this state51; again in close
agreement with our findings for the intermediate and open
metastable R-loop states in the presence of a PAM distal
mismatch (Fig. 6b). Taken together, our model supports the
notion that the intermediate R-loop state is linked to the
intermediate structural state seen in FRET experiments.

Kinetic modelling improves genome-wide off-target predic-
tion. Current methods12,14,20–25,28,43 for identifying strong off-
targets rank genomic sequences according to various measures of
activity. They do not quantitatively predict biochemically mea-
surable parameters, nor do they normally capture changes in
conditions or activity over time. Our approach overcomes these
limitations, and we do not suggest that these benefits should be
abandoned in order to construct a binary off-target classifier. Still,
to strengthen the case for including the full non-equilibrium
nature of the problem in any Cas9 modelling, we reduce our
quantitative kinetic model to a binary classifier (referred to as
kinetic classifier) and test how well it performs against three
established state-of-the-art off-target predictors: a recent bench-
marking of models28 shows the CRISPRoff classifier to outper-
form the competition, so we first test against this tool; second, we
test against the more recent uCRISPR24 tool, which is based on
hybrid energetics and has not been tested against CRISPRoff;
lastly, we test against the Cutting Frequency Determination

Fig. 3 Validation on highly mismatched targets and independent HiTS-FLIP data. a Validation data (upper-left triangle) for effective association constant
(CHAMP) on block-mismatched targets, and model estimates (lower-right triangle). The two terminal mismatch positions in the block are marked on the
axes. b Correlation plot between measured effective association constants and model predictions on block-mismatched targets. c Validation data
(triangles) for association rates (HiTS-FLIP data set11) on single-mismatch targets, and model estimates (line). d Validation data (upper-left triangle) for
association rates on double-mismatch targets, and model estimates (lower-right triangle). e Correlation plot for all positive association rates, including
moderately (1–2 mismatches, dark purple) and highly (3–20 mismatches, light purple) mismatched targets. f Validation data (triangles) for dissociation
rates (HiTS-FLIP data set11) on single-mismatch targets, and model estimates (line). The missing mismatch-averaged dissociation rates in the seed are
negative. g Validation data (upper-left triangle) for dissociation rates on double-mismatch targets, and model estimates (lower-right triangle). h
Correlation plot for all positive dissociation rates, including moderately (1–2 mismatches, dark green) and highly (3–20 mismatches, light green)
mismatched targets. Mismatch-averaged rates dominated by negative scores are excluded from the analysis, and all data is averaged over mismatch type
(see Methods and Supplementary Data 1). The quoted correlation coefficients are Pearson-correlation coefficients, and correlation plots are displayed with
log-scales to show the quantitative agreement also for weak targets. The dashed lines in the correlation plots correspond to perfect quantitative prediction.
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(CFD) score12, since it is a much-used tool for off-target
classification.

To compare our model against the three selected off-target
classifiers, we choose to rank all genomic sites based on cleavage
activity in the low enzyme-concentration limit (see Methods). We
make our comparison over all canonical PAM sites in the human
genome. True positive off-targets are collected from sequencing-
based cleavage experiments that used industry-standard sgRNAs

and reported multiple off-target cleavage sites35–38,40,41,62

(Supplementary Table 1). We tested how well our kinetic model’s
ranking of activity compares to that of the CFD score12,
CRISPRoff28, and uCRISPR24. For each sgRNA, we separately
tested the models by using the union (sites found in any
experiment) and intersection (sites found in every experiment)
sets of the reported off-target sites as true positives. We perform
precision-recall (PR) analysis (Supplementary Fig. 3) rather than
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using receiver-operator characteristics (Supplementary Fig. 4)
since the datasets are highly unbalanced, with many more true
negatives than true positives.

Figure 7a shows the PR curve when models are tested against
the union of all reported off-targets while targeting the HBB gene.
As the threshold for what is judged a strong off-target is swept,
PR curves display the fraction of predicted off-targets that are
found experimentally (precision) against the fraction of experi-
mentally found off-targets that are also predicted (recall). Our
kinetic classifier typically produces higher precision for all recalls,
outperforming the other classifying schemes for the union set on
the HBB gene. More importantly, the kinetic classifier also
outperforms the leading off-target predictors for highly-
mismatched genomic off-targets of other sgRNAs: performing
best on the majority of targets in every pairwise matchup on both
union (Fig. 7b, c) and intersection (Fig. 7d, e) sets, and
irrespectively of if max. F1 or area under the curve (AUC) scores
are used.

Discussion
Training our model (Fig. 1) of SpCas9 target activity on moder-
ately mismatched targets, we extract the physical parameters
(Fig. 4) that control activity on any target (Figs. 2 and 3). Going
beyond present-day binary off-target classification schemes, we
quantitatively predict cleavage and binding activity as a function
of both time and SpCas9-sgRNA concentration.

We show that SpCas9’s targeting reaction contain an inter-
mediate R-loop state, with both position and conversion rates
that agree with single-molecule experiments42 (Fig. 5). Mis-
matches affect the dynamics of the R-loop states (Fig. 6) in a
manner similarity to how they affect the configurational states of
SpCas9’s nuclease domains42,51,53. Based on this, we lend support
to the notion that R-loop formation is tightly coupled to protein
conformation—pointing toward the relevant structure-function
relation for the most important RNA-guided nuclease in
use today.

Though our model captures the abundant low-activity off-
targets that are discarded by binary classifiers, we sought to
demonstrate the general utility of kinetic modelling by reducing
our quantitative activity predictor to a binary classification tool.
The resulting kinetic classifier outperforms established state-of-
the-art classification tools on canonical PAM sites in the human
genome (Fig. 7).

In a recent study, Jost et al.5 demonstrated that a series of
mismatched guides can be used to titrate gene expression using
CRISPRa/CRISPRi. Wildtype SpCas9 can also be (effectively)

inactivated with PAM-distal mismatches in the guide63. Our
model can guide such titration of SpCas9-sgRNA inactivation by
careful placement of mismatches. Our approach can also be used
to calculate the total off-target activity over a genome, and so
inform the design of sgRNAs for novel gene targets.

For simplicity and robustness, we built our model to exclude
mismatch type parameters. This allows for extensive training
using datasets based on a single guide sequence and off-target
DNAs containing up to two mismatches. The limited set of
adjustable model parameters (44 in total) and efficient data usage
(422 data points used for training) does not seem to limit the
model’s applicability (Figs. 2, 3, 7). The success of our low-
complexity model strongly suggest that the path to increased
predictive power and therapeutic relevance runs through bottom-
up modelling of RNA-guided nucleases in kinetic terms.

Taken together, we have shown that our mechanistic and
kinetic model gives biophysical insight and quantitative predictive
power far beyond the training sets. This predictive power is only
expected to increase when including sequence features and
allowing for alternative PAM sequences in future modelling
efforts. SpCas9 is only one of many RNA-guided nucleases with
biotechnological applications, and other CRISPR associated
nucleases (such as Cas12a, Cas13 and Cas14) offer a diversified
genome-engineering toolkit15,64–69. These nucleases can all be
characterized with our approach, and it will be especially inter-
esting to compare the free-energy landscape of our SpCas9
benchmark to that of engineered41,54,70 and natural (e.g. N.
meningitides Cas971) high-fidelity Cas9 variants.

Methods
Modelling of the (d)Cas9 targeting reaction. We consider a single DNA target
sequence with a PAM, in contact with (d)Cas9-sgRNA in solution at fixed con-
centration (Fig. 1a). (d)Cas9-sgRNA binding to the PAM site is assumed to be first
order,

kon ¼ krefon ½Cas9� sgRNA�

where [Cas9-sgRNA] is the concentration of active complexes relative to some reference
concentration (we use 1 nM). Binding is followed by a Cas9-mediated strand exchange
reaction between sgRNA and the DNA. Once a 20 bp hybrid is formed, Cas9 can cleave
the DNA, while dCas9 cannot. We model the targeting recognition as a stochastic
hopping process along a sequence of states: target unbound (n = −1), PAM bound
(n ¼ 0), and strand exchange (n ¼ 1; 2; ¼ ; 20). We use the column vector PðtÞ ¼
ðP�1ðtÞ; ¼ ;P20ðtÞÞT to represent the probabilities of being in the various states at time
t. The evolution of probabilities is captured by the Master Equation

∂tPðtÞ ¼ K � PðtÞ;

where K is a tri-diagonal rate matrix. Letting kfn be the forward (n ! nþ 1) transition
rate, kbn to be the backward (n ! n� 1) transition rate (Fig. 1a), and defining kb�1 ¼ 0,
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Fig. 7 Genome-wide off-target classification. a PR curves on the HBB gene using the CFD score (light purple), uCRISPR score (purple), CRISPRoff (dark
purple), and our kinetic classifier (green). The precision and recall is calculated over all targets in the genome with a canonical PAM site, taking all
experimentally validated off-targets as true positives. b)max. F1 scores for target sites EMX1, FANCF, HBB, RNF2 and VEGFA site 1 using all experimentally
identified off-targets as true positives (union set) (Supplementary Fig. 3). c AUC scores for the same target sites and true positives as in Fig. 7b. d max.
F1 scores using off-targets identified in all experiments as true positives (intersection set) (Supplementary Fig. 3). e AUC scores for the same target sites
and true positives as in Fig. 7d. Matching the models pairwise we can determine which model performs best overall. Using max. F1 scores to count wins on
union sets: kinetic:uCRISPR= 4:1; kinetic:CFD = 5:0; kinetic:CRISPRoff = 4:1. Using AUC scores to count wins on union sets: uCRISPR= 5:0; kinetic:CFD =
5:0; kinetic:CRISPRoff = 3:2. Using max. F1 scores to count wins on intersection sets: kinetic:uCRISPR = 2:1; kinetic:CFD = 2:1; kinetic:CRISPRoff = 2:1.
Using AUC to count wins on intersection sets: uCRISPR = 2:1; kinetic:uCFD = 3:0; kinetic:CRISPRoff = 2:1. The kinetic classifier wins every pairwise
matchup irrespective of if we use max. F1 or AUC scores, on both union and intersection sets.
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we can give the elements of K as

Knm ¼

kfn�1 m ¼ n� 1

�ðkfn þ kbnÞ m ¼ n

kbnþ1 m ¼ nþ 1

0 jn�mj≥ 2:

:

8>>>><
>>>>:

The Master Equation has the formal solution

PðtÞ ¼ expðKtÞ � Pð0Þ
which can be computed numerically, given any set of rates K and initial
probabilities Pð0Þ. The above expression, with initial probabilities and rates
adjusted to experimental conditions (see below), allows us to capture the full time-
dependent evolution of the targeting reaction in quantitative terms.

Parameter reduction. Based on the mechanistic-model assumption 1, we average
the data over mismatch types (see below), and only keep track of if there is a match
or a mismatch at every position. Model assumption 3 means that the model of
dCas9 is the same as for Cas9, but with kf20 ¼ 0. Model assumption 4 implies that
kf0 ¼ kf1 ¼ ¼ ¼ kf19 � kf . To see the implications of model assumption 2, we
move to a description in terms of free energies.

Denote the free energy of any state n with Fn, and imagine that states n and
n� 1 are allowed to mutually equilibrate. Equilibration means that the relative
occupancy is described by Boltzmann weights and that there are no net probability
currents between the states

PEQ
n�1

PEQ
n

¼
exp � Fn�1

kBT

� �

exp � Fn
kBT

� � ; PEQ
n�1k

f
n�1 ¼ PEQ

n kbn:

The above relationships tie rates to free-energy differences through

ΔFn ¼ Fn � Fn�1 ¼ kBT ln
kbn
kfn�1

 !
:

Using n ¼ �1 as the free-energy reference (F�1 ¼ 0 kBT), the assumption that
binding is first-order implies

F0 ¼ Fref
0 � kBT lnð½Cas9� sgRNA�Þ:

Here Fref
0 is the free energy of the PAM bound state at the reference concentration

(1 nM). Mechanistic-model assumption 2 now implies that ΔF1≤ n≤ 20 only depends on
if there is a mismatch at position n or not, and we can write

ΔFn ¼ ϵn; match

ϵn þ δϵn mismatch

�
; n ¼ 1; ¼ 20:

Here ϵn is the free-energy increase when extending the hybrid from length
n� 1 to length n if the n:th hybrid bp is correctly matched, and δϵn is the
additional energy needed when the bp is incorrectly matched. We can write the
backward transition rates as

kbn ¼
krefon expðF

ref
0

kBT
Þ; n ¼ 0;

kf expðΔFn
kBT

Þ; n ¼ 1; ¼ ; 20:

8<
:

The model is now parameterized it in terms of 41 free energies (Fref
0 , ϵ1; ¼ ; ϵ20,

δϵ1; ¼ ; δϵ20) and three forward rates (krefon , kf , and kcat).

Predicting NucleaSeq cleavage rates. To produce predications for training and
validation, we model experimental setups. To model NucleaSeq data15, we use the
solution to the Master Equation to calculate the expected cleaved fraction at any
complementarity pattern. NucleaSeq is performed by exposing targets to saturating
concentrations of Cas9-sgRNA, which we model by setting F0 ¼ �1000kBT and
taking P�1ð0Þ ¼ 1, P0≤ n ≤ 20ð0Þ ¼ 0 as initial condition. As done in the original
experiment, we record the fraction of DNA that remains uncleaved (∑20

n¼�1PnðtÞ)
at the time points t = 0 s, 12 s, 60 s, 180 s, 600 s, 1800 s, 6000 s, 18000 s, and
60000 s, and fit-out a single effective cleavage rate keffclv . There is no a priori reason
for the uncleaved fraction to follow an exponential decay, but as long as we follow
the experimental data-analysis protocol we can use the effective cleavage rates to
train and validate our model.

Predicting CHAMP association constants. We model the CHAMP
experiments15,31 by calculating the bound fraction (∑20

n¼0PnðtÞ) of dCas9-
sgRNA after 10 min at concentrations 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM,
30 nM, 100 nM and 300 nM, starting with the probabilities P�1ð0Þ ¼ 1,
P0≤ n ≤ 20ð0Þ ¼ 0. We use the equilibrium binding fraction

PEQ
bnd ¼ ½Cas9� sgRNA�

½Cas9� sgRNA� þ 1=Keff
A

to fit out an effective association constant Keff
A . Again, there is no a priori

reason to believe that this non-equilibrium system will equilibrate within

10 min, but as long as we follow the experimental data-analysis protocol we can
use Keff

A for training and validation.

Predicting HiTS-FLIP association rates. To predict measured association rates in
the HiTS-FLIP experiment11, we assume the recorded fluorescence signal to be
proportional to our calculated bound fraction of dCas9-sgRNA, when starting with
the probabilities P�1ð0Þ ¼ 1, P0≤ n≤ 20ð0Þ ¼ 0. Following the experiments we use
linear regression to extract an effective association rate by fitting a straight line to
the bound fraction at time points 500 s, 1000 s and 1500 s.

Predicting HiTS-FLIP dissociation rates. To predict measured dissociation rates
in the HiTS-FLIP experimen11, we again compared the fluorescence signal to our
calculated bound fraction of dCas9, starting with the probabilities P�1ð0Þ ¼ 1,
P0≤ n≤ 20ð0Þ ¼ 0. We let the protein associate at saturating concentrations for 12 h,
and record the resulting occupational probabilities. We then use these probabilities
as new initial probabilities, while also letting kon ¼ 0 (½Cas9� sgRNA� ¼ 0) in K,
before further evolving the system. This allows us to model complex dissociation in
the presence of a high concentration of competitor on-targets in solution. Fol-
lowing the experiments, we fit an exponential decay to our predictions at time-
points 500 s, 1000 s, and 1500 s.

Averaging over mismatch types. Our model does not account for mismatch
types, and for training we need to average over all experimentally measured mis-
match sequences s consistent with a mismatch pattern p. We expect rates to be
proportional to exponentiated transition-state free energies, and association con-
stants to be controlled by exponentiated binding free energies. We therefore choose
to perform our mismatch-type averages over the logarithm of rates and association
constants, bringing these averages close to averages of energies. For measured
quantities m ¼ keffclv or Kref

A , we chose a weighted mismatch-type average

hlog10m*ip ¼ ∑

s2
sequences with

mmpattern p

� �Wslog10m
*
s :

Here m*
s is the measured value for target sequences s. We take the weights to be

given by

Ws ¼
1=δðlog10m*

s Þ
2

∑
σ2

sequenceswith

mmpatternp

� �1=δðlog10m*
σ Þ2

:

Here δðlog10m*
s Þ is the experimental error for the logarithm of the measurement

at a particular sequence s. This choice of weights minimizes the error-normalized
square deviation on the sequence resolved data, if we have complete freedom to set
the average for each mismatch pattern. Our model is more constrained then this,
but with this weighing our model could—at least in principle—give the best
possible approximation of the sequence resolved data. The squared error in the
mismatch-type average can be calculated as

δ:

Cost function. We look to simultaneously optimize our predictions of both
effective cleavage rates from NucleaSeq (keffclv) and effective dissociation constants
from CHAMP (Kref

A ). We combine the cost from each experiment

χ2 ¼ χ2
keffclv

þ χ2Kref
A

by summing log deviations

χ2m ¼ ∑

p2
allmmpatters

used for training

� �wm
p ðlog10ðmpÞ � hlog10m*ipÞ

2
:

In the above mp represent the model prediction for the average measured
quantity at mismatch pattern p. The weights wm

p are chosen so the error-weighted
contribution from the on-target, the 20 singly mismatched off-targets, and the
20 � 19=2 ¼ 190 doubly mismatched off-targets are weighted equally as groups

wm
p ¼ 1

δhlog10m*i2p
�

1; p ¼ on target

1=20; p 2 singlemm

1=190; p 2 doublemm:

8><
>:

Simulated annealing. The Simulated Annealing algorithm59 is commonly used for
high-dimensional optimization problems. We optimize with respect to model para-
meters Fref

0 , ϵ1; ¼ ; ϵ20, δϵ1; ¼ ; δϵ20, log10ðkrefon=sÞ, log10ðkf=sÞ, and log10ðkcat=sÞ.
Trial moves are generated by adding a uniform noise of magnitude α to the present
value of each model parameter. The process is initiated with a noise strength α ¼ 0:1:
In the initiation cycle the temperature is adjusted until we have an acceptance fraction
of 40–60% over 1000 trial moves, based on the Metropolis condition. After this initial
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cycle, the temperatures follow an exponential cooling scheme with a 1% cooling rate
(Tkþ1 ¼ 0:99Tk). At every temperature, we adjust the noise strength α until an
acceptance fraction of 40–60% is reached over 1000 trial moves. Once the desired
acceptance fraction is reached, an additional 1000 trial moves are performed to allow
the system relax before the next cooling step. Once the temperature has dropped to one
percent of its initial value we, apply the stop condition

j�χ2k � �χ2k�1j≤ 10�5�χ2k�1:

In the above, �χ2k denotes our cost function averaged over the last 1000 trial moves
performed at temperature Tk . The results of this optimization is shown in Fig. 4.

Calculating coarse-grained transition rates. First we find the intermediate state on
every possible target. As the central-local minimum in free energy (Fig. 4a) can be
slightly displaced by mismatches on off-targets, we seek the free-energy minimum nI
between R-loop state 7 and 13 for every target. To calculate the effective rates of the
coarse-grained model in Fig. 5a, we consider the first passage between metastable
states. Take for example the passage from the PAM-bound state (n ¼ 0) to the
intermediate state (n ¼ nI) on a specific target. To calculate the associated first-passage
time, we truncate the full system to only include states n ¼ 0; ¼ ; nI � 1. We use the
rate matrix KPI with elements

ðKPIÞnm ¼ Knm; 0≤ n;m≤ nI � 1

and kb0 ¼ 0. With the initial state PPIð0Þ ¼ ð1; 0; ¼ ; 0ÞT we solve the Master Equa-
tion, and calculate the first-passage time distribution as

ΨPIðtÞ ¼ �ð1; ¼ ; 1Þ � ∂tPPIðtÞ:
The effective transition rate kPI is the inverse of the average first-passage time

τPI, which can be calculated as

τPI ¼
Z 1

0
dt tΨPIðtÞ ¼ ð1; ¼ ; 1Þ � K�1

PI � PPIð0Þ:
The same process was used to calculate all other rates of directly transitioning

between meta-stable states, repeated over every target sequence.

Constructing a binary off-target predictor. We rank all canonical PAM sites in
the human genome according to their relative cleavage rate in the low con-
centration limit. In this limit, the cleavage rate is given by the PAM binding rate
times the probability to cleave once the PAM site is bound. As the PAM binding
rate is not expected to depend on the sgRNA sequence s, we can rank our off-
targets based on the cleavage probability once bound30,

PPAM!clvðsÞ ¼
kcat e

F�1 ðpðsÞÞ
kBT

kcat∑
19
n¼0e

Fn ðpðsÞÞ
kBT þ kf e

F20 ðpðsÞÞ
kBT

:

Here pðsÞ is the mismatch pattern of sequence s.

Statistics & Reproducibility. Only experimental data giving physical positive
values for mismatch-averaged rates and association constants were included in the
correlation analysis. See Supplementary Data 1.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the corresponding authors
upon reasonable request. Mismatch averaged experimental data used for training and
validation (Figs. 2 and 3), estimated microscopic parameters (Fig. 4), and genome wide off-
target classification evaluation (Fig. 7b–e), are all provided as Supplementary Data 1.

Code availability
The code enabling quantitative off-target activity prediction for any guide-target pair is
available on our GitLab page (https://gitlab.tudelft.nl/depken_group/SpCas9_kinetic
_model_dashboard). There you will also find a small dashboard application, allowing time
resolved activity predictions given a particular sequence and enzyme concentration. A clone of
the repository at publication is also permanently available at https://doi.org/10.5281/
zenodo.5790798. The purpose made optimization code will be made available upon request.
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