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Single-cell transcriptomics links malignant T cells
to the tumor immune landscape in cutaneous T cell
lymphoma
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Cutaneous T cell lymphoma (CTCL) represents a heterogeneous group of non-Hodgkin

lymphoma distinguished by the presence of clonal malignant T cells. The heterogeneity of

malignant T cells and the complex tumor microenvironment remain poorly characterized.

With single-cell RNA analysis and bulk whole-exome sequencing on 19 skin lesions from 15

CTCL patients, we decipher the intra-tumor and inter-lesion diversity of CTCL patients and

propose a multi-step tumor evolution model. We further establish a subtyping scheme based

on the molecular features of malignant T cells and their pro-tumorigenic microenvironments:

the TCyEM group, demonstrating a cytotoxic effector memory T cell phenotype, shows more

M2 macrophages infiltration, while the TCM group, featured by a central memory T cell

phenotype and adverse patient outcome, is infiltrated by highly exhausted CD8+ reactive

T cells, B cells and Tregs with suppressive activities. Our results establish a solid basis for

understanding the nature of CTCL and pave the way for future precision medicine for CTCL

patients.
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Cutaneous T cell lymphomas (CTCL) is a heterogeneous
group of extranodal non-Hodgkin’s lymphomas char-
acterized by cutaneous infiltration of clonal malignant

T cells. Mycosis fungoides (MF), Sézary syndrome and primary
cutaneous anaplastic large cell lymphoma (pcALCL) constitute
the majority of CTCLs and are believed to be derived from skin-
homing mature T cells. MF begins with multiple patches, plaques
and tumors in the skin, and it may involve lymph nodes, per-
ipheral blood and viscera in the advanced stage, leading to a poor
prognosis1. Sézary syndrome, the leukemic form of CTCL, is
characterized by generalized skin erythema with leukemic
malignant T cells in the blood, while pcALCL is characterized by
single or multiple skin tumors and a tendency for systemic
involvement in the late stage. These three CTCL variants are
highly related and have overlapping clinical and immunophe-
notypic features2,3. These entities frequently coexist in the same
patient, whether they develop simultaneously or as a secondary
lymphoma4. Given the numerous shared and disparate properties
of CTCL variants, it remains unclear whether these entities are
distinct disorders or a continuum with a degree of genetic
diversity and varied microenvironments.

Despite tremendous progression in the understanding of CTCL
in recent decades, the origin and nature of malignant T cells
remain to be defined. Unlike solid tumors, CTCL starts with
multi-focal skin lesions, which leads to controversies regarding
the tumor origin and evolution pattern of CTCL. Previous studies
suggested that neoplastic T cells in CTCL originated from mature,
monoclonal, skin-resident memory T cells5. However, recent
evidence indicates that malignant T cells are derived from cir-
culating immature precursor cells, which seed the skin and evolve
into clonally heterogeneous lymphomas6–8. This discrepancy is
largely due to the difficulty in discriminating true malignant
T cells from benign reactive T cells in CTCL skin lesions, since
there are no specific markers to define malignant T cells, which
also results in delayed diagnosis and poor prognosis for CTCLs.

Owing to the poor understanding of disease pathogenesis,
effective treatments for CTCL are limited, and the treatment
response varies greatly among patients. CTCL generally exhibits
an indolent course, but a portion of patients progresses rapidly
and exhibit widespread disease beyond the skin despite aggressive
treatment, highlighting the underlying heterogeneity of this dis-
ease. Moreover, CTCL patients frequently show inter-lesional
diversity in treatment responses, adding to the complexity of the
clinical challenge of the disease and often creating obstacles to
achieving effective therapy9. However, the molecular mechanisms
underlying this inter-lesional diversity remain to be defined.

The difficulty in distinguishing malignant T cells from reactive
T cells presents an obstacle to understand the immune landscape
of the tumor microenvironment (TME) in CTCL. Although
studies have demonstrated that tumor infiltrating immune cells,
including B cells and M2 macrophages, participate in the
pathogenesis and persistence of CTCL through diverse cytokines
and chemokines, the complex interplay between malignant T cells
and TME compartments remains poorly understood10,11. In
particular, malignant T cells preserve certain immunological
features of mature T cells, and thus are active in cytokine pro-
duction. Elucidating how malignant T cells redefine and alter the
TME, as well as clarifying the landscapes and properties of the
multicellular ecosystem in CTCL, will create new opportunities
for the development and application of immunotherapies.

Here, we employed single-cell RNA sequencing (scRNA-seq)
and paired single-cell T cell receptor (TCR) sequencing on CTCL
skin tumors. Malignant T cells were defined by copy number
variations (CNVs) and matched TCRα and TCRβ clonotypes at
the single-cell level. With this approach, we determined the
mono-clonal nature of CTCL and characterized the temporal and

topological subclonal evolutionary process of malignant T cells,
revealing a high degree of tumoral cellular heterogeneity. The
genetic basis of this intratumor heterogeneity (ITH) was defined
by paired whole exome sequencing (WES). We generated a
molecular subtyping scheme based on the intrinsic identity of
malignant T cells across CTCL variants, and we deciphered the
complex crosstalk among immune cells within the TME for each
subtype.

Results
Single-cell transcriptome analysis defines malignant T cells and
reveals inter-tumor transcriptional heterogeneity in malignant
T cells. To systematically examine the cellular profiles of CTCL,
we performed scRNA-seq on cells from 19 freshly dissociated
CTCL skin samples (n= 15 patients, including 11 CD4+ MF, 2
CD8+ MF, and 2 pcALCLs) (Fig. 1a and Supplementary Data
File 1). For 4 CD4+ MF patients (patients MF21, MF27, MF28
and MF30), two biopsies at different anatomic sites were
obtained. All diagnoses were verified by two board-certified
dermatopathologists and all biopsies were taken from thick pla-
ques or tumors. Fluorescence-activated cell sorting (FACS) was
utilized to enrich for several fractions; (i) CD45+CD3+ T cells,
(ii) CD45+CD3− immune cells and (iii) CD45− non-immune
cells (Fig. 1a and Supplementary Fig. 1a). To balance the gene
coverage and cell productivity, we analyzed 3 samples (patients
MF4, MF6 and MF7) using 5′ unique molecular identifier (UMI)-
based Smart-Seq2 method, and 16 samples were subjected to a
droplet-based 10× Genomics platform. For the 10× Genomics
method, the single-cell 5′ reagent kit coupled with TCR V(D)J
analyses was used to profile TCR clonotypes at single-cell reso-
lution for 14 samples, while a single-cell 3′ reagent kit was used
for 2 samples (Supplementary Data File 2). Whole exome
sequencing was also performed on 13 CTCL skin samples from
11 patients.

Following stringent quality control (see Methods), a total of
60,324 cells were retained for subsequent analysis (Supplementary
Data File 2). We performed unsupervised clustering and
projected cells in two dimensions using uniform manifold
approximation and projection (UMAP). We identified 14 major
cell types based on the expression of canonical marker genes,
including T cells, B cells, macrophages, plasma cells, natural killer
(NK) cells, type 1 innate lymphoid cells (ILC1s), dendritic cells
(DCs), plasmacytoid dendritic cells (pDCs), mast cells and skin-
resident non-immune cells (including epithelial cells, endothelial
cells, fibroblasts, myofibroblasts and melanocytes), from a total of
58, 926 cells in the 10× Genomics dataset (Fig. 1b, c)12,
demonstrating a multicellular ecosystem in CTCL skin lesions.
A similar pipeline was applied to the 5′ UMI Smart-Seq2 dataset
(Supplementary Fig. 1b, c). We were able to capture more cells
per skin sample using 10× Genomics (median of 2,143 cells
versus 453 cells using Smart-Seq2) with both methods providing
comparable median number of genes per cell (1,483 genes using
10× Genomics versus 1,578 genes using Smart-seq2) (Supple-
mentary Fig. 1e and Supplementary Data File 2).

To differentiate malignant T cells from reactive T cells, TCR
repertoires and large-scale chromosomal CNVs inferred from
transcriptome sequencing were examined9,12,13. Malignant
T cells were defined as presenting TCR clonal expansion
coupled with apparent CNVs (Fig. 1d, e and Supplementary
Fig. 1d, f). The CNV patterns of malignant T cell subsets were
highly consistent with those generated from paired bulk whole
exome sequencing (Supplementary Fig. 1g). As visualized in the
UMAP plot of all T cells, reactive T cells, including conventional
CD4+ T cells (Tconvs), CD4+ regulatory T cells (Tregs) and
CD8+ T cells, were clustered by cell type, and the transcriptome

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28799-3

2 NATURE COMMUNICATIONS |         (2022) 13:1158 | https://doi.org/10.1038/s41467-022-28799-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


profiles from each sample showed a high degree of overlap,
whereas malignant T cells grouped into clear patient-specific
clusters, demonstrating the remarkable inter-tumor heteroge-
neity of malignant T cells (Fig. 1f and Supplementary Fig. 1d
and 2a).

The proportion of malignant T cells within the total T cell
population was highly variable across samples, even between

samples from the same patient, adding to the complexity of inter-
tumor heterogeneity among CTCL lesions (Fig. 1g). After
excluding MF18 and MF27, which had a limited number of
malignant T cells (<80), we selected the remaining 16 samples
from 13 patients for further malignant T cell analysis. In addition,
among the benign reactive T cells without apparent CNVs and
presenting a polyclonal phenotype, cells without expression of
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either CD4 or CD8B were excluded from subsequent analysis
(Fig. 1f).

By interrogating the paired TCRα and TCRβ repertories all
T cells (n= 35,754), we showed that 79.7% (28,511/35,754)
contained at least one productive TCRα or β chain and 73.6%
(26318/35754) had both α and β chains (Supplementary Fig. 1h).
We observed that malignant T cells from each sample harbored a
unique clonotype (clonotype frequency > 210 in all samples), and
biopsies from different anatomical compartments of the same
patient shared the same TCR clonotype (Fig. 1h). In patients
MF17, MF26 and MF28, there were two TCRα chains coupled
with a single TCRβ chain in the malignant clone. Approximately
30% of mature αβ T cells express dual TCRA chains due to the
absence of transcriptional allelic exclusion14. These results
strongly supported the hypothesis of a monoclonal origin for
CTCL5. Interestingly, in patient pcALCL1, in which CD4+ and
CD8+ T cells were both predominant according to histological
analysis, CD8+ T cells were defined as malignant T cells with
clonal expansion and aberrant CNVs. Thus, pcALCL1 was
reclassified as a CD8+ pcALCL, which has rarely been reported9.

Notably, we also observed a fraction of reactive T cells (no
apparent CNVs) exhibited low-level clonal expansions in all
samples (clonotype frequency 2–49), indicating an active T cell-
mediated immune reaction in CTCL lesions (Fig. 1h).

To summarize, scRNA-seq analysis with TCR profiling
unambiguously identified malignant T cells in CTCL samples
and revealed a remarkable inter-tumor heterogeneity of malig-
nant T cells.

The constitutive activation/proliferation programs of malig-
nant T cells in each patient determined the inter- and intra-
tumor heterogeneity of CTCL. Concordant with the character-
istics of neoplastic cells previously described in advanced CTCL, a
lack of CD7 expression was observed in malignant T cell subsets15

(Supplementary Fig. 2a). Malignant T cells showed variable
expression of SELPLG (encoding CLA), which was indicative of a
skin-homing T cell phenotype5. All CD4+ T cells, including both
reactive and malignant T cells from all samples, presented a
T-helper (Th)-2 skewing phenotype (defined by GATA3 expres-
sion), consistent with previous findings that Th2 cytokines pro-
duced by malignant T cells repressed the Th1 immune response,
fostered a Th2-biased phenotype in normal T helper cells, and
impaired antitumor immunity in advanced CTCL16. In MF17 and
MF22, malignant T cells displayed a Th1 (with TBX21 expres-
sion) and Th2 phenotypes simultaneously. A concurrent Th17
phenotype (defined by RORC expression) was identified in
pcALCL2, which was consistent with a previous report demon-
strating a dual Th2-Th17 phenotype in a portion of pcALCLs17.

In the malignant T cell subsets, a cell cluster characterized by a
loss of TCR expression was identified in five of the patients
(patients MF17, MF26, MF28, MF30 and pcALCL1) (Fig. 1e and
Fig. 2a, b). In this cluster, only less than 20% of cells harbored
productive TCRA and TCRB pairs, which showed the same
clonotype with the TCR-competent malignant T cell cluster. This
TCR-loss cluster existed exclusively in malignant T cell popula-
tions, but not in reactive T cells, and it was grouped individually
in each sample instead of mixed into malignant T cell subsets as a
“dropout” event, pointing to a distinct transcriptional identity of
these cells. These TCR-loss clusters showed lower CD3E
expression and TOX expression compared with other malignant
T cells, as well as slightly different CNV patterns (Fig. 2c and
Supplementary Fig. 2b). To confirm the existence of these clusters
of cells, we performed immunofluorescence in corresponding MF
skin lesions, which revealed scattered TCRαlow CD4+ T cells in
clinical samples (Fig. 2d).

Down-regulation of TCR expression has been reported in
aggressive T-cell lymphomas, including primary epitheliotropic
intestinal T-cell lymphoma and primary cutaneous gamma-delta
T cell lymphoma (PCGDTL)18,19. Some recent studies suggested
the existence of a special TCR-silent type of lymphoma, while
others proposed that this phenotype represented a common
phenomenon of TCR instability18,19. T cell activation could
trigger TCR complex downregulation in normal mature human
T cells. Although such downregulation is mainly due to post-
translational degradation of the TCR complex, down-regulation
of TCRα and TCRβ mRNA expression does during this
process20,21. To further confirm our finding, we measured TCR
gene expression in a variety of CTCL cell lines using RNA
sequencing. In comparison with normal peripheral CD4+ T cells
from healthy volunteers, all CTCL cell lines showed remarkably
decreased expression of TRAC, TRBC1 and TRBC2 (Fig. 2e),
coinciding with our findings of transcriptional down-regulation
of TCRs in a portion of CTCLs.

Malignant T cells in CTCL are unusual tumor cells because
they possess the features of immune cells as well as neoplastic
cells. To clarify the activation/proliferation states of malignant
T cells, all T cells were plotted by previously defined gene
signatures (see Methods). As expected, reactive T cells showed a
range of T cell activation statuses with a low G2M score, while a
subset of malignant T cells showed a high G2M score with an
attenuated activation status, and another subset retained the
activation status and showed a low G2M score (Fig. 2f). The
discrete activation/proliferation states observed among malignant
T cells indicated a high level of heterogeneity in CTCL.

To further explore intratumor transcriptional diversity, a non-
negative matrix factorization (NMF) analysis was applied to
malignant T cells from each sample (see Methods). On average,

Fig. 1 Single-cell transcriptional profiling of 19 cutaneous T cell lymphoma samples. a Workflow of tumor collection, single-cell dissociation, cell sorting,
and computational analysis for scRNA-seq data and whole exome sequencing (WES) data. Among 16 samples subjected to the 10× Genomics method, the
10× 3′v3 method was applied to two samples from two patients, and the 10× 5′v2 method coupled with TCR V(D)J sequencing was applied to the
remaining 14 samples from 10 patients. b UMAP plot shows 58, 926 high-quality cells from the 10× Genomics dataset. Fourteen cell types are defined by
cell-specific markers. Each dot represents a single cell colored by cell type as annotated. ILC1s, type 1 innate lymphoid cells. NKs, natural killer cells. pDCs,
plasmacytoid dendritic cells. DCs, dendritic cells. c Heatmap shows the expression of the top five signature genes in each cell type from the 10× Genomics
dataset. Expression is indicated as the z-score normalized log2 level (count+1). d Large-scale CNVs of single cells from all samples. CNVs were inferred
from the 10× Genomic dataset. e UMAP plots show all T cells from the 10× Genomics dataset after re-clustering, with cells with TCR information shown in
color. Each color represents a distinct TCR clonotype. f UMAP plots show all T cells from the 10× Genomics dataset after re-clustering, with each cell
colored by cell type. DNT cells: double negative T cells without expression of either CD4 or CD8B. Tu: tumor cells. Malignant T cell clusters are named by
the prefix “Tu-” coupled with the sample ID. g The proportions of malignant T cells and reactive T cells in each sample. We selected 13 patients (except
patients MF18 and MF27) corresponding to 16 samples with >80 malignant T cells for further malignant T cell analysis. h Pie charts show the distribution of
TCRαβ clonotypes of all T cells in each sample based on clonal frequency. The paired CDR3α and CDR3β sequences with clonal frequency >50 (the
dominant clonotype) in each sample are listed below the pie charts. Source data for (c) and (g) are provided in the Source Data file.
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five programs from each sample were extracted to generate a total
of 65 gene signatures, revealing high intratumor heterogeneity
(ITH) in each sample (Supplementary Fig. 2c). Hierarchical
clustering of these signatures revealed four main meta-programs,
which indicated the collective behaviors of malignant T cells

across the heterogeneous transcriptional spectrum of all tumors
(Fig. 2g). The four meta-programs represented distinct functional
signatures annotated by the top-ranking genes, including T cell
signaling and activation (meta-program 1: HLA-DRB1, CD69 and
MYC; and meta-program 4: ITK, FYN and CBLB), cell cycle
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Fig. 2 Malignant T cells displayed highly diversified transcriptional profiles. a UMAP plot shows all cells from one representative sample (MF28-1), with
cells with TCR information shown in color. Each color represents a distinct TCR clonotype. The dashed circle denotes a malignant T cell subset featured by
a loss of expression of the TCRα and TCRβ chains. b UMAP plot shows all cells from one representative sample (MF28-1), with cells colored by cell types,
related to Fig. 2a. c UMAP plot shows the expression of CD3E and TOX in all cells from sample MF28-1. The color scale represents normalized expression.
Gray to red: low to high expression. d Immunofluorescence staining demonstrates that CD4+ tumorous cells (green) exhibit low expression of TCRα (red),
exemplified by sample MF30-2. DAPI (blue) was used to visualize cell nuclei. Scale bar= 10 μm. Results are representative of three different samples. e
RNA sequencing data shows that the expression levels of TRAC, TRBC1 and TRBC2 are significantly deceased in CTCL lines in comparison with those of
normal peripheral CD4+ T cells from three healthy controls. HC healthy control. f Scatterplots show the T cell activation and proliferation (G2M score)
states of reactive T cells (left) and malignant T cells (right) from the 10× Genomics dataset. Blue dots represent reactive T cells and red dots represent
malignant T cells. g Heatmap shows hierarchical clustering based on the number of genes shared by two programs (rows and columns) derived from NMF
analysis in the 10× Genomics dataset. Each dot presents one program from individual patients. Four highly correlated meta-programs were identified based
on a minimum of 10 shared genes between two programs. TCR loss clusters in each sample were highlighted in red. *, two programs share more than 20
genes. h Heatmap shows pathway enrichment of four meta-programs. i Progression-free survival (PFS) analysis of an independent cohort of 49 tumor-
stage MF patients. Patients were stratified into low and high expression groups according to median values of scores corresponding to the gene signatures
of four meta-programs. P values were calculated using the log-rank test. Source data for (e) and (g) are provided in the Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28799-3 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1158 | https://doi.org/10.1038/s41467-022-28799-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(meta-program 2:MCM7, PCNA and BIRC5) and cell metabolism
(meta-program 3: GAPDH, BUA52 and RPS3) (Fig. 2h). Each
meta-program existed in multiple samples and represented a
biological process operating in a subset of malignant T cells in
each sample. Interestingly, meta-program 4 consisted of the TCR-
loss clusters in each sample, except for MF28 and MF30. This
phenomenon may indicate that the activation-induced TCR
complex down-modulation frequently occurs in malignant
T cells, and the molecular features of TCR-loss clusters
demonstrate heterogeneity across patients. We also noticed that
meta-program 3 was enriched with genes encoding ribosomal
proteins. It may reflect the scRNA-seq preferentiality of detecting
highly expressed genes, or suggesting a dysregulated ribosomal
protein expression in malignant T cells22.

Next, we determined whether these four meta-programs were
related to patient prognosis by evaluating the top-ranking genes
in each meta-program in an independent cohort from our group
of 49 tumor-stage MF patients with bulk RNA-seq data on skin
tumors23. Notably, a high T cell activation signature (meta-
program 1 and meta-program 4) was associated with a favorable
prognosis, while a high proliferation signature (meta-program 2)
predicted a poor patient outcome (Fig. 2i). The adverse
prognostic value of meta-program 2 was further validated in an
independent pcALCL cohort with 15 patients, while meta-
program 1 and 4 showed no significant effect on clinical
outcomes in this pcALCL cohort, which may be associated with
the limited sample sizes (Supplementary Fig. 2d and Supplemen-
tary Data File 3). These results indicate that malignant T cells in
CTCL showed high intra-tumor heterogeneity with regard to
transcription and function, and the composition of activation/
proliferation programs in each sample determined the clinical
behavior of the particular case and patient prognosis.

Inter-lesion divergence in CTCL is the result of a multi-step
seeding process by monoclonal malignant T cells with parallel
subclonal evolution. ITH provides a diverse genetic and epige-
netic background for selection and cancer evolution. However,
CTCL presents as multiple skin lesions at the very early stage of
the disease. The manner in which the high transcriptional ITH of
CTCL is related to the evolution and spreading of skin lesions
remains undetermined. To explore the temporal and spatial
spreading patterns of CTCL, we analyzed paired tumors obtained
from different anatomical sites from 3 CD4+ MF patients
(patients MF21, MF28 and MF30). Interestingly, the tran-
scriptome heterogeneity increased along with the time interval of
lesion development and the anatomical distance between lesions
in individual patients.

In patient MF30 with a ten-year history of MF, in which the
two tumors had the longest time interval and distance (MF30-1
developed on the right forearm 12 months prior to biopsy,
whereas MF30-2 developed on the left cheek two months prior to
biopsy), malignant T cells from two biopsies showed disparate
transcriptome profiles, although they shared the same TCR
clonotype, while the transcriptomes of benign T cells overlapped,
as visualized by UMAP plot (Fig. 3a, b). Consistently, trajectory
inference revealed that the evolutionary pathways of the
malignant T cells from two separate lesions overlapped minimally
along pseudotime (see Methods and Fig. 3c). To reveal the genetic
background of this inter-lesion diversity, the single nucleotide
variant (SNV) patterns of two samples were analyzed. As
expected, the two tumors shared less than 10% non-
synonymous mutations, and >90% mutations were private
(Fig. 3j). The substantial degree of genetic divergence suggested
that these two tumors arose from an early clone that was seeded
to the skin of the entire body in the early stage of the disease,

possibly before clinically detected lesions appeared, and subclonal
tumor evolution subsequently occurred in parallel in the skin.

In contrast, in patient MF21 with a fifteen-year history of MF,
whose samples were obtained from two tumors within the same
anatomical compartment (MF21-1 developed above the left knee
6 months prior to biopsy, whereas MF21-2 developed below the
left knee two months prior to biopsy), the transcriptome profiles
of malignant T cells from the two lesions were closely related
(Fig. 3d, e). Trajectory analysis revealed similar evolutionary
dynamics, indicating the resemblance of transcriptional patterns
between adjacent tumors (Fig. 3f). The phylogenetic relationship
showed that >60% mutations were on the stem of the tree,
illustrating a high degree of shared mutations (Fig. 3k). These
results suggested a model in which the subclonal malignant
T cells in a well-developed tumor may re-circulate and seed into
adjacent skin areas and generate late-arising lesions.

This model was further confirmed by patient MF28 with a three-
year history of MF, in which two newly developed tumors (less than
1 month old) at adjacent sites (MF28-1 was on the neck, whereas
MF28-2 was between the eyebrows) exhibited highly overlapping
transcriptional patterns and almost identical evolutionary trends
(Fig. 3g–i). These two tumors might have arisen from the same
subclone of an adjacent tumor. Consistently, this patient had
folliculotropic MF and showed multiple skin tumors in the head and
neck area. Interestingly, a similar pattern of ITH was observed in the
two lesions, including the existence of a TCR-loss cluster in each
sample (Fig. 3h). This phenomenon suggested that the late-arising
lesions were seeded by a cluster of cells, which transmitted the genetic
diversity for early-arising lesions via a mechanism analogous to
consecutive seeding during metastasis of solid tumors24.

Our results suggested that tumor evolution was a multi-step
seeding process. This dynamic evolution leads to the accumula-
tion of ITH within each skin lesion, as well as inter-lesion
diversity, and contributes to the heterogeneous clinical features
and treatment response observed among different skin lesions in
the same patient.

The intrinsic features of malignant T cells suggest distinct
CTCL tumor origins and determine diverse clinical outcomes.
The complexity of CTCL in clinical settings lies in its various
subtypes and classifications. The current classification scheme
depends largely on clinical characteristics (e.g., folliculotropic,
depigmented, or poikilodermic), cell morphology (e.g., large
anaplastic cells or small-medium cells) and T cell types (e.g., CD4,
CD8, and CD30), rather than on the intrinsic molecular features
of malignant T cells. Since we have defined malignant T cells in
each sample, we aimed to subtype the CTCL samples according to
the transcriptome patterns of malignant T cells.

We profiled the transcriptional expression patterns of all 25,919
malignant T cells and identified the differentially expressed genes
(DEGs) between malignant T cells and their respective reactive CD4+

or CD8+ T cells in each sample from 13 patients. Unsupervised
clustering analysis of these DEGs separated all samples from the 10×
Genomic dataset into two groups independent of disease subtype
(Fig. 4a). In one group, which contained CD4+ MF, CD8+ MF,
CD4+ pcALCL, and CD8+ pcALCL, the malignant T cells exhibited
an effector memory T phenotype, defined as CD45RO+, CD27−,
CD62L (encoded by SELL)- and CCR7−, except for one CD8+ MF
(MF14), which exhibited a CD45RA+CD45RO−CD27−CD62L
−CCR7− phenotype, consistent with the effector memory T cells
re-expressing CD45RA (TEMRA) as previously described (Fig. 4a, b
and Supplementary Fig. 3a-b)25,26. Interestingly, malignant T cells in
this group expressed a core set of cytotoxic markers, including
GZMA, GZMB, PRF1, GNLY and IFNG, especially in all CD4+ MFs
(Fig. 4a, c and Supplementary Fig. 3a).
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In contrast, the other group, consisting of CD4+ MF samples,
uniformly expressed high levels of CD45RO, CD62L, CD27 and
CCR7, canonical markers of central memory T cells, whereas
cytotoxic makers were absent (Fig. 4a, b and Supplementary Fig. 3a).
A similar grouping pattern was seen in the 3 samples in the 5′ UMI
Smart-Seq2 dataset (Supplementary Fig. 3c). Accordingly, we divided
the 13 patients into a cytotoxic effector memory T cell (TCyEM) group

and a central memory T cell (TCM) group. The TCyEM group included
four CD4+ MF patients, one CD4+ pcALCL patient, two CD8+ MF
patients and one CD8+ pcALCL patient, while all five TCM cases
were CD4+ MF patients. Samples from different anatomical sites
from one patient were included in the sample group, as expected.

To define the gene expression signature of each group, DEGs
common to all samples in each group were identified. To
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maximize the representativeness of these gene signatures, we
excluded samples with a limited number of DEGs. Thereby, 13-
gene and 27-gene signatures were identified in the TCyEM and
TCM groups, respectively (Fig. 4d). Malignant T cells in the TCyEM

group showed upregulated expression of a series of cytotoxic
molecules and chemokines, including GZMA, GZMH, NKG7 and
CCL4, while the gene signature of the TCM group included several
genes previously reported in studies of advanced-stage CTCL,
including TOX, KIR3DL2, CD40LG, GTSF1, PTTG1, GAPDH,
PPIA and HSPD127–32. To eliminate the effect of the cytotoxic
nature of CD8+ MF and pcALCL on the gene signature of the
TCyEM group, a refined analysis including only CD4+ MFs in the
TCyEM group identified a 19-gene signature. This 19-gene list was
highly consistent with the 13-gene signature, including multiple
cytotoxic molecules (GZMA, GZMH and NKG7), which con-
firmed the cytotoxic phenotype of the malignant TCyEM cells
(Supplementary Fig. 3d). Within the gene signature of the TCM

group, TOX is a crucial T cell development regulator and has
been shown as an adjunctive diagnostic marker in CTCL28.
KIR3DL2 participates in the regulation of immune response of
T cells and has been identified in leukemic CTCL33,34. CD40L
(encoded by CD40LG) expression in MF has been related to
increased cell growth and homing of neoplastic cells to the skin35.
GTSF1 is one of cancer testis (CT) genes which are aberrantly
expressed in CTCL32. High expression of GAPDH, indicating a
switch to aerobic glycolysis to meet the metabolic demand for
tumor proliferation, has been shown to promote aggressive T cell
lymphomas36,37. HSPD1 was found to be upregulated in
advanced CTCL38. PTTG1 and PPIA were described in previous
single-cell analyses in CTCL27,31.

To better understand the characteristics of the two groups, we
evaluated the clinical relevance and functional profiles of
malignant T cells in each group (see Methods). Clinically, all
five TCM patients were at late stage with large cell transformation
(LCT) (Fig. 4a), indicating that patients in this TCM group were
related to aggressive clinical courses and poor prognoses1.
Consistently, malignant T cells in the TCyEM group showed a
low exhaustion/high cytotoxicity state, while the TCM group was
highly exhausted, supporting the previous finding of high
expression levels of exhaustion markers in a portion of CTCL
cases39, including PDCD1, CTLA4, TIGIT, and TCF7, a marker
for precursor exhausted T cells40 (Fig. 4e and Supplementary
Fig. 3e, f). Moreover, discrete activation/proliferation states were
identified in different subtypes. Malignant TCyEM cells were
highly activated and had low proliferation capacity, while
malignant TCM cells were highly proliferative, indicating an
increased tendency for progression in this group (Fig. 4f). These
phenomena highly recapitulate the features of normal effector
memory T cells and central memory T cells26.

We further explored the expression patterns of the four meta-
programs in the two groups (Supplementary Fig. 3g). In
accordance with the two main profiles, malignant TCyEM cells
showed higher scores of meta-program 1 and 4 (T cell signaling
and activation), while malignant TCM cells exhibited higher scores

of meta-program 2 (cell cycle) and meta-program 3 (cell
metabolism). To validate this finding, we analyzed the prognostic
values of the gene signatures from the two groups in our
independent MF cohort. The TCM gene signature was associated
with shorter progression-free survival, whereas the TCyEM

signature had no significant effect on prognosis, confirming that
TCM features were associated with adverse patient outcomes
(Fig. 4g and Supplementary Fig. 3h). Therefore, comparing to the
TCyEM group, the molecular features of TCM patients were related
to more advanced disease stages, aggressive behavior, and adverse
prognosis.

These results raise the question of whether TCyEM is a feature
restricted to the early stages of MF, so that phenotype switching
to TCM occurs when the disease progresses. To address this
possibility, we performed trajectory analysis on all CD4+ T cells
in all samples (Fig. 4h). Starting as a benign naïve T cell subset,
malignant TCyEM and TCM cells moved towards opposing
divergent branches. Notably, the cellular trajectories of Tregs
developing from naïve CD4+ T cell were closer to those of the
malignant TCM cells. A recent single-cell study identified FOXP3
as a driver of clonal evolution in Sézary cells31, which raised the
question of whether CTCL with central memory T cell phenotype
was Treg origin. However, Tregs did not show apparent CNVs
(Fig. 1d) and had no overlapping clonotypes with the malignant
cells in the TCM group (data not shown). Therefore, there was no
evidence for Treg-derived malignant T cells in our study.

This finding strongly suggests that malignant TCyEM and TCM
T cells represented two distinct tumor origins rather than a
phenotypic transition in the process of tumor progression. This
hypothesis was further validated by patient MF7, a TCM group
patient with more than ten years of follow-up assessment. This
patient was diagnosed with early-stage MF (T1N1M0B0) ten years
ago. The patch/plaque-stage skin lesions obtained from MF7 ten
years ago exhibited a TCM phenotype (coexpressing CD45RO and
CD27), confirming that the phenotype of the malignant T cells was
determined at the outset (Supplementary Fig. 3i).

We also note that TCR-loss clusters were located at the far end
of the trajectories of both of the two distinct malignant
developmental pathways (Fig. 4h). In each group, the gene
expression profiles of TCR-loss clusters were distinct from their
TCR-competent counterparts in each group. In particular, the
TCR-loss cluster in the TCyEM group expressed even higher levels
of T cell activation-related genes in comparison with the TCR-
competent cells, including PTPRC, AHNAK, ITK, ZAP70 and
FYN (Supplementary Fig. 3j). In the TCM group, increased
expression of cellular metabolic genes, including GAPDH, GTSF1
and PTTG1 were seen in TCR-loss cluster (Supplementary
Fig. 3k). These findings were highly consistent with our NMF
analysis, and confirmed that the TCR-loss clusters represent a
terminal state of malignant T cells. Loss of TCR expression in
CTCL may be a result of clonal evolution to avoid deleterious
external stimulation in the process of tumor progression.

Collectively, we established a molecular subtyping scheme in
CTCL based on the transcriptome of malignant T cells. We

Fig. 3 Inter-lesion diversity analysis of paired tumors from the same patient. a, d, g Schematic diagrams illustrate the anatomical sites and time intervals
of paired tumors obtained from patients MF30 (a), MF21 (d) and MF28 (g). b, e, h UMAP plots showing all T cells from paired tumors from patients MF30
(b), MF21 (e) and MF28 (h), with cells colored by sample ID, TCR clonotypes (TCR information is shown in color and each color represents a distinct TCR
clonotype) and cell types in sequence. c, f, i Pseudotime trajectory analysis of all T cells from paired tumors of patients MF30 (c), MF21 (f) and MF28 (i)
inferred by Monocle 2, in which reactive T cells were selected as the start cells. Cell trajectories are further shown separately according to sample ID, with
cells colored by cell types. j, k Venn diagrams show the numbers of nonsynonymous mutations of paired tumors from patient MF30 (j) and MF21 (k)
inferred from WES data (left). Putative driver mutations are annotated on the phylogenetic trees of paired tumors (right). Missense mutations are in blue.
Nonsense mutations are in green. Frameshift mutations are in purple. The length of each line is proportional to the number of nonsynonymous mutations.
Source data for (j) and (k) are provided in the Source Data file.
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defined a TCyEM group, in which the malignant T cells showed an
activated cytotoxic effector memory T cell phenotype, as well as a
TCM group, in which malignant T cells were central memory T
cell-like cells with high proliferation and exhaustion status. This
subtyping may represent the distinct origins of malignant T cells,
and are related to patient outcome as assessed in a larger cohort
(n= 49).

CD8+ TILs are major antitumor effector cells in CTCL and are
more exhausted in the TCM group. Tumor progression is
mediated by reciprocal interaction between tumor cells and their
surrounding TME41. The TME influences cancer cells, and in
turn cancer cells have been shown to dictate and modify the
surrounding TME13. The manner in which differences in
malignant T cell phenotypes influence the TME in CTCL lesions
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is not well understood. To this end, we analyzed and compared
cells in the TME from the TCyEM and TCM groups, with a focus on
tumor infiltrating lymphocytes (TILs). We first investigated the
TCR repertoires of reactive T cells in all samples (Fig. 5a). As
expected, the reactive CD8+ T cell subset harbored the most
frequent clonal expansion, and 44.3% of these cells were clonally
expanded, suggesting that CD8+ TILs are major anti-tumor
effector T cells in CTCL. Tregs exhibited a lower level of clonal
expansion (less than 20% cells), while CD4+ Tconv cells were
least expanded (2.1%) (Fig. 5a), in accordance with previous
findings that malignant T cells conferred an impaired antitumor
immunity upon normal T helper cells in CTCL16.

We re-clustered all CD8+ TILs and identified two subsets with
distinct exhaustion status (Exlow subset and Exhigh subset).,
defined by the expression of exhaustion markers PDCD1,
HAVCR2, CTLA4, LAG3, and TIGIT (Fig. 5b). Exlow CD8+ TILs
exhibited a relatively higher TCF7 expression and lower PDCD1,
HAVCR2, CTLA4, LAG3 and TIGIT, indicative of a precursor
exhausted T cell phenotype40. Exhigh CD8+ TILs showed a low
TCF7 expression, with higher levels of the other exhaustion
markers, suggesting a terminally differentiated exhausted T cell
phenotype. Notably, the TCyEM group harbored more Exlow

CD8+ TILs with more frequent clonal expansion, whereas the
TCM group was enriched with more Exhigh CD8+ TILs featured
by a restricted TCR repertoire (Fig. 5c). CD8+ TILs are antigen-
specific and require class I major histocompatibility complex
(MHC-I) restriction. Therefore, MHC-I expression by malignant
T cells was explored. Significant down-regulation of MHC-I
molecules was observed in the TCM group, which may impair the
immune recognition of CD8+ TIL cells in this group (Fig. 5d).
Moreover, malignant T cells in the TCM group expressed a higher
level of Galectin-9, encoded by LGALS9, a canonical ligand of
exhaustion marker Tim-3 (encoded by HAVCR2) (Fig. 5d, e)42.
The Galectin-9-Tim-3 interaction was shown to be involved in
immune escape by human cancers42. Therefore, we proposed that
global down-regulation of MHC-I molecules and upregulation of
galectin 9 collaboratively contributed to tumor evasion from
cytolytic CD8+ TIL-mediated antitumor immunity in the
TCM group.

The cell origin of malignant T cells defines TME landscapes.
Emerging data have highlighted the complexity and hetero-
geneous composition of the TME in T cell lymphoma43. To gain
more insight into the potential roles of other immune cells in the
TME, we next re-clustered non-T cells from all samples to reveal
the global immune landscape (Fig. 6a). Among the diverse cel-
lular components, B cells and macrophages were the dominant

cell populations. Interestingly, the TCyEM group showed a rela-
tively higher fraction of macrophages, and the TCM group had
remarkably higher abundance of B cells and plasma cells (Fig. 6a
and Supplementary Fig. 4a).

A subset of NK cells, an important component of cytotoxic
immune cells, existed in all samples. The NK subset displayed a
CD16high CD56low (encoded by FCGR3A and NCAM1, respec-
tively) phenotype, considered as a mature and highly cytotoxic
state44 (Supplementary Fig. 4a). In addition, a subset of ILC1s
exhibiting NK-like gene markers (NKG7, NCR1 and TBX21) with
an IL7Rhigh/EOMESlow molecular profile was identified as
previously described45. NK cells demonstrated cytolytic capacity
greater than that of ILC1s, as suggested by the expression levels of
cytotoxic markers (Supplementary Fig. 4a). The NK/ILC1 ratios
of the TCM and TCyEM groups were comparable, suggesting that
NK cells were universally activated in all CTCL cases and may
serve as a therapeutic agent for anti-tumor immunotherapy
in CTCLs.

Extensive interactions between malignant T cells and various
immune cells in both groups were predicted by immune-
associated ligand-receptor pairs using the CellPhoneDB reposi-
tory (see Methods and Fig. 6b). The reciprocal tumor/macro-
phage and tumor/B cell interaction patterns were distinct between
the two groups, prompting us to explore their respective roles in
the two CTCL subtypes.

M1 and M2 scores for tumor associated macrophages (TAMs)
were calculated according to previously reported markers46.
Notably, a higher M2 score was observed in TAMs in the TCyEM

group (Fig. 6c). CD163, a classic M2 macrophage marker, was
highly expressed in the TCyEM group (Fig. 6d and Supplementary
Fig. 4b, c). The presence of CD163-expressing M2 TAMs has
been associated with poor clinical outcomes in CTCL, and
depletion of M2 macrophage was found to suppress CTCL
development in vivo10,47,48. CD163+ M2 macrophages could
foster an immunosuppressive and pro-tumorigenic inflammatory
microenvironment by inducing T cell tolerance and producing
pro-angiogenic cytokines such as vascular endothelial growth
factor (VEGF)10,49. Accordingly, we observed high expression
levels of VEGFA and MAF (encoding a key transcriptional factor
of IL10) in the macrophage population in TCyEM patients
(Fig. 6d).

To determine the interplay between M2 TAMs and malignant
T cells in TCyEM patients, further analysis revealed significantly
upregulated CCL5 and CCL4 in malignant T cells, coupled with
higher expression of their classical receptors, CCR1 and CCR5, in
the macrophage cluster (Fig. 6d, e). CCL5 and CCL4 are involved
in regulating macrophage trafficking, and CCL5/CCR5 interac-
tion was reported to induce the polarization of CD163+ M2 in

Fig. 4 A molecular subtyping scheme for CTCL based on the transcriptomes of malignant T cells. a Heatmap of unsupervised hierarchical clustering
showing the average expression of the DEGs between malignant T cells and their respective reactive CD4+ or CD8+ T cells in each sample from 13
patients in the 10× Genomics dataset (log2 fold change >1.5, p < 0.05). The bars above the heatmap show the tumor type, LCT information and disease
stage of each patient. LCT, large cell transformation. b Immunofluorescence staining of CD45RO (green) and CD27 (red) on tumor samples from the
TCyEM and TCM groups. DAPI (blue) was used to visualize cell nuclei. Scale bar = 50 μm. Results are representative of three different samples. c
Immunofluorescence staining demonstrates that CD4+ tumorous cells (red) express several cytotoxic markers (red). DAPI (blue) was used to visualize
cell nuclei. Scale bar = 50 μm. Results are representative of three different samples. d Venn diagrams illustrate the number of overlapping DEGs (log2 fold
change >0.25, p < 0.05) of representative TCyEM and TCM patients. The gene signatures are listed. Genes previously reported to be upregulated in CTCL are
highlighted in red. e 2D density plots show the cytotoxicity and exhaustion score of malignant T cells in the two groups from the 10× Genomics dataset. f
Scatterplots show the T cell activation and proliferation states of all T cells in the two groups from the 10× Genomics dataset. Blue dots represent reactive
T cells. Red dots represent malignant T cells. g PFS analysis of the 49 tumor-stage MF patients. Patients were stratified into low and high expression groups
according to median values of scores corresponding to the gene signatures of the TCyEM (left) and TCM (right) groups identified in Fig. 4d. P values were
calculated using the log-rank test. h Pseudotime trajectory analysis of all CD4+ T cells in CD4+ CTCL patients from the 10× Genomics dataset inferred by
Monocle 2, with cells colored by cell types, pseudo-time, molecular subtypes and TCR clonotypes in sequence. Naive T cells were selected as the start
cells. Source data for (d) are provided in the Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28799-3

10 NATURE COMMUNICATIONS |         (2022) 13:1158 | https://doi.org/10.1038/s41467-022-28799-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


cancers50. Therefore, we proposed that malignant TCyEM cells
appeared to produce high levels of CCL5 and CCL4 to recruit and
polarize CD163-expressing M2 TAMs, forming a tumor-
supporting environment in TCyEM cases.

On the other hand, the B cell cluster, which was highly enriched in
TCM patients, expressed a high level of CD40, which is associated with
B cell activation and Breg differentiation under CD40L stimulation
(Supplementary Fig. 4a)51. Since CD40LG was included in the gene
signature of malignant T cells in the TCM group, we hypothesized
that malignant T cells may employ the CD40L/CD40 axis to activate
B cells in TCM cases. We confirmed the presence of B cells with high
tumor infiltration capacity in this group by immunostaining
(Supplementary Fig. 4b, c). CD40L-expressing malignant T cells
were located in proximity to CD40-expressing B cells in TCM lesions
(Fig. 6f, h and Supplementary Fig. 4g). We further validated the close
relationship between B cells and TCM cells in our independent MF
cohort, and we identified a positive correlation between malignant
TCM marker CD40LG and mature B cell marker CD20 (encoded by
MS4A1) (Supplementary Fig. 4d).

B cells are abundant in many human cancers and play cancer-
specific roles in antitumor immunity52. B cells have been reported to
be upregulated in a portion of MF patients53. A recent study reported
that depletion of mature B cells in an aggressive folliculotropic MF
patient achieved improved disease control, suggesting a deleterious

effect of B cells in CTCL11. Studies have revealed that B cells,
especially Bregs, could promote tumor progression by inducing
resting CD4+ T cells to transform into Tregs in various cancers51.
Although the TCM and TCyEM groups showed a similar number of
Tregs and similar expression levels of FOXP3, the Treg population of
TCM cases showed higher expression levels of LAG3 and TIGIT,
suggesting enhanced suppressor activity in this subset of
cells54,55(Fig. 6g and Supplementary Fig. 4e, f). Specifically, the
LAG3+ Treg has been recognized as a subset of cells endowed with
potent immunosuppressive capacity, and this type of Treg has been
found to preferentially expand in tumors56. Therefore, we proposed
that malignant T cells activated B cells in TCM patients via a CD40L/
CD40 axis, and highly infiltrated B cells may promote tumor
progression by activating Tregs.

Taken together, our results demonstrate the roles of M2
macrophages and the B cell-Treg axis in the TMEs of the TCyEM

and TCM groups, respectively. To corroborate and illustrate the
intricate interactions between malignant T cells and the TME,
multicolor IHC staining of tumor tissues was performed. The
interplay between M2 macrophages/TCyEM cells and B cells/
LAG3+ Tregs/TCM cells was demonstrated in the TCyEM and TCM

groups (Fig. 6h and Supplementary Fig. 4g). Our results suggest
that the diversity of malignant T cell origins determines the
heterogeneity of TME, which may contribute to patient outcomes.
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groups based on clonal frequency. T cells with TCR clonotype frequency ≥3 are defined as clonally expanded T cells. (Right) Bar plot shows the proportion
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cell nuclei. Scale bar= 50 μm. Results are representative of three different samples. Source data for (c) are provided in the Source Data file.
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Thus, anti-CTCL immunotherapy should be tailored according to
each patient’s molecular subtype.

Discussion
High-throughput multi-dimensional single-cell analysis provides
a powerful tool to reveal the dynamics of tumor heterogeneity. In

our study, using scRNA-seq with paired TCR V(D)J sequencing,
we carried out a comprehensive transcriptional analysis on
19 skin lesions from 15 patients across two major CTCL variants
MF and pcALCL, and depicted the nature of malignant T cells
and their multicellular ecosystems. We put forward a tumor
evolution model underlying the pathogenesis of CTCL and pre-
sent a dimension of molecular subtyping based on tumor origins.
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We adopted a reliable approach to precisely distinguish
malignant T cells from reactive T cells, providing a solid basis for
achieving a deep understanding of the pathobiology of CTCL.
Our data lend strong support for a monoclonal origin for
malignant T cells derived from mature skin-homing T cells, in
contrast with recent studies demonstrating an oligoclonal or
polyclonal nature of CTCL8. This discrepancy might be caused by
contamination of reactive T cells, because laser-capture micro-
dissection based on cell morphology has been widely used to
dissect tumor cells8. We found that reactive T cells, especially
CD8+ TILs, displayed a substantial amount of clonal expansion,
which could result in the designation of polyclonality in CTCL
lesions. To a lesser extent, the absence of allelic exclusion of
TCRA might be another reason for this discrepancy14. The bi-
allelic TCRA expression has been previously reported on Sézary
cells by WES study57. Our study was able to pair the bi-allelic
TCRA to TCRB sequence in the single-cell dimension to
demonstrate the monoclonal nature of malignant T cells.
Therefore, the single-cell approach appears to be a superior
method for tracing the development of tumor progression in
future studies.

Interestingly, malignant T cells in a portion of patients lacked
TCR expression, which was previously reported in Sézary cells57.
These TCR-loss clusters exist in both TCyEM and TCM groups,
representing a universal phenomenon in CTCL, although the
clinical significance regarding patient prognosis was not clear due
to the limited sample size of our scRNA-seq cohort. Down-
regulation of TCR expression represents a negative feedback
mechanism for constraining T cell effector function to avoid
excess inflammatory damage in reactive T cells21. Whether
malignant T cells induced a similar mechanism to prevent
harmful signal transduction during tumor progression warrants
further exploration.

Our data revealed diverse transcriptome programs in the
malignant T cells within each sample, demonstrating remarkable
subclonal evolution in CTCL. This finding was consistent with a
recent study on Sézary syndrome, in which malignant T cells
from peripheral blood developed multiple subclones according to
culture conditions58. We found that distinct activation/pro-
liferation status of the malignant T cells determined the proper-
ties of each subclone. Malignant T cells demonstrated either a
high proliferation score or a high activation score, suggesting
diverse underlying genetic backgrounds. These results are con-
sistent with a previous genomic analysis revealing that putative
driver oncogenes in CTCL were varied and involved multiple
pathways, including T cell activation, chromatin modification,
and cell cycle control59. Our prognosis analyses on each meta-
program across all samples also demonstrated that the intra-

tumor and inter-tumor heterogeneity in the composition of the
activation/proliferation cell clusters determined the clinical
behavior of each skin lesion and the patient prognosis.

Our data confirmed the monoclonal origin of malignant T cells
across skin lesions in individual CTCL patients. Because each skin
tumor is identifiable once fully established, and accessible to
biopsy, we are able to show a multi-step and parallel transfor-
mation model for malignant T cells: a single mutated ancestor of
the malignant T cell clonally expands and seeds into skin niches
at different anatomical sites long before clinically detectable skin
lesions occur. Parallel subclonal evolution occurs independently
over time and results in the development of new skin rashes. As
the skin tumor evolves, multiple waves of dissemination of sub-
clones occur and colonize adjacent anatomical sites, developing
new lesions (Fig. 7a). This model explains the intra-lesion het-
erogeneity and inter-lesion diversity of CTCL patients, as well as
differences in the therapeutic vulnerabilities of lesions at different
anatomical sites.

In contrast with solid tumors which initiate from a primary
site, or the skin involvement of hematological malignancies which
demonstrate homogenous skin lesions60, CTCL, especially MF,
generally begins with multiple skin lesions appearing in succes-
sion across long time intervals, even decades, and the lesions on
different anatomical sites are varied61. Patches, plaques, and
tumor-stage lesions may exist simultaneously on the same
patient, and they may show distinct responses to treatment9. Our
findings suggest that skin lesion spreading is an evolutionary
process with temporal and spatial dynamics that highly resemble
those of the multi-step process of metastatic colonization by solid
tumors24,62.The seeding events take place across the whole course
of the disease development and may depend on the characteristics
of malignant T cells and the microenvironment of different skin
niches.

The route of malignant T cell dissemination is still debated. It
has been reported that skin-resident T-cells do not recirculate;
they survive and proliferate in the skin without migrating to the
lymph nodes63,64. More recent studies have shown that human
skin CD4+ resident memory T cells can exit the skin, reenter the
circulation, and travel to secondary human skin sites65,66, sup-
porting our model of the spreading of CTCL lesions. Previous
studies with TCR-sequencing also supported this model by
demonstrating low but detectable malignant clones in adjacent
non-lesional skin and peripheral blood in patients with skin-
limited CTCL67,68. Noting that our model is based on a limited
sampling of skin lesions from a limited number of patients, it is
impossible to conclude when the cells first disseminate and
whether the temporal or the spatial aspect determines the dif-
ferences in the trajectories. Factors other than time and

Fig. 6 The origin of malignant T cells determines the tumor microenvironment. a UMAP plot shows non-T cells from the 10× Genomics dataset. Cells are
colored by cell types (left) and molecular subtypes (right). b Summary of selected immune-associated ligand-receptor pairs between malignant T cells and
the microenvironment in each subtgroup using CellPhoneDB. The size of each dot denotes the p value. The color gradient denotes the degree of interaction.
Tu-TCyEM: malignant T cells in the TCyEM group. Tu-TCM: malignant T cells in the TCM group. Mac macrophages, B B cells, Epi epithelial cells, Endo
endothelial cells, Myofib myofibroblasts. c 2D density plots show the M1 and M2 scores of macrophages in two groups from the 10× Genomics dataset. M1
and M2 score gene lists are provided in Supplementary Table 1. d Violin plots show the expression levels of selected genes of macrophages in the TCyEM
and TCM groups (log2 fold-change >0.5, ***p < 0.001); Two-sided Mann–Whitney U-test. P= 9.98 × 10−30 (CD163), 9.24 × 10−27 (VEGFA), 4.01 × 10−10

(MAF), 4.17 × 10−6 (CCR5) and 3.52 × 10−18 (CCR1). e Violin plots show the expression levels of chemokine genes CCL5 and CCL4 of malignant T cells in
the TCyEM and TCM groups (log2 fold-change >1, ***p < 0.001); Two-sided Mann–Whitney U-test. P= 0 (CCL5 and CCL4). f Immunofluorescence staining of
CD40LG (green) and CD40 (red) on paraffin-embedded tissue. DAPI (blue) was used to visualize cell nuclei. Scale bar= 20 μm. Results are representative
of three different samples. g Violin plots show the expression levels of Treg markers in the TCyEM and TCM groups (ns: not significant; ***p < 0.001;
**p < 0.01); Two-sided Mann–Whitney U-test. P= 1 (FOXP3), 1.68 × 10−8 (LAG3) and 3.86 × 10−3 (TIGIT). h Multicolor IHC staining of tumor tissue
samples to determine the expression levels of CD4 (green), granzyme A (magenta), CD163 (orange) and CD8 (yellow) in Panel 1 and the expression levels
of TOX (green), CD20 (magenta), FOXP3 (white) and LAG3 (red) in Panel 2. DAPI (blue) was used to visualize cell nuclei. Scale bar= 100 μm. Results are
representative of three different samples. See also Supplementary Fig. 4g. Source data relating genes in (a) and (c) are provided in the Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28799-3 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1158 | https://doi.org/10.1038/s41467-022-28799-3 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


anatomical proximity may also play vital roles in the process of
tumor evolution. Future large‐scale studies that involve repeated
biopsies of multiple skin samples from the same patient com-
bined with longitudinal and spatial sampling will help to corro-
borate this model. Robust bioinformatic analysis will be required
for reliable documentation of malignant T cell dissemination
patterns in CTCL.

We proposed a molecular subtyping scheme for CTCL based on
the transcriptomic features of malignant T cells. Our findings
expand our understanding of CTCL cellular origin of CTCL, which
was first elucidated by a seminal study demonstrating that MF
arises from a skin-resident effector memory T cell subset, while
Sézary syndrome arises from central memory T cells with variable
expression of skin addressin CLA5. We excluded the possibility that
the five patients in the TCM group were Sézary syndrome cases,
because none of them were in B2 stage. Therefore, our data showed
varied T cell subset origins within MF patients. This finding was
supported by a recent study describing discrete CD4+ T-cell subsets
in the neoplastic cells of MF, including naive T cells (TN), TCM, TEM

and TEMRA subsets25. We identified distinct molecular signatures in
the TCM and TCyEM subtypes. The TCyEM group showed high
expression of cytotoxic molecules. Accordingly, natural cytotoxicity
receptor NKp46 and granzyme B have been reported to be
expressed by atypical cells in some CD4+ CTCL cases, including

MF and pcALCL patients69–71. We also observed that CD28 was
downregulated in this group (Supplementary Fig. 3a), which was
consistent with a previous study demonstrating that loss of CD28
expression was a hallmark of CD4+ cytotoxic T cells72. This group
contains CD4+ MF, CD8+ MF, and pcALCL cases, suggesting that
a portion of MF are closely related to pcALCL. These results may
also explain the highly overlapping histology features between
pcALCL and MF, and the frequent concurrence of pcALCL and MF
in the same patient39. The gene signatures of the TCM group include
TOX, KIR3DL2 and GTSF1, which were previously reported in
tumor-stage MF and Sézary syndrome32,34,73,74. TOX was shown to
be highly expressed in both MF and Sézary syndrome, and its
expression is related to poor patient prognosis28,73. KIR3DL2 has
been as a diagnostic marker for Sézary syndrome34. KIR3DL2-
targeted therapy shows potent antitumor activity against CTCL in
preclinical and clinical studies33. The TCM group consists of pure
CD4+ MFs, and its signature is associated with an adverse effect on
patient survival, suggesting that some CD4+ MF lesions may
share a cellular origin with Sézary syndrome and could require
more aggressive treatment. Targeted treatment for Sézary syn-
drome, including anti-KIR3DL2 antibodies, may be applicable in
this group of MF patients. Therefore, MF shows a diversified T cell
subset origin, which underlies its varied biological and clinical
characteristics.

Fig. 7 A schematic representation of this study. a Single-cell RNA sequencing of cutaneous T cell lymphoma reveals a multi-step seeding model of
monoclonal malignant T cells. b, c A molecular subtyping scheme based on the tumor origins and distinct tumor immune microenvironments, providing
insights into therapeutic interventions for CTCL.
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We showed that the origins of malignant T cells determined
the particular characteristics of their distinct TMEs (Fig. 7b, c),
which could be exploited to develop tailored immunotherapy
strategies for different subtypes of patients. Tumor-associated
macrophages, especially M2 TAMs, promote angiogenesis, tumor
cell invasion, intravasation, and tumor metastasis, and macro-
phages have been shown to be good targets for anticancer
therapy49. Bexarotene, an FDA-approved drug for advanced
CTCL, has been shown to reduce production of CCL22 from
macrophages75. Thus, bexarotene, macrophage-targeted therapy,
or drugs repolarizing macrophages, e.g. interferon α76, may
benefit patients in the TCyEM group. Alternatively, malignant TCM

cells may evade anti-lymphoma immunity by an orchestrated
interaction among malignant T cells, exhausted CD8+ TILs, B
cells, and Tregs. Administration of immune checkpoint blockers
or B cell depletion treatment may show enhanced efficacy in
patients in the TCM group. The major obstacle to conducting
clinical trials in CTCL patients is that the response rates of almost
all available treatments are highly variable. Therefore, molecular
subtyping is critical to stratify CTCL patients. Future precision
medicine for CTCL patients relies on further elucidation of the
distinct characteristics of the tumor ecosystem of each patient
subset.

This study, however, is subject to several limitations. First, our
study is mainly descriptive, with limited sample size. Further
validation studies with a large cohort in CTCL will be required.
Second, our sorting strategy in scRNA-seq aimed to maximize the
sequencing of T-cell populations; thus, non-T cells were sorted
disproportionally in the process of FACS, which may limit the
interpretation of the tumor microenvironment analysis. Although
we have validated the abundances of the non-T immune cells in
each sample, especially macrophages and B cells, with immuno-
histochemistry, this sorting strategy still influenced the relative
number of CD45- non-immune cell population, especially in the
Smart-seq samples, which were densely infiltrated by atypical
T cells in histology and only a few non-T cells were recovered.
Third, due to the technical limitation of scRNA-seq with 10×
Genomics platform, the numbers of detected genes from scRNA-
seq data are lower than the bulk RNA-seq method77. This
drawback mainly affects the detection of low-abundance genes,
e.g., cytokines and chemokines, limiting the interpretation of T
cell functions and cell-cell interactions in this study.

Collectively, our work establishes a conceptual foundation for
understanding CTCL tumorigenesis and proposes a molecular
subtyping strategy incorporating the phenotypes of malignant
T cells and the multicellular immune landscape. Our findings
may create therapeutic benefits for CTCL patients and serve as a
useful resource for further studies.

Methods
Patient sample. Fifteen CTCL patients with informed consent were recruited from
the Skin Lymphoma Clinic of Peking University First Hospital in the period from
2018 to 2019. All patients were either treatment naïve or did not receive anti-
lymphoma therapy at least 6 months prior to the biopsy. All diagnoses were
verified by at least two dermatopathologists according to previously described
criteria9. For scRNA-seq, thick plaques or tumors were selected and resected from
15 patients corresponding to 19 samples. Each freshly dissociated sample was
transported to laboratory immediately. All participants provided written consent
for specimen collection and analysis under the study protocol approved by the
Peking University First College Hospital Ethics Committee. We have complied
with all relevant ethical regulations for work with human participants.

Tissue dissociation and single-cell suspension preparation. After immediate
transportation, each fresh tissue was minced into pieces (<1 mm3) on ice and
digested with collagenase. To obtain single-cell suspensions with a high viability
rate, the solution was transferred into a gentleMACS C Tube (Miltenyi Biotec, 130-
093-237) and placed into a gentleMACS octo dissociator (Miltenyi Biotec, 130-095-
937), in which it was incubated for 45 min at 37 °C. After digestion, the suspension
was filtered using a Falcon 40-μm cell strainer (Corning, 352340). Next, 10 μL cell

suspension was used to confirm the cell viability with trypan blue staining
(Solarbio, C0040). The sample was then centrifuged and resuspended with serum-
free phosphate-buffered saline (PBS) to prepare it for cell staining and flow
cytometry.

Single cell isolation. Each single-cell suspension was stained with CD45-PE and
CD3-BV421 for 15 min on ice in the dark. 7-AAD (BD Pharmingen) was added
prior to fluorescence-activated cell sorting (FACS). Single cell isolation was per-
formed using FlowJo (v10.7.1, BD Inc, USA). We sorted all T cell populations
within the CD45+CD3+ gate. To elucidate the tumor microenvironment, we also
sorted other subtypes disproportionally, including the non-T immune cell popu-
lation (CD45+CD3−) and non-immune cell population (CD4−). Sorted single cells
were collected into 96-well plates for downstream 5′ UMI SmartSeq2-seq (with
10 μL lysis buffer in each well) or mixed into a FACS tube containing 10 μL lysis
buffer for downstream drop-based scRNA-seq.

Immunohistochemistry and immunofluorescence. Paraffin-embedded tissue
sections were deparaffinized and rehydrated. After heat antigen retrieval, endo-
genous peroxidase activity was blocked (only for immunohistochemistry). For
immunohistochemistry, the tissue sections were visualized by NDP View2 Viewing
software. Staining results were evaluated by Image-Pro Plus 6.0 (Media Cyber-
netics, USA). For Immunofluorescence, images were captured by fluorescence
confocal microscopy (Leica Confocal) and digitalized by Leica software.

Primary antibodies used in immunohistochemistry and immunofluorescence
are listed as follows: CD4 (1:100, Abcam, ab133616, clone EPR6855), TCRα (1:100,
H-1, santa, sc-515719), CD45RO (1:400, CST, 55618 s, clone UCHL1), CD27
(1:500, Abcam, ab131254, clone EPR8569), granzyme A (1:100, Abcam, ab209205,
clone EPR20161), granzyme B (1:800, CST, 17215 s, clone D2H2F), perforin (1:10,
eBioscience, 14-9994-82, clone deltaG9), granulysin (1:250, Abcam, ab241333,
clone EPR22110-101), TOX (1:300, Abcam, ab237009, clone NAN448B), LGALS9
(1:100, Abcam, ab227046, clone EPR22214), CD40 (1:250, Abcam, ab224639, clone
EPR20735), CD40L (1:100, Abcam, ab257319, clone CD40LG/2761), CD20 (1:50,
Abcam, ab78237, clone EP459Y), FOXP3 (1:100, Abcam, ab20034, clone 236 A/
E7), LAG3 (1:1000, Abcam, ab209236, clone EPR20261), CD163 (1:500, Abcam,
ab182422, clone EPR19518), CD8 (1:1000, Proteintech, 66868-1-1 g, clone
1G2B10) and CD45RA (1:300, Millipore, 05-1413, clone MEM 56), TIGIT (1:500,
CST, 99567 T, clone E5Y1W).

Multicolor immunohistochemistry. To evaluate the multicellular ecosystem and
the spatial distributions of different cell types within the TMEs of the TCyEM and
TCM groups, we performed multicolor immunohistochemistry using FFPE tissue
sections of 7 patients from our cohort in this study. The PANO Mutiplex IHC Kit
(Panovue) was used for panel 1: TOX (1:200, Abcam, ab237009, clone NAN448B),
CD20 (1:50, Abcam, ab78237, clone EP459Y), FOXP3 (1:100, Abcam, ab20034,
clone 236 A/E7) and LAG3 (1:100, Abcam, ab209236, clone EPR20261) or Panel 2:
GZMA (1:200, Abcam, ab20034, clone EPR20161), CD4 (1:100, Abcam, ab133616,
clone EPR6855), CD8 (1:1000, Proteintech, 66868-1-1 g, clone 1G2B10) and
CD163 (1:100, Abcam, ab182422, clone EPR19518). The primary antibodies in
each panel were sequentially applied, followed by secondary antibody incubation
and tyramide signal amplification (TSA). Between each round of staining, antigen
retrieval was performed on the slides with heat-treatment. Finally, DAPI was
applied to stain nuclei. Each slide was scanned using a Mantra System (Perki-
nElmer) by capturing the fluorescent spectrum at 20-nm wavelength intervals
(420–720 nm) with uniform exposure time, after which the spectra were combined
into a single stack image in each panel. The spectrum of each fluorophore and
tissue autofluorescence were extracted from the images of single-stained and
unstained tissue samples and analyzed by InForm software (PerkinElmer).

Pre-processing and quality control of scRNA-seq data (10× genomics). Raw
sequencing data from the 10× Genomics platform were converted to fastq format
by ‘CellRanger mkfastq’ (v.3.0.2). Next, scRNA-seq reads were aligned to the hg19
reference genome using ‘CellRanger count’ (v3.0.2), and scRNA-TCR data were
aligned to the vdj-GRCh38 reference genome. We filtered mitochondrial and
ribosomal genes for further analysis. All cellranger output was combined using
‘CellRanger aggr’ (v3.0.2).

To further aggregate and analyze results from the above pipeline using
‘CellRanger aggr’, a stringent data quality control procedure was conducted in the
downstream analysis. Only genes detected in at least 10 cells were retained. We
filtered out cells with fewer than 500 or more than 5000 detected genes and those
with a high mitochondrial content (>10%)78.

After discarding poor-quality cells, a total of 58,926 cells were retained for
downstream analysis. To normalize the library size effect in each cell, we scaled
UMI counts using scale.factor= 10,000. Following log transformation of the data,
other factors, including “S.Score”, “G2M.Score”, “percent.mt”, “nCount_RNA” and
“nFeature_RNA”, were corrected for variation regression using the ScaleData
function in Seurat (v3.0.2).

The corrected-normalized data metrics were applied to the standard analysis as
described in the Seurat R package. The top 3,000 variable genes were extracted for
principal component analysis (PCA). The top 30 principal components were kept
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for UMAP visualization and clustering. We performed cell clustering using the
FindClusters function (resolution= 0.2) implemented in the Seurat R package.

Processing of scRNA-seq data based on 96-well plates. First, raw reads data
were demultiplexed based on the cell barcode sequence from Read 2 of the paired-
end reads. Then, we trimmed the sequences of read 1 to remove low-quality bases
(N > 10%), the TSO and polyA tail sequences, and sequences contaminated with
adapters. The filtered sequence of read 1 was aligned to the hg19 human genome
reference using TopHat (v2.0.12). All the uniquely mapping reads were counted
using the htseq-count function from R HTseq package. The duplicated transcripts
with identical UMIs in each gene were discarded. Finally, we quantified the tran-
script number based on the distinct UMIs of each gene in each cell. To visualize the
expression matrices of scRNA-seq data based on 96-well plates, the Seurat R
package was also applied with a pipeline similar to that described above.

Cell type annotation and cell state definition. To annotate the cell type for each
single cell within all clusters, differential expression genes (DEGs) of each cluster
from the 10× Genomics dataset were identified using the FindAllMarkers analysis
in the Seurat R package. The top 50 DEGs of each cluster were carefully reviewed.
The markers used to define cell types included: PTPRC, CD3E, CD3D, and CD3G
for T cells; CD19, CD79A, MS4A1, and CD79B for B cells; LYZ, CD14, CD68, and
C1QA for macrophages; ACTA2, TAGLN, MYLK, and AOC3 for myofibroblasts;
PLVAP, CLDN5, ENG, and AQP1 for endothelial cells; IGLL5, MZB1, DERL3, and
FKBP11 for plasma cells; DCN, COL1A1, COL3A1, and COL1A2 for fibroblasts;
GNLY, KLRB1, IL7R, GZMB, NKG7, PRF1, FCGR3A, and KLRD1 for ILC1s and
NKs; KRT14, KRT5, KRT6A, and KRT17 for epithelial cells; IRF7, LILRA4, PLD4,
and PLAC8 for pDCs; FSCN1, LAMP3, CD1E, and CCR7 for DCs; CPA3, HPGD,
CTSG, and GATA2 for mast cells; PMEL, TYRP1, DCT, and MLANA for
melanocytes46,79. In parallel, heatmap plots were generated used the top five genes
in each cell type. Each cluster from the 5′ UMI scRNA-seq data was annotated
following the process described above.

Cell subclustering analysis. For the subclustering analysis, T cell clusters, non-T cell
clusters and CD4+ T cells from individual patients (MF21, MF28 and MF30) were
extracted from the overall integrated dataset and integrated for further subclustering.
After integration, genes were scaled to unit variance. Scaling, PCA, and clustering (using
a resolution of 0.6 for T cell clusters, 0.2 for non-T cell clusters and 0.2 for CD4+ T cells
from individual patients) analyses were performed as described above.

Copy number variations (CNVs) based on WES Data. We obtained WES data
from a subset of samples (n= 13) corresponding to 11 patients. DNA was isolated
from the CTCL biopsies using the TIANamp genomic DNA Kit (TIANGEN,
DP304). Granulocyte DNA isolated from matched blood was used as a germline
control sample80. We performed paired end, 150 bp read-length sequencing using
Illumina NovaSeq 6000 platform. The mean sequencing depths of skin samples and
blood control samples were 190.0× (range 101.4× to 256.4×) and 105.9× (range
89.9× to 132.2×), respectively (Supplementary Table 2). For the WES data, the
sequenza R package (v3.0.0) was used to call CNVs81. Briefly, we used BAM files
from the WES data for tumors and matched blood samples as input to calculate the
depth ratio, which was normalized based on the GC content bias and data ratio. To
acquire segmented copy numbers and estimate tumor purity, the following para-
meters were used: breaks.method= ‘full’, gamma= 40, kmin= 5, gamma.pcf=
200, kmin.pcf= 200 and assembly= “hg38”. For each tumor sample, the copy
numbers of segments were then divided by ploidy following log2 transformation.
The tumor purity of each sample was in the range of 0.21–0.73 (Supplementary
Table 2).

Inferring CNVs based on scRNA-seq data. To differentiate malignant T cells
from reactive T cells, large-scale CNVs were inferred from the scRNA-seq data
using the R infercnv package (v1.7.1). Reactive T cells and other cell types were
used as controls for the CNV analysis. We estimated the CNV patterns of all cells
in each sample using default parameters12. For the WES data, the CNV patterns
were called by the sequenza R package (v3.0.0) as described above. The true CNV
was used as a positive control to identify differences in the two CNV patterns.
Malignant T cells were distinguished from reactive T cells mainly based on inferred
large-scale CNVs, aneuploid status, feature marker gene expression and cell cluster
distribution.

Signature score analysis based on gene sets. We used a core gene set to perform
cell cycle analysis based on 43 G1/S genes and 54 G2/M genes12. A cell cycle score
was calculated for each cell using the CellCycleScoring R function. Finally, each cell
was assigned with a prediction classification in either the S, G2M or G1 phase
based on its S and G2M scores.

To evaluate the status of T cell clusters, we evaluated cell states using datasets
described in Jin et al. 12 and Gene Ontology (GO): a cytotoxicity gene set (GZMA,
GZMB, GZMK, IFNG, NKG7, PRF1, CST7 and CCL4), an exhaustion gene set
(PDCD1, LAG3, TIGIT, HAVCR2 and CTLA4) and an activation gene set

(GO:0002286). We calculated the gene signature scores for these gene sets across all
subgroups and samples using the R ggplot2 package (v3.3.2).

Pseudotime analysis. To construct developmental trajectories along pseudotime
for CD4+ T cells, including malignant T cells and reactive T cells, the monocle R
package (v2.16.0) was applied to the transcriptional expression patterns of the cell
subtypes in all samples and individual patients (MF21, MF28 and MF30) from the
10× Genomics dataset. The expression matrices of the scRNA-seq data were
analyzed with default settings following the vignette of Monocle 2. We plotted
CD4+ reactive T cells and malignant cells along the inferred cell trajectories.

Expression programs of intratumor heterogeneity. To reveal the intratumor
heterogeneity of CTCL, a non-negative matrix factorization algorithm documented by
the R NMF package (v0.23.0) was applied to malignant T cells from each patient
(including the 5′ UMI and 10× Genomics datasets)82. For the expression matrix, we
filtered genes with standard deviation of expression <0.5 within each patient. NMF was
applied to the relative expression values, with all negative values replaced by zero. We
successfully extracted five potential programs from each patient, which generated 65
intratumor expression programs among the 13 patients. To investigate common pro-
grams among the 65 signatures, the programs were clustered into meta-programs by
hierarchical clustering, using overlapping genes (among the 50 top-scoring genes of
each program) as a similarity metric. Four meta-programs (two T cell signaling and
activation, one cell cycle and one cell metabolism) were identified and further analyzed.
For meta-programs, all genes within the programs were defined as the meta-signature.
The gene lists of the 4 meta-programs are provided in Source Data file.

Cell-cell interaction analysis. We conducted cell-cell interactions analysis uti-
lizing the cellphonedb function curated by the CellPhoneDB v.2.0 database
(www.cellphonedb.org)83. ScRNA-seq counts files and cell type markers were used
as input data. According to the expression of a receptor by one cell type and a
ligand by another cell type, enriched ligand-receptor interactions between pairs of
cell types were calculated. The P value for the likelihood of cell-type specificity of a
given ligand-receptor complex was calculated based on the proportion of means
that were as high as or higher than the actual mean. The significant cell-cell
interactions were selected with a P value threshold of <0.05. We used the R ggplot2
package (v3.3.2) to visualize the results.

Mutation calling with WES data. For the WES data, somatic variants were detected
using the GATK (v4.1.8.1) Best Practices Pipeline (GATK broadinstitute.org). Paired-
end reads were aligned to human genome hg38 (UCSC) using the Burrows-Wheeler
Aligner (BWA) (v0.7.17) with default parameters84. Samtools (v0.1.19) was used to
convert SAM files to compressed BAM files and sort the BAM files by chromosomal
coordinates85. Then, GAKT MarkDuplicates was used to mark PCR duplicates. Next,
base quality recalibration was performed with GAKT BaseRecalibrator and
ApplyBQSR. Granulocyte DNA isolated from matched blood was used as a germline
control sample80. We used GAKTMutect2 to call somatic SNVs and indels, after which
we used GATK FilterMutectCalls to filter out false callings.

Phylogenetic tree analysis. To reveal the clonal relationship between paired
tumors from patients MF21 and MF30, phylogenetic trees were constructed using
MEGA-X (v10.2.2)86. Sequences 20 bp in length surrounding the non-synonymous
mutations (including SNVs and INDELs) were extracted to construct the phylo-
genetic trees of each patient based on the maximum-parsimony algorithm. All
phylogenetic trees were further optimized using Adobe Illustrator. We labeled
potential driver events for each patient on each tree.

Quantification and statistical analysis. In this study, R (v 4.0.3) and GraphPad
Prism (v6.1) software were used to conduct statistical analysis. The Mann–Whitney
U test, Spearman rank correlation test, log-rank test and Pearson’s chi-square test
were used. Detailed statistical analysis methods are described in the Figure Legends
or main text.

Illustration tool. Some of the elements of Figs.1a, 3a, d, g and 7a–c were created
with BioRender.com (https://biorender.com).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data are available in publicly accessible repositories. The raw data from the
scRNA-seq, TCR-seq, bulk exome sequencing and some bulk RNA-seq data have been
deposited in the Genome Sequence Archive for human (GSA-Human) under accession
number HRA000166. The remaining raw bulk RNA-seq data have been deposited in the
Gene Expression Omnibus database under accession numbers GSE168508 and
GSE10962023,87. To comply with the “Guidance of the Ministry of Science and
Technology (MOST) for the Review and Approval of Human Genetic Resources”, we are
required to deposit the genomic data of Chinese patients under a controlled access at the
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GSA in Beijing Institute of Genomics Data Center. To gain access to the raw data under
accession number HRA000166, please submit requests to the GSA-Human online page
for this study [https://ngdc.cncb.ac.cn]. For scientific research purposes, the access will be
granted and the data can be downloaded in a typical one month time window. The
remaining data are available within the Article, Supplementary Information or Source
Data file. The source data underlying Fig. 1c, g, 2e, g, 3j, k, 4d, 5c, 6a, c and
Supplementary Fig. 3d are provided in the Source Data file. Source data are provided
with this paper.

Code availability
The computer code for marker selection, clustering, and differential expression is
available at https://github.com/husimeng0717/scRNAseq-for-CTCL.
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