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SIRT1 selectively exerts the metabolic protective
effects of hepatocyte nicotinamide
phosphoribosyltransferase
Cassandra B. Higgins1, Allyson L. Mayer2, Yiming Zhang 1, Michael Franczyk3, Samuel Ballentine4,

Jun Yoshino 3 & Brian J. DeBosch 1,5✉

Calorie restriction abates aging and cardiometabolic disease by activating metabolic signaling

pathways, including nicotinamide adenine dinucleotide (NAD+) biosynthesis and salvage.

Nicotinamide phosphoribosyltransferase (NAMPT) is rate-limiting in NAD+ salvage, yet

hepatocyte NAMPT actions during fasting and metabolic duress remain unclear. We

demonstrate that hepatocyte NAMPT is upregulated in fasting mice, and in isolated hepa-

tocytes subjected to nutrient withdrawal. Mice lacking hepatocyte NAMPT exhibit defective

FGF21 activation and thermal regulation during fasting, and are sensitized to diet-induced

glucose intolerance. Hepatocyte NAMPT overexpression induced FGF21 and adipose

browning, improved glucose homeostasis, and attenuated dyslipidemia in obese mice.

Hepatocyte SIRT1 deletion reversed hepatocyte NAMPT effects on dark-cycle thermogenesis,

and hepatic FGF21 expression, but SIRT1 was dispensable for NAMPT insulin-sensitizing, anti-

dyslipidemic, and light-cycle thermogenic effects. Hepatocyte NAMPT thus conveys key

aspects of the fasting response, which selectively dissociate through hepatocyte SIRT1.

Modulating hepatocyte NAD+ is thus a potential mechanism through which to attenuate

fasting-responsive disease.
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Intermittent fasting and caloric restriction improve metabolic
and inflammatory parameters in mice and humans, and both
are promising means by which to abate diseases of aging,

overnutrition, and neurodegeneration1–4. Positioned at the nexus
of portal and venous circulations, where an organism’s current
and impending glycemic states are first encountered, the hepa-
tocyte is uniquely positioned to coordinate the transition between
fed and fasting metabolism. Accordingly, interdicting hepatocyte
glucose transport, or simply activating its central downstream
signaling pathways, is sufficient to mimic key aspects of the
therapeutic hepatocyte fasting response5–16.

Fasting and caloric restriction in mammals activate the sirtuins,
which are mammalian homologues of the stress-responsive protein
deacetylase in yeast, sir217,18. In response to exercise, lean diet and
fasting, mammalian sirtuins adaptively regulate transcriptional,
enzymatic, inflammatory, and circadian processes19–23. Hepatocyte
SIRT1 has recently emerged as a critical regulator of hepatic and
peripheral glucose and energy homeostasis19,24–30, largely in part due
to its downstream transcriptional regulation of the anti-diabetic
hepatokine, fibroblast growth factor 21 (FGF2128,31,32). Several
groups have thus pursued exogenous means by which to activate
SIRT1, including through administering resveratrol, allosteric reg-
ulation, or by treating with precursors to the obligate SIRT1 cofactor,
nicotinamide dinucleotide (NAD+33–40). The preponderance of
current data underscore the importance of the adipocyte as the
precursor target tissue for NAD+ biosynthesis, and the central hub of
inter-tissue communication25,41–44.

NAD+ is derived from multiple sources:44,45 exogenous dietary
input, endogenous de novo biosynthesis, and through the NAD+

salvage pathway. Among the most proximal NAD+ intermediaries is
nicotinamide mononucleotide (NMN46), the synthesis of which is
catalyzed by nicotinamide phosphoribosyltransferase (NAMPT). This
NAMPT-mediated reaction is a rate-limiting step in the NAD+

salvage pathway in mammals. Nevertheless, the specific function of
hepatocyte NAD+ salvage in contrast with other NAD+ biosynthetic
pathways, and the targeted contributions of the hepatocyte in driving
this pathway during fasting and metabolic stress are not yet fully
appreciated.

Here, we demonstrate that hepatocyte NAMPT mediates a key
hepatocyte signaling cascade during fasting. We provide data that
fasting and hepatocyte glucose transport inhibition upregulate
hepatocyte NAMPT. Mice lacking hepatocyte NAMPT failed to
properly regulate fasting-induced FGF21 expression and thermal
homeostasis. Hepatocyte-specific NAMPT overexpression
enhanced hepatic FGF21 expression, peripheral thermogenesis,
and glucose homeostasis in diet-induced and genetically obese
models. Strikingly, in diet-induced obese models, hepatocyte
SIRT1 was selectively required for NAMPT-mediated effects on
FGF21 secretion, and dark-cycle thermogenesis. In contrast,
hepatocyte SIRT1 was dispensable for NAMPT to produce
therapeutic effects on light-cycle thermogenesis, dyslipidemia,
and hepatic de novo lipogenesis. We conclude that hepatocyte
NAMPT exerts broad fasting-mimetic effects downstream of
generalized fasting and hepatocyte glucose transport inhibition,
and that its canonical effector deacetylase, SIRT1, selectively
mediates these metabolic adaptations. Interdicting metabolic
disease at the level of NAD+ biosynthesis and/or hepatocyte
glucose transport are proximal targets that may leverage the
broader effects of hepatocyte NAMPT activation against aging,
obesity, and other fasting-responsive diseases.

Results
Fasting and glucose transport inhibition activate hepatocyte
NAMPT. Fasting in hibernating mammals is characterized by
oscillatory hypothermia and transient hyperthermia47. This is

mediated by increased UCP1 content and mitochondrial pro-
liferation in white adipose tissue47. We therefore assessed the
effects of fasting on epididymal white adipose tissue (eWAT)
browning marker gene expression in wild-type C57B6/J mice
(Fig. 1A). Uncoupling protein-1 and PPARγ-coactivator-1α
(PGC1α) were upregulated during a 12–48 h fast. This was
associated with expression changes in previously described WAT
signaling pathways that drive this browning pathway. Specifically,
expression of the protein deacetylase, SIRT1, and FGF21 were
each increased in eWAT during 12–48 h fasting (Fig. 1A).

WAT SIRT1 activation here and in prior reports19,43,48,49

suggested that fasting enhances NAD+ metabolism. The
hepatocyte is a key driver of energy metabolism during general-
ized fasting and upon glucose-specific deprivation1,5–7,9–11,50–52.
Therefore, we examined whether hepatocyte-adipose browning
signaling pathways associated with increases in NAD+ salvage via
the NAMPT pathway. Hepatic FGF21, SIRT1, and NAMPT
expression increased within 24 h fasting (Fig. 1B). Immunoblot
data confirmed that increased hepatic NAMPT expression
accompanied increased NAMPT protein abundance during
fasting (Fig. 1C).

We identified trehalose and its degradation-resistant trehalose
analogue, lactotrehalose (LT), as fasting-mimetic compounds that
activate the hepatocyte fasting-like response5,6,8,9,53,54. These
compounds activate fasting-like signaling pathways, in part, by
inhibiting glucose transport into the hepatocyte. We asked if
trehalose and LT6,53–55 also induced NAMPT expression in
isolated primary murine hepatocytes incubated in standard
growth media (10% FCS, 4.5 g/L glucose). Analogous to the
effect of physiological fasting in mice, the hepatocyte glucose
transporter inhibitors, trehalose and LT, induced FGF21,
NAMPT and UCP1 expression (Fig. 1D). Similarly, in vivo 24 h
oral trehalose feeding (3% in drinking water, ad libitum) modestly
induced liver NAMPT expression (Fig. 1E).

We next assessed the ability of trehalose and LT to reverse
fructose-induced suppression of hepatocyte fasting responses
in vitro. To that end, WT primary murine hepatocytes were
treated in starve media (0.5% FCS, 1 g/L glucose) with or without
10 mM fructose in the presence or absence trehalose or LT
(Fig. 1F). Fructose incubation suppressed fasting-induced
NAMPT expression in hepatocytes, whereas trehalose and LT
reversed fructose-induced NAMPT suppression (Fig. 1F). There-
fore, fasting, trehalose and LT cell-autonomously induce hepatic
NAMPT expression in vitro and in vivo models.

Hepatocyte NAMPT mediates fasting thermogenesis and
fasting-induced hepatic FGF21. To test the hypothesis that
hepatocyte NAMPT is required for appropriate transcriptional
and thermic responses to fasting, we subjected WT and
NAMPTLKO littermates to indirect calorimetry during acute and
prolonged fasting (1–24 h and 24–48 h fasting) protocols. We first
confirmed reduced hepatic [NAD+] by high-performance liquid
chromatography in WT and NAMPT-deficient livers (Supple-
mentary Fig. 1A). During the light cycle of each 24 h period,
NAMPTLKO and WT mice had equivalent thermal regulation,
regardless of fed or fasting status (Fig. 2A). In contrast, dark cycle
heat generation was impaired in NAMPTLKO mice only during
the fasting period (Fig. 2A). Light and dark cycle respiratory
exchange ratio (RER) in NAMPTLKO mice was significantly
greater throughout fasting light and dark cycles (Fig. 2B). We
confirmed that these relationships were not biased toward pro-
longed fasting effects by sub-analysis of mean heat generation in
each group over the course of 1 h after 6 h total fasting (Sup-
plementary Fig. 1B). This revealed identical statistical relation-
ships between WT and NAMPTLKO heat and RER during acute
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fasting after 6 h fasting, vs. prolonged fasting periods up to
12–48 h. Liver TG and cholesterol accumulation was not affected
in fasting NAMPTLKO mice relative to fasting WT mice (Fig. 2C),
although fasting levels of non-esterified fatty acids was increased
in fasting NAMPTLKO mice vs. fasting WT mice (Fig. 2C).
However, fasting-induced hepatic FGF21 mRNA induction was
significantly blunted in NAMPTLKO mice Fig. 2D). To more
broadly address physiological hepatocyte NAMPT fasting func-
tions, we examined livers from NAMPTfl/fl and NAMPTLKO mice

after 12 h fasting by unbiased transcriptomics (Fig. 2E). This
revealed 440 significantly altered genes in fasting vs. fed
NAMPTfl/fl liver (Fig. 2E, in red). 131 hepatic transcripts were
significantly altered in fasting NAMPTLKO mice, vs. fasting
NAMPTfl/fl mice (Fig. 2E, in blue). Of these differentially
expressed genes, 30 were differentially expressed in both com-
parisons (Fig. 2E, overlap). Gene Ontology analysis and con-
firmatory CompBio analysis revealed that hepatocyte-specific
NAMPT deficiency impaired several key hepatic fasting metabolic

Fig. 1 Fasting and GLUT blockade upregulated hepatocyte NAMPT. A Browning marker gene quantification by qPCR in epididymal white adipose tissue
(WAT) from WT mice fasted 0–48 h. n= 6 mice for each group. Circles, 0 h fast; squares, 12 h fast; upward triangle, 24 h; downward triangle, 48 h.
B NAMPT, SIRT1, and FGF21 gene expression in livers from WT mice fasted 0–48 h. n= 6 mice for each group. Symbols: Circles, fasting 0 h. Squares, 12 h.
Upward triangles, 24 h, downward triangle, 48 h. C Representative (from n= 4 per group) NAMPT immunoblot in livers from WT mice fasted 0–48 h.
D qPCR quantification of NAMPT, SIRT1, FGF21 gene expression in primary hepatocytes treated with the fasting-mimetic glucose transporter inhibitors,
trehalose and lactotrehalose. n= 4 per group. Circles, cultures treated with regular growth media, Red triangles, trehalose-treated, Blue squares,
LactoTrehalose-treated. E qPCR in liver from WT mice treated with 5-day 3% trehalose ad libitum in drinking water. n= 8 vehicle- (black circles) and 18
trehalose-treated (red squares). F Fasting-inducible NAMPT expression by qPCR in isolated primary hepatocytes treated with or without 10 mM fructose in
the presence or absence of carbohydrate transporter inhibitors trehalose or lactotrehalose. n= 3 starved, 4 fructose-treated, 4 trehalose- and fructose-
treated, 4 lactotrehalose- and fructose-treated. Circles, cultures treated with regular growth media; squares, fructose-treated; downward triangles, cultures
treated with trehalose and fructose; open circles, LactoTrehalose and fructose-treated cultures. Error bars in (A–B), (D–F) represent standard error of the
mean (SEM). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Statistical tests: (A–F), two-tailed T-test, Bonferroni–Dunn post hoc.
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processes. Among the most significantly impaired hepatic Gene
Ontology processes in fasting NAMPTLKO mice were cofactor
and redox metabolism, ATP synthesis and electron transport,
carbon and amino acid catabolism, and oxidative phosphoryla-
tion (Fig. 2F) without significant changes in ketone body bio-
synthesis. The data are consistent with the hypothesis that

NAMPT is required to regulate hepatocyte redox and bioener-
getic physiology during fasting.

Hepatocyte NAMPT protects against diet-induced glucose
intolerance. We next subjected NAMPTfl/fl (WT) and NAMPTLKO
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mice to 12wk Western diet feeding to test the hypothesis that
hepatocyte NAMPT protects against the deleterious metabolic effects
of overnutrition. We selected this model of diet-induced metabolic
disease in part because it models both the high fat and carbohydrate
content that is prevalent in the diets of modern industrialized
populations56. Throughout its 12wk dietary challenge, body weight
(Fig. 3A) and caloric expenditure during light- and dark cycles
(Fig. 3B) were unaffected in NAMPTLKO mice. Similarly, total body
fat mass, lean mass, and circulating TG, total cholesterol and LDL
were unaffected by hepatocyte NAMPT deficiency (Fig. 3C, D).
Similarly, liver weight-to-body weight ratio, transaminases and
albumin were unchanged in NAMPTLKO mice (Fig. 3E). In contrast,
fasting glucose (16 h) was significantly elevated in NAMPTLKO mice
when compared with WT mice, whereas plasma insulin was not
statistically different (Fig. 3F). Accordingly, insulin tolerance (Fig. 3G)
was unaltered in NAMPTLKO mice relative to WT mice, whereas
NAMPTLKO mice were significantly more glucose intolerant
(Fig. 3H). Overall, loss-of-function data suggest that hepatocyte
NAMPT is essential to protect against diet-induced glucose
intolerance.

Increased hepatocyte [NAD+] links NAMPT overexpression
with increased hepatic FGF21 expression. These findings led us
to define the consequences of direct NAMPT upregulation in
hepatocytes. FGF21 improves peripheral glucose homeostasis in
mice and in humans31. Therefore, we first asked whether hepa-
tocyte NAMPT cell-autonomously induces FGF21 expression.
Primary murine hepatocytes transfected with adenovirus encod-
ing wild-type murine NAMPT increased SIRT1, PGC1α, and
FGF21 expression when compared with GFP-transfected hepa-
tocytes. Pan-FGF receptor inhibitor, LY2874455 (FGFRi) had no
suppressive effect on gene expression for NAMPT or for any of
the signaling intermediaries quantified (Supplementary Fig. 2A),
suggesting that autocrine FGF receptor function is not required
for NAMPT regulation of SIRT1, FGF21, and PGC1α. However,
an inhibitor of exocytosis, brefeldin A, blocked appearance of the
FGF21 peptide in the extracellular media of isolated hepatocytes
overexpressing NAMPT (Supplementary Fig. 2B). Similarly,
brefeldin A increased NAMPT protein, but not mRNA, in the
hepatocyte lysate fraction in treated cultures overexpressing
NAMPT (Supplementary Fig. 2B and 2C). In contrast, in
unperturbed primary murine hepatocytes, NAMPT over-
expression also induced FGF21 (Supplementary Fig. 2D). The
data suggest that NAMPT activates hepatocyte FGF21 expression
and secretion. To interrogate this pathway in vivo, we expressed
GFP or NAMPT in WT C57B6/J mice by tail-vein adenovirus.
AdNAMPT increased both hepatic [NAD+] and FGF21 protein
and mRNA 48 h after AdNAMPT delivery in vivo (Supplemen-
tary Fig. 3A, C). This was associated with increased NAD

+-dependent lysine deacetylase activity in cultured AML12
hepatocytes (Supplementary Fig. 3B). In this acute phase, hepatic
triglycerides, hepatic cholesterol and caloric expenditure were not
altered in lean mice overexpressing hepatic NAMPT (Supple-
mentary Fig. 3D, E).

Hepatic NAMPT induces hepatic FGF21 and enhances glucose
homeostasis in leptin receptor-deficient obese mice. We next
tested the hypothesis that activating hepatocyte NAMPT attenuates
glucose intolerance in diabetic models (Fig. 4A). LepR-deficient (db/
db) mice overexpressing NAMPT did not regulate body weight,
body composition, or circulating lipids differently than GFP-
overexpressing mice (Fig. 4B, C, D). However, db/db mice over-
expressing NAMPT exhibited broad transcriptomic differences as
quantified by RNA sequencing in livers obtained from NAMPT-
and GFP-overexpressing db/dbmice (Fig. 4E). We observed highest-
magnitude changes in several pathways (significance threshold
P < 0.05), including NOD-like receptor signaling (e.g., a KEGG-
catalogued pathway that encompasses the Nampt gene), protein
degradation, PPAR signaling, fatty acid synthesis and metabolism,
and insulin signaling through the PI3K-Akt pathway (Fig. 4F). For
example, FGF21 was significantly upregulated, confirmed by qRT-
PCR in crude liver cDNA preparations from db/db x AdGFP and
db/db x AdNAMPT overexpressing mice (Fig. 4G). NAMPT over-
expression similarly increased liver FGF21 protein (Fig. 4H) and
FGF21 peptide in db/db liver and serum (Fig. 4I), when compared
with GFP-overexpressing db/db mice. These transcriptomic hall-
marks of hepatic insulin sensitivity, and increased hepatic and cir-
culating FGF21 were accompanied by significantly lower plasma
glucose throughout both glucose and insulin tolerance testing curves
in NAMPT-expressing db/db mice (Fig. 4J, K and Supplementary
Fig. 4A).

NAMPT enhances energy homeostasis in leptin receptor-
deficient obese mice. To test the hypothesis that hepatic
NAMPT regulates peripheral adipose browning and thermogen-
esis, we analyzed the effects of hepatocyte-specific NAMPT
overexpression on WAT browning markers UCP1 and PGC1α.
Both marker genes were induced by NAMPT adenoviral
expression (Fig. 5A), as were WAT SIRT1 and NAMPT both in
NAMPT-overexpressing db/db mice in vivo (Fig. 5B), and in
FGF21-treated adipose tissue explants (Supplementary Fig. 4B).
UCP1 protein was similarly increased in WAT crude lysates
obtained from NAMPT-overexpressing db/db mice (Fig. 5C)
when compared with GFP-expressing mice.

To define the functional outcome of these molecular changes in
the WAT depot, we subjected db/db x AdNAMPT and db/db x
AdGFP mice to indirect calorimetry. AdNAMPT-treated mice
exhibited significantly greater light and dark cycle thermogenesis, O2

Fig. 2 Mild fasting metabolic defects in NAMPTLKO mice. A Heat-Zeitgeber Time tracing in WT and NAMPTLKO littermate mice during light and dark
cycles during fasting. Mean heat production in WT and NAMPTLKO mice during light and dark cycle fed and early (Fasting I, 1- 24 h) and prolonged
(Fasting II, 24–48 h) fasting periods is graphed below. n= 3 WT, 4 NAMPTLKO mice. B RER-Zeitgeber time tracing in WT and NAMPTLKO littermate mice
during light and dark cycles during ad-lib fed (first 24 h) and fasting periods. Mean RER in WT and NAMPTLKO mice during light and dark cycle fed and
fasting periods is graphed below. n= 3 WT, 4 NAMPTLKO mice. Error bars in (A–B) (bottom panels) represent SEM. Circles, WT mice. Squares,
NAMPTLKO mice for (A and B). C Liver triglycerides (TG), total cholesterol and non-esterified fatty acid (FFA) quantification following 48 h fasting in WT
and NAMPTLKO mice. n= 4 WT Fed, 6 WT Fasting; 4 NAMPTLKO Fasting. D qPCR quantification of liver FGF21, NAMPT in fed and 48 h-fasting WT and
NAMPTLKO mice. n= 4 WT Fed, 6 WT Fasting; 4 NAMPTLKO Fasting. Error bars in (C and D). represent SEM. Black circles, Fed WT, Red circles, fasting
WT, Blue circles, Fasting NAMPTLKO mice. E Venn diagram representing significantly altered genes (P < 0.05) in random-fed vs. 12 h fasting WT and
NAMPTLKO mice, quantified by unbiased transcriptomics. n= 2 WT Fed, 4 WT Fasting; 5 NAMPTLKO Fasting. F Bar plot demonstrating −log(FC) for
significantly down-regulated gene ontology (GO) pathways revealed when comparing WT vs. NAMPTLKO livers (P < 0.05). n= 4 WT Fed, 6 WT Fasting; 4
NAMPTLKO Fasting. Statistical tests: (A) (upper panel), ANCOVA. A (lower panels), (B–D), two-tailed T-test, Bonferroni–Dunn post hoc correction. E, F
EdgeR Exact, Benjamini–Hochberg post hoc correction.
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and CO2 exchange, and RER, when compared with GFP-
overexpressing mice (Fig. 5D, E). Taken together, this demonstrates
that hepatocyte NAMPT expression induces hepatic fgf21 expres-
sion, and improves thermogenesis, and peripheral glucose home-
ostasis in diabetic mice, independent of leptin receptor signaling.

SIRT1 distinguishes NAMPT-mediated control of light- and
dark-cycle energy utilization. NAMPT induces FGF21 and
reverses metabolic derangements in diet-induced and genetic models
of obesity and glucose intolerance. We next directly tested the
hypothesis that hepatocyte SIRT mediates the therapeutic effects of
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NAMPT on fgf21 expression and glucose homeostasis. We subjected
SIRT1fl/fl (WT) and hepatocyte-specific SIRT1-deficient (SIRT1LKO)
littermate mice to chow or Western diet feeding (12wk) in the pre-
sence or absence of hepatocyte-specific (thyroxine binding globulin
promoter-driven) NAMPT overexpression. Western diet feeding
increased body weight gain, and impaired glucose homeostasis wild-
type mice (Fig. 6A–C). Although hepatocyte NAMPT expression had
no effect on body weight, NAMPT overexpression lowered 4 h
fasting glucose, insulin and HOMA-IR in hepatocyte SIRT1-deficient
mice (Fig. 6B–D), relative to Western diet-fed, vector-expressing
SIRTLKO controls (Fig. 6D).

NAMPT induces fgf21 expression, protein, and peptide in
diabetic mouse livers and peripheral circulation. We therefore
tested the hypothesis that hepatocyte NAMPT induces hepatocyte
fgf21 by activating SIRT1 using Western diet-fed WT and
SIRT1LKO mice expressing control vector or NAMPT. Again,
hepatocyte NAMPT increased hepatic and circulating fgf21
mRNA and peptide in Western diet-fed WT mice. NAMPT-
induced FGF21 expression was abrogated in SIRT1LKO mice, and
NAMPT-induced circulating FGF21 peptide trended lower in
SIRT1LKO mice vs. WT mice overexpressing hepatocyte NAMPT
(Fig. 6E).

Indirect calorimetry in Western diet-fed WT and SIRT1LKO

mice revealed that hepatocyte NAMPT overexpression induced
heat production in WT mice during both light- and dark-cycles
(Fig. 6F). However, hepatocyte SIRT1 deficiency abrogated dark-
cycle, but not light-cycle thermogenesis in NAMPT-
overexpressing mice (Fig. 6F). This phenocopies the specific
dark-cycle thermic defects observed in fasting NAMPTLKO mice
(Fig. 2A) and is underscored by significant two-way NAMPT-
SIRT1 interactions identified in dark-, but not light-cycle
thermogenesis (Fig. 6F). The data indicate that hepatocyte
NAMPT-SIRT1 signaling distinguishes light- and dark-cycle
energetic control.

To better define NAMPT-SIRT1 signaling in lipid homeostasis
in vivo, we examined hepatic and peripheral effects of hepatocyte
NAMPT expression in WD-fed WT and SIRT1LKO mice.
NAMPT overexpression did not reduce serum transaminases or
intrahepatic TG content in Western diet-fed mice (Supplemen-
tary Fig. 5A and B). Blinded histopathological analysis of livers in
all Western diet-fed groups demonstrated simple steatosis
without significant differences in NAS scoring or any of its
component scores (e.g., steatosis, lobular inflammation, or
ballooning, Supplementary Fig. 5C, D). In contrast, NAMPT
and SIRT1 exerted independent effects on diet-induced dyslipi-
demia. Main effect analysis confirmed that hepatocyte NAMPT
expression significantly reduced circulating TG and cholesterol
(Fig. 7A), and liver weight-to-body weight ratio (Fig. 7B), whereas
SIRT1 deficiency exacerbated the dyslipidemic effect of WD
feeding without altering liver weight-to-body weight ratio.
However, two-way analysis revealed that NAMPT and SIRT1
did not significantly interact to produce these effects (Fig. 7A, B).
In addition, we observed differential SIRT1 and NAMPT
interactions in regulating de novo lipogenic pathway gene

expression. Main effect analysis here indicated that NAMPT
expression reduced LPK, ACC1, and ELOVL6 expression,
whereas SIRT1 deficiency independently exacerbated diet-
induced ACC1, FASN and ELOVL6 expression (Fig. 7C).
Conversely, NAMPT and SIRT1 significantly interacted to
modulate GPAT expression as defined by two-way NAMPT-
SIRT1 interaction. Post hoc analysis indicated significantly lower
hepatocyte GPAT expression in NAMPT-expressing WT mice,
whereas this effect was abrogated in SIRT1LKO liver (Fig. 7C).
Together, the data suggest that a NAMPT-SIRT1 axis mediates
hepatocyte and circulating FGF21. Yet, surprisingly, the regula-
tory actions of NAMPT and SIRT1 in modulating hepatic and
peripheral lipid homeostasis, largely occur in parallel.

Transcriptomic analyses reveal tandem and parallel metabolic
sequelae of hepatocyte NAMPT-SIRT1 interactions. Physiolo-
gical data reveal complex serial and parallel metabolic signaling
actions of hepatocyte NAMPT and SIRT1. Therefore, we sought
to verify or refute our prior analyses by unbiased methods using
transcriptomic liver analyses to further interrogate this selective
interaction between hepatocyte NAMPT and SIRT1. Based on
both molecular physiological and genetic data, we hypothesized
that hepatocyte NAMPT exerts SIRT1-dependent and -indepen-
dent transcriptional regulation. To that end, we subjected livers
from WD-fed mice with or without NAMPT overexpression, and
with or without hepatocyte-specific SIRT1 deficiency to tran-
scriptomic analysis. The data demonstrated multiple significantly
altered genes (FDR 0.05; Log (FC) > 2) in NAMPT-
overexpressing mice when compared with vector-expressing
control mice (Fig. 8A). The preponderance of these genes were
upregulated, whereas hepatocyte SIRT1 deficiency yielded a
majority of down-regulated genes when comparing the effect of
NAMPT overexpression on WD-fed WT vs. SIRT1LKO liver
transcriptomes (Fig. 8A, left vs. right plots). This suggested that
NAMPT conveys a transcriptionally stimulatory effect that
depends, in part, on hepatocyte SIRT1. To define the broader
NAMPT transcriptional regulation in the presence or absence of
SIRT1, we quantified genes that are significantly altered (unad-
justed P < 0.05) upon NAMPT-overexpression in WD-fed
SIRT1LKO mice and in WT mice. NAMPT overexpression in
WD-fed WT mice significantly altered 1849 genes vs. vector
controls, whereas NAMPT-overexpression in SIRT1LKO mice
increased 647 genes when compared with vector control
SIRT1LKO mice. 84 of these significantly altered transcript iden-
tities overlapped (Fig. 8B), delineating the presence of NAMPT-
regulated transcripts that are both dependent and independent of
SIRT1. To categorize these SIRT1-dependent and -independent
transcriptomic alterations, we turned to CompBio (PercayAI, St.
Louis, MO) in silico analysis. This algorithm searches sig-
nificantly altered genes across peer-reviewed literature databases.
It then groups genes into biological processes and pathways based
on common recurrently associated concepts (Table 1). Agnostic
in silico analysis revealed NAMPT-induced, SIRT1-dependent
concepts that include hepatic PI3K/AKT signaling, NF- κB

Fig. 3 Hepatocyte NAMPT protects against diet-induced glucose intolerance. A Body weights over time in WT and NAMPTLKO mice on 12wk Western
diet. n= 8 WT, 6 NAMPTLKO mice. B WT and NAMPTLKO mice were subjected to 12wk Western dietary feeding and metabolic phenotyping by indirect
calorimetry at 4wk and 12wk post-initiation of dietary intervention. Mean heat generation during light and dark cycles is demonstrated for light and dark
cycles. n= 5 WT, 4 NAMPTLKO mice. C Fat and lean mass and % body fat in WD-fed WT and NAMPTLKO mice. n= 8 WT, 6 NAMPTLKO mice. D
Circulating lipids in 12wk WD-fed WT and NAMPTLKO mice. n= 8 WT, 6 NAMPTLKO mice. TG, triglycerides; LDL-C, low-density lipoprotein cholesterol.
E Serum transaminases, albumin and liver weight-to-body weight ratios in 12wk WD-fed WT and NAMPTLKO mice. n= 8 WT, 6 NAMPTLKO mice. F 4 h
fasting insulin and glucose in 12wk WD-fed WT and NAMPTLKO mice. n= 8 WT, 6 NAMPTLKO mice. G and H Insulin tolerance and glucose tolerance
testing in WT and LKO mice after 12wk WD feeding. n= 8 WT, 6 NAMPTLKO mice. *P < 0.05 vs. NAMPT WT. Error bars in (A–F and H) represent SEM.
Circles, Western diet-fed WT, Squares, Western diet-fed NAMPTLKO. Statistical tests: (A, G, H), repeated measures ANOVA. B–F Two-tailed T-test.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28717-7 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1074 | https://doi.org/10.1038/s41467-022-28717-7 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


signaling, and regulation of T-cell signaling. SIRT1-dependent,
NAMPT-suppressed included NASH-related and lipid and cho-
lesterol and bile-acid metabolism-related transcript categories. In
contrast, SIRT1-independent, NAMPT-upregulated processes
included neutrophil chemotaxis and complement pathway con-
cepts, whereas NAMPT suppressed de novo lipogenesis, hepatic
steatosis, adipogenesis and retinoic acid pathways independent of

SIRT1. A more granular view of the PI3K/AKT pathway as an
exemplar NAMPT-SIRT1-dependent upregulated pathway
revealed enhanced PI3K/AKT expression with their downstream
targets in the FOXO and CREB pathways, without changes to the
pro-lipogenic mTOR pathway (Fig. 8C). Overall, in silico tran-
scriptomic analyses corroborate molecular physiological data,
demonstrating that NAMPT exerts metabolic actions that occur
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both dependent upon and in parallel with its canonical hepato-
cyte protein deacetylase, SIRT1.

Discussion
Nutrient withdrawal creates an adapt-or-perish proposition for
an organism in general, and for the hepatocyte in particular. The
lack of exogenous glucose forces a reliance upon peripheral
lipolysis and fatty acid oxidation in the hepatocyte. There are
three issues that arise in the hepatocyte that must then be
addressed at this point. First, electrons generated through the
Krebs cycle must be shuttled into the electron transport chain,
and this requires an electron carrier. Second, fasting induces a
redox state imbalance, which necessitates redox equivalent gen-
eration. Third, the cell must, at least ideally, coordinate the
changes in fuel reliance and utilization with mitochondrial bio-
genesis and fat oxidation. NAD+ biosynthesis and salvage unify
the adaptive responses to each of these stresses in the substrate-
restricted hepatocyte. Accordingly, NAD+ is a key redox and
signaling intermediary that protects against diseases ranging from
aging, and neurodegeneration to diabetes and non-alcoholic fatty
liver disease (NAFLD)25,57. Here, we employ comprehensive
mouse genetic and molecular physiologic approaches to dissect
the necessity, sufficiency, and downstream mechanisms by which
hepatocyte NAMPT modulates hepatic and extrahepatic meta-
bolic homeostasis (Fig. 8D). We demonstrate that hepatocyte
NAMPT is an important fasting-induced hepatic factor that
exerts broad, adaptive transcriptional and metabolic effects on
glucose-, energy-, and lipid homeostasis. Strikingly these effects
both depend upon and occur in parallel to activation SIRT1.

The therapeutic effects of the hepatocyte SIRT1 pathway are
generally established, and are rooted in several sets of in vivo data.
First, hepatocyte SIRT1 overexpression improves hepatic fat
oxidation and FGF21 secretion, adipose browning, and insulin
sensitivity24,28,32,58. Concordantly, hepatocyte SIRT1 deficiency
causes hepatic steatosis, insulin resistance and decreased energy
expenditure22,26–29. In light of intense study surrounding hepa-
tocyte functions and downstream metabolic actions of SIRT1, the
upstream in vivo mechanisms of hepatocyte SIRT1 activation
remained remarkably underappreciated. In the current study, we
demonstrate that hepatocyte NAMPT activates hepatocyte SIRT1.
In the absence of metabolic perturbations, NAMPT actions in
healthy, young mice are modest in consequence (Supplementary
Fig. 3). Yet, under duress of overnutrition, obesity and insulin
resistance, hepatocyte NAMPT selectively activates SIRT1-
dependent transcriptional regulation to attenuate diet-induced

hepatic and extrahepatic metabolic derangements in energy
homeostasis and glucose homeostasis.

This surprising result gives rise to at least three important
implications. First, there are qualitative elements of SIRT1 acti-
vation which determine its downstream metabolic actions. Spe-
cifically, it seems to matter not only that SIRT1 is activated, but it
also matters by what upstream mechanism(s) SIRT1 is activated.
This is apparent when contrasting the broader SIRT1-driven
effects of both intermittent fasting and hepatocyte SIRT1
overexpression24,28,38,39,58 with the targeted profile of SIRT1-
dependent NAMPT effects that we demonstrate in the current
work (Figs. 6, 7, and 8).

Second, we establish that hepatocyte NAMPT exerts adaptive
metabolic effects apart from canonical SIRT1 activation. This
includes NAMPT effects on aspects of peripheral glucose and
energy homeostasis (Fig. 6), and hepatocyte and circulating lipid
metabolism (Figs. 7 and 8), although subsequent work will more
specifically elucidate NAMPT-SIRT1 interactions in glucose
homeostasis. Nevertheless, the impact of these data is that they
support deeper interrogation into how NAMPT modulates
metabolism without its primary NAD+-dependent effector. One
observation upon which we can begin to hypothesize such
mechanisms is that hepatocyte SIRT1 deficiency diminishes—but
does not completely abrogate—hepatic or circulating FGF21
(Fig. 6E). The applicable hypothesis is, therefore, that NAMPT
induces SIRT1-independent FGF21, and this remnant activation
is sufficient to drive thermogenic, glucose, and lipid metabolic
effects apart from direct SIRT1 regulation. An arguably more
intriguing alternate hypothesis is that hepatocyte and/or extra-
cellular NAMPT mediate additional NMN- or NAD+-dependent
processes (e.g., SIRT1, or other sirtuin family member activation)
in extrahepatic tissues25,45,46,59, to mediate parallel metabolic
sequelae.

Finally, the data indicate that inducing the SIRT1 pathway at or
proximal to the level of NAMPT may optimally leverage the
broader effects of NAMPT-SIRT1 signaling, and other fasting-like
intermediaries. For example, restricting hepatocyte glucose entry
also conveys much of the adaptive generalized fasting response,
which includes NAMPT-SIRT1 activation5–12,60. Here, and in our
prior work, we demonstrated that both acute fasting and blocking
hepatic glucose transport in vitro and in vivo activate hepatocyte
NAMPT and adipose browning (Fig. 1 and Ref. 50), and also
reduce hepatic steatosis5–7,11,13,15,53. These hepatocyte-centered
approaches could complement broader NAMPT-SIRT activation
approaches via NAD+ precursor administration44,49,59,61–63 to
best approximate and augment fasting-like metabolic effects.

Fig. 4 NAMPT induces FGF21 and insulin sensitivity independent of lepR signaling. A Experimental design for db/db AdNAMPT analyses. n= 10 db/db
AdGFP; 10 db/db AdNAMPT mice. Circles, db/db AdGFP mice, Squares db/db AdNAMPT mice. B Body weight over time in db/db mice expressing GFP or
NAMPT. n= 10 db/db AdGFP; 10 db/db AdNAMPT mice. Circles, db/db AdGFP mice, Squares db/db AdNAMPT mice. C Body composition by echoMRI
analysis in mice expressing GFP or NAMPT. n= 10 db/db AdGFP; 10 db/db AdNAMPT mice. Circles, db/db AdGFP mice, Squares db/db AdNAMPT mice.
D Serum triglycerides (TG), cholesterol and low-density lipoprotein cholesterol (LDL-C) in db/db mice treated with adenovirus to overexpress GFP or
NAMPT. n= 10 db/db AdGFP; 10 db/db AdNAMPT mice. Circles, db/db AdGFP mice, Squares db/db AdNAMPT mice. E RNAseq quantification heatmap,
arranged by calculated hierarchical clustering, demonstrating genes P < 0.05 in db/db AdNAMPT vs. AdGFP mice. n= 4 db/db AdGFP; 4 db/db AdNAMPT
mice. Color scale represents Log(FC) (F). Most significantly altered KEGG pathways demonstrating log(FC) between db/db AdNAMPT and db/db AdGFP
livers. n= 10 db/db AdGFP; 10 db/db AdNAMPT mice. Unadjusted P < 0.05 for all pathways shown. G qPCR confirmation of RNAseq data suggesting
upregulated liver FGF21 for n= 10 db/db AdGFP; 9 db/db AdNAMPT mice. Circles, db/db AdGFP mice, Squares db/db AdNAMPT mice. H and I FGF21
quantification by immunoblot analysis and serum ELISA in db/db AdGFP and db/db AdNAMPT mice. n= 3 db/db AdGFP; 3 db/db AdNAMPT mice for
immunoblot data. n= 10 db/db AdGFP; 10 db/db AdNAMPT mice for ELISA data. *P < 0.05, **P < 0.01 vs. AdGFP. J Glucose tolerance testing and area
under the GTT curve in db/db mice treated with adenovirus encoding GFP or NAMPT. n= 9 db/db AdGFP; 9 db/db AdNAMPT biologically independent
mice. K Insulin tolerance testing and % area over the ITT curve in db/db mice treated with adenovirus encoding GFP or NAMPT. n= 10 db/db AdGFP; 10
db/db AdNAMPT mice. In (G–K), Circles, db/db AdGFP mice, Squares db/db AdNAMPT mice. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Error bars
in (G, H) (left), (I–K) represent SEM. Statistical tests: (B, J, K), repeated measures ANOVA. C, D, G, H, I, J (right panel), (K) (right panel) two-tailed T-test.
F EdgeR Exact, Benjamini–Hochberg post hoc correction.
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It is also important to note here that these data shed light on both
acute and prolonged fasting (e.g., torpor). The preponderance of
reported data here are from 0 to 24 h fasting mice (Fig. 2), which
contextualizes the data with important foundational studies that
precede this work28,45,64. In addition, new data from prolonged
fasting mice (e.g., up to 48 h fasting, Fig. 2A, B) indicate that

hepatocyte NAMPT regulates fasting thermogenesis and fuel utili-
zation during both acute and prolonged fasting states28,45,64.

Overall, our data demonstrate that NAMPT is necessary and
sufficient to enhance thermal, lipid and glucose homeostasis upon
metabolic duress. We provide evidence that hepatocyte NAMPT
activates hepatocyte SIRT1 and FGF21 to specify and refine the
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Fig. 5 NAMPT overexpression induces white adipose tissue (WAT) browning and thermogenesis in db/db mice. A and B qPCR analysis of white
adipose tissue UCP1, PGC1α, NAMPT, and SIRT1 expression in mice 7 days after tail-vein delivery of adenovirus encoding db/db AdGFP or db/db
AdNAMPT. n= 10 db/db AdGFP; 10 db/db AdNAMPT mice. C Representative immunoblot analysis of WAT UCP1 protein accumulation from n= 3 db/db
AdGFP and n= 3 db/db AdNAMPT mice. D Left, heat-ZT tracing in GFP- and NAMPT-overexpressing db/dbmice. n= 6 db/db AdGFP; 5 db/db AdNAMPT
mice. Right, quantification of mean heat by indirect calorimetry during dark and light cycles. E Left, RER-ZT tracing in GFP- and NAMPT-overexpressing db/
db mice. n= 6 db/db AdGFP; 5 db/db AdNAMPT mice. Quantification of mean RER by indirect calorimetry in db/db AdGFP and db/db AdNAMPT mice
during light and dark cycles. n= 6 db/db AdGFP; 5 db/db AdNAMPT mice. Circles, db/db AdGFP mice, Squares db/db AdNAMPT mice. *P < 0.05,
**P < 0.01, ***P < 0.001 vs. bracketed control. Error bars in (A–C) (left), and (E). represent SEM. Statistical tests: (A–C), two-tailed T-test. D, E ANCOVA.
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ensuing metabolic program, yet remarkably, SIRT1 activation is
only selectively leveraged downstream of NAMPT. These data
highlight a direct therapeutic role for hepatocyte NAMPT acti-
vation downstream of generalized fasting or hepatocyte GLUT
inhibition, which can be utilized against obesity, aging, neuro-
degenerative, and other fasting-labile diseases.

Methods
Animal studies. All animal protocols were approved by the Washington Uni-
versity School of Medicine Animal Studies Committee. Male C57B/6J mice
(#00664), Sirt1LoxP/LoxP (#02960365), Albumin-cre (#003574) mice, and db/db
(#003574) mice were purchased directly from the Jackson Laboratory (Bar Harbor,
ME) and housed a 12 h alternating light-dark, temperature-controlled, specific
pathogen-free barrier facility prior to and throughout experimentation. We
obtained permission to study the NamptLoxP/LoxP mice as a gift from Dr. Oberdan
Leo (Université Libre de Bruxelles66), and the mice were physically provided to us
from Dr. Shin Imai’s laboratory (Washington University). Albumin-cre mice were
bred with Sirt1LoxP/LoxP, and NamptLoxP/LoxP mice to generate germ-line,
hepatocyte-specific target excision (SIRT1LKO and NAMPTLKO mice). Our
breeding scheme for all LKO experiments was Sirt1LoxP/LoxP × Sirt1LoxP/LoxP/
AlbCre+/wt, and NamptLoxP/LoxP ×NamptLoxP/LoxP/AlbCre+/wt. This produced a
~1:1 ratio of mice wild-type and knockout at each locus specifically in hepatocytes.
Experimental mice of each genotype were co-housed throughout dietary inter-
vention to minimize cage-specific and microbiotic effects.

Procedures were performed in accordance with approved guidelines by the
Animal Studies Committee (Washington University School of Medicine). Animal
studies were performed in accordance with ethical regulations outlined by the
Institutional Animal Care and Use Committee (IACUC).

NAD+ quantification. NAD+ was extracted from frozen mouse tissue samples
using cold perchloric acid. NAD+ concentrations were determined using an HPLC
system (Prominence; Shimadzu Scientific Instruments, Columbia, MD) with a
Supelco LC-18-T column (#58970-U; Sigma, St. Louis, MO) as described
previously42,45. NAD+ concentrations were normalized to input tissue weight.

Dietary treatment. Mice were fed with standard rodent chow or western diet
(Teklad # TD88137) ad libitum for up to 12 weeks. During the entire treatment
course, mice were given free access to sterilized water.

AAV8- and adenovirus-mediated overexpression. AAV8 and adenovirus were
administered via tail vein as we previously reported. 109 particles per dose (ade-
novirus) and 1011 particles (AAV8) were delivered, each dissolved in 150 uL total
injection volume per animal as we reported8,9,50,51. We optimized expression
conditions for assay of adenovirus- and AAV8-treated mice 48h- and 10d post
treatment, respectively. We also optimized conditions to achieve 1.5-2.0-fold
hepatocyte NAMPT overexpression, which aligns with physiologic NAMPT
upregulation during 12 h fasting or after 5d oral trehalose treatment (Supple-
mentary Fig. 6) All viral vectors were obtained directly from Vector Biolabs Inc.
(Philadelphia, PA).

Primary hepatocyte isolation, culture and treatment. Primary murine hepato-
cytes obtained from WT mice were isolated24,25,31 and cultured and maintained in
regular DMEM growth media (Sigma, #D5796) containing 10% FBS. For in vitro
starvation experiments, starve media contained 1 g/L glucose and 0.5% FBS was
used. For trehalose treatment assays, trehalose stimulation was 100 mM in Fig. 1D
and 10 mM and 100 mM in Fig. 1F. These are physiologically relevant con-
centrations relative to portal venous trehalose concentrations, as we recently
reported in Zhang et al., Gastroenterology 2020. Total culture time was 36 h for the

trehalose in vitro experiments. Briefly, we plated 1 * 106 cells per well in six-well
plates, which yielded 70–80% confluent plates for experimentation. 12 h after
plating, cells were treated with fructose in the presence or absence of trehalose or
LT for 24 h. For the in vitro experiments in Supplemental Fig. 2 we seeded six-well
plates containing 1 * 106 cells per well (70–80% confluent plates). 12 h after plating,
cells were transfected and assayed 48 h later (e.g., 60 h total plating time). All
cultures were lysed in Trizol and subjected to downstream analysis.

Ex vivo adipose tissue treatment. Sub-cutaneous adipose tissue was dissected
from 6 to 8wk-old WT mice and incubated 24 h in regular growth media
(DMEM+ 4.5 g/L glucose+ 10% FCS) with vehicle (0.1% BSA) or with 100 ng/mL
recombinant murine FGF21 (R&D Systems, Minneapolis, MN). Explants were
washed in ice-cold PBS and snap-frozen in PBS prior to analysis.

Quantitative real-time RT-PCR (qRT-PCR). Total RNA was prepared by
homogenizing snap-frozen livers or cultured hepatocytes in Trizol reagent (Invi-
trogen #15596026) according to the manufacturer’s protocol. cDNA was prepared
using Qiagen Quantitect reverse transcriptase kit (Qiagen #205310). Real-time
qPCR was performed with Step-One Plus Real-Time PCR System (Applied Bio-
systems) using SYBR Green master Mix Reagent (Applied Biosystems) and specific
primer pairs. Relative gene expression was calculated by a comparative method
using values normalized to the expression of an internal control gene. Primer
sequences are in Supplementary Table 154.

Immunoblotting and ELISA. Immunoblotting and FGF21 and Insulin ELISAs
were performed precisely as described10,11,50. Protein expression levels were
quantified with Image Lab software and normalized to the levels of β-actin,
transferrin, or GAPDH.

Antibodies. Antibodies against GAPDH (#5174), SIRT1 (#2028), vinculin E1E9V
(#13901), and acetyl-lysine (#9441) were purchased from Cell Signaling Technol-
ogy (CST, Beverly, MA, USA). NAMPT (#ab236874), UCP1 (#ab155117) and
FGF21 (#ab171941) antibodies were obtained from Abcam (Cambridge, MA). The
dilution for all primary antibodies was 1:1,000 in 5% non-fat milk in tris-buffered
saline with tween 20 (TBST). Secondary antibodies were peroxidase-conjugated
anti-rabbit and anti-mouse IgG (CST, 1:5,000-1:10,000 dilution).

Histological analysis. Formalin-fixed paraffin-embedded liver sections were
stained by H&E via the Washington University Digestive Diseases Research Core
Center as we reported previously9–11,51. A treatment-blinded, board-certified GI/
Liver pathologist scored each liver section for inflammation, steatosis, and
ballooning67.

Insulin and glucose tolerance testing. For insulin tolerance tests (ITT), mice
were injected with 0.75 IU per kg body weight of insulin (Humalog, Eli Lilly)
intraperitoneally after 4 h of fasting on Aspen bedding. For glucose tolerance tests
(GTT), mice were injected with 2 g per kg body weight of glucose intraperitoneally
after fasting for 4 h on aspen bedding. db/db mice were injected with 1 g per kg
body weight of glucose intraperitoneally after fasting for 16 h on aspen bedding.
Blood samples were measured at different time points with a glucometer (Arkray
USA, Inc., Minneapolis, MN, USA).

Clinical chemistry and hepatic lipid analyses. For serum analyses, sub-
mandibular blood collection was performed immediately prior to sacrifice and
serum was separated. Triglycerides (Thermo Fisher Scientific #TR22421) and
Cholesterol (Thermo Fisher Scientific #TR13421) quantification were performed
using commercially available reagents according to manufacturer’s directions.

Fig. 6 NAMPT induces SIRT1-dependent hepatic FGF21 and selectively enhances energy metabolism. A Body weights over time in WT and SIRT1LKO

mice overexpressing empty vector or NAMPT on 12wk Western diet. n= 3 SIRT1fl/fl Chow; 9 SIRT1fl/fl EV WD; 6 SIRT1fl/fl AAV8-NAMPT WD; 5 SIRT1LKO

EV WD. B–D 4 h fasting glucose, insulin, and HOMA-IR (homeostatic model of insulin resistance− fasting glucose (mg/dL) × fasting insulin (ng/mL)/
405) in WT and SIRT1LKO mice overexpressing vector or NAMPT after 12wk chow or Western diet feeding. n= 4 SIRT1fl/fl Chow; 11 SIRT1fl/fl EV WD; 4
SIRT1LKO EV WD; 6 SIRT1LKO AAV8-NAMPT WD. E FGF21 mRNA and serum peptide, as quantified by qRT-PCR in livers and by serum ELISA in WT and
SIRT1LKO mice overexpressing empty vector or NAMPT after Western diet feeding. Interaction, P < 0.01 and <0.05 for FGF21 mRNA and peptide,
respectively. n= 4 SIRT1fl/fl Chow; 11 SIRT1fl/fl EV WD; 6 SIRT1fl/fl AAV8-NAMPT WD; 4 SIRT1LKO EV WD; 6 SIRT1LKO AAV8-NAMPT WD (F). Indirect
calorimetry in WT and SIRT1LKO mice overexpressing vector or NAMPT after 12wk chow or Western diet feeding. n= 3 SIRT1fl/fl Chow; 6 SIRT1fl/fl EVWD;
6 SIRT1fl/fl AAV8-NAMPT WD; 4 SIRT1LKO EV WD; 5 SIRT1LKO AAV8-NAMPT WD. Interactions for light and dark cycle heat: P= ns, and P < 0.01
respectively. *, **, P < 0.05, <0.01 vs. bracketed control by Tukey’s multiple comparisons testing. Error bars in (A–F) represent SEM. Circles, SIRT1fl/fl

Chow; Squares, SIRT1fl/fl EV WD; Upward Triangles SIRT1fl/fl AAV8-NAMPT WD; Downward Triangles, SIRT1LKO EV WD; Diamonds SIRT1LKO AAV8-
NAMPT WD. Statistical tests: (A), repeated measures ANOVA. B–D one-way ANOVA with Dunnett’s post hoc testing. E, F Two-way ANOVA, Tukey’s
post hoc correction.
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Fig. 7 Hepatocyte SIRT1 selectively modulates anti-lipogenic effects of hepatocyte NAMPT overexpression. A Serum TG, cholesterol and LDL in
Western diet-fed WT and SIRT1LKO mice overexpressing empty vector or NAMPT. TG, triglycerides. LDL-C, low-density lipoprotein cholesterol.
Interactions, P= ns for all circulating lipid analyses. n= 4 SIRT1fl/fl Chow; 11 SIRT1fl/fl EV WD; 6 SIRT1fl/fl AAV8-NAMPT WD; 4 SIRT1LKO EV WD; 6
SIRT1LKO AAV8-NAMPT WD. B Liver weight-to-body weight ratios in mice analyzed in (A). Interaction P= ns. n= 3 SIRT1fl/fl Chow; 9 SIRT1fl/fl EV WD; 6
SIRT1fl/fl AAV8-NAMPT WD; 5 SIRT1LKO EV WD; 5 SIRT1LKO AAV8-NAMPT WD. C De novo lipogenic gene expression in mice analyzed in (B). Linear
substrate pathway is shown at left for illustrative purposes. Interaction P= ns for LPK, ACC1, FASN, ELOVL6. Interaction P < 0.05 and <0.001 for GPAT and
SCD1. *, **, ***, P < 0.05, <0.01, <0.001 vs. bracketed control by Tukey’s multiple comparisons testing. n= 4 SIRT1fl/fl Chow; 11 SIRT1fl/fl EVWD; 6 SIRT1fl/fl

AAV8-NAMPTWD; 4 SIRT1LKO EVWD; 6 SIRT1LKO AAV8-NAMPTWD. Error bars in (A–C) represent SEM. Circles, SIRT1fl/fl Chow; Squares, SIRT1fl/fl EV
WD; Upward Triangles SIRT1fl/fl AAV8-NAMPT WD; Downward Triangles, SIRT1LKO EV WD; Diamonds SIRT1LKO AAV8-NAMPT WD. Statistical tests:
(A–C), two-way ANOVA; C Tukey’s post hoc correction.
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Hepatic lipids were extracted from ~100 mg hepatic tissue homogenized in 2:1
chloroform:methanol. 0.25–0.5% of each extract was evaporated overnight prior to
biochemical quantification of triglycerides, LDL-C, cholesterol, and free fatty acids
using reagents described above, precisely according to manufacturer’s directions.

Body composition analysis. Body composition analysis was carried out in una-
nesthetized mice using an EchoMRI 3-1 device (Echo Medical Systems, Houston,

TX) via the Washington University Diabetic Mouse Models Phenotyping Core
Facility.

Indirect calorimetry and food intake measurement. All measurements were
performed in a PhenoMaster System (TSE systems) via the Washington University
Diabetic Mouse Models Phenotyping Core Facility, which allowed metabolic per-
formance measurement and activity monitoring by an infrared light-beam frame.

Fig. 8 Hepatocyte NAMPT exerts SIRT1-dependent and SIRT-independent transcriptional effects. A Volcano plots showing differentially expressed
genes from (threshold log(FC)= 2, FDR < 0.05) livers fromWD-fed SIRT1fll/fl NAMPT-overexpressing mice and WD-fed SIRT1fll/fl vector controls (at left).
Right, volcano plot showing differentially-expressed genes in livers from WD-fed NAMPT-overexpressing SIRT1LKO mice vs. NAMPT-overexpressing
SIRT1fll/fl mice. n= 3 WD-fed SIRT1fll/fl EV; 3 WD-fed SIRT1fll/fl NAMPT; 3 WD-fed SIRT1LKO AAV8-NAMPT. B Gene count of differentially expressed
genes in livers from WD-fed SIRT1fll/fl AAV-NAMPT vs. WD-fed SIRT1fll/fl vector control mice (Red); differentially expressed genes in WD-fed SIRT1LKO

mice and WD-fed SIRT1fll/fl mice overexpressing NAMPT (Blue). Common gene count is shown in their intersection (purple). n= 3 WD-fed SIRT1fll/fl EV; 3
WD-fed SIRT1fll/fl NAMPT; 3 WD-fed SIRT1LKO AAV8-NAMPT. C Left, Unsupervised clustering of differentially expressed genes (Western diet-fed AAV8-
NAMPT vs. Western diet-fed AAV8-NAMPT × SIRT1LKO). Right, pathway-based gene expression heatmap of the PI3K/AKT signaling pathway, a
significantly upregulated GO pathway and CompBio NAMPT-SIRT1-dependent theme. Log2(FC) values are Western diet-fed AAV8-NAMPT vs. Western
diet-fed AAV8-EV. n= 3 WD-fed SIRT1fll/fl EV; 3 WD-fed SIRT1fll/fl NAMPT; 3 WD-fed SIRT1LKO AAV8-NAMPT. Heatmap color scales represent Log(FC).
D Working model of hepatocyte NAMPT signaling and function. NAMPT nicotinamide phosphoribosyltransferase, SIRT1 sirtuin 1, FGF21 fibroblast growth
factor 21, GLUT glucose transporter. Statistical tests: (A, B, D) EdgeR Exact, Benjamini–Hochberg post hoc correction.
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Mice were placed at room temperature (22–24 °C) in separate chambers of the
PhenoMaster open-circuit calorimetry. Mice were allowed to acclimatize in the
chambers for 24 h. Food and water were provided ad libitum in the appropriate
devices. The parameters of indirect calorimetry (VO2, VCO2, RER), heat and
movement) were measured for at least 24 h for a minimum of one light cycle
(06:01–18:00) and one dark cycle (18:01–06:00). Presented data are average values
obtained in these recordings.

Transcriptomic analysis. RNA sequencing was performed by the Washington
University Genome Technology Access Center) as we reported51. Library pre-
paration was performed with 10 μG of total RNA with a Bioanalyzer RIN score
>8.0. Ribosomal RNA was removed by poly-A selection using Oligo-dT beads
(mRNA Direct kit, Life Technologies). mRNA was fragmented and reverse tran-
scribed to yield cDNA using SuperScript III RT enzyme (Life Technologies) and
random hexamers. A second strand reaction was performed to yield ds-cDNA, and
then had Illumina sequencing adapters ligated to the ends. Ligated fragments were
amplified for 12 cycles and sequenced on an Illumina HiSeq-3000 using single
reads extending 50 bases. RNA-seq reads were aligned to the Ensembl release 76
top-level assembly with STAR version 2.0.4b. Gene counts were derived from the
number of uniquely aligned unambiguous reads by Subread:featureCount version
1.4.5. Transcript counts were produced by Sailfish version 0.6.3.

Tool description. The PercayAI Software Platform performs a literature analysis to
identify relevant biological processes and pathways represented by the differentially
expressed entities (genes, proteins, miRNAs, or metabolites). The PercayAI Soft-
ware extracts all abstracts from PubMed that reference entities of interest (or their
synonyms), using contextual language processing and a biological language dic-
tionary that is not restricted to fixed pathway and ontology knowledge bases.
Conditional probability analysis is utilized to compute the statistical enrichment of
biological concepts (processes/pathways) over those that occur by random sam-
pling. Related concepts built from the list of differentially expressed entities are
further clustered into higher-level themes (e.g., biological pathways/processes, cell
types and structures, etc.).

Scoring description. Within the PercayAI Software Platform, scoring of gene,
concept, and overall theme enrichment is accomplished using a multi-component
function referred to as the Normalized Enrichment Score (NES). The first com-
ponent utilizes an empirical p-value derived from several thousand random entity
lists of comparable size to the users input entity list to define the rarity of a given
entity-concept event. The second component, effectively representing the fold
enrichment, is based on the ratio of the concept enrichment score to the mean of
that concept’s enrichment score across the set of randomized entity data.

The input criteria here were as follows: Biological processes and pathways
identified from genes that were both upregulated upon NAMPT overexpression
and downregulated in NAMPT-overexpressing SIRT1LKO mice were labeled as
SIRT1-Dependent. Biological processes and pathways identified from genes that
were upregulated in NAMPT-overexpressing WT, but not downregulated in
NAMPT-overexpressing SIRT1LKO mice were labeled as SIRT1-Independent.
Conversely, biological processes and pathways that were both downregulated upon
NAMPT overexpression and upregulated in NAMPT-overexpressing SIRT1LKO

mice were labeled as SIRT1-Dependent. Biological processes and pathways that
were down-regulated upon NAMPT overexpression in both WT and SIRT1LKO

liver were again labeled as SIRT1-independent.

Statistical analyses. Data were analyzed using GraphPad Prism version 9.0
p < 0.05 was defined as statistically significant. Data shown are as mean ± SEM. In
dot plots: the horizontal line represents the data mean. Thermogenesis data were
analyzed by analysis of covariance (ANCOVA) using body weight as the covariate.
Two-tailed homoscedastic T-testing with Bonferroni post hoc correction for

multiple comparisons was used for paired analyses. Two-way ANOVA was used
for analysis of statistical interactions between two independent variables
(e.g., NAMPT/SIRT1). Interaction P values are reported in corresponding
Figure Legends. Significant two-way interactions prompted Tukey’s multiple
comparison analyses to compare specific group means. These post hoc results are
placed within each panel, with brackets denoting specific comparisons. In cases
wherein no significant two-way interaction is detected, only main effects are
reported, and these are demonstrated within each panel.

Studies requiring repeated sampling from the same animal over time (e.g., body
weight vs. time, glucose- and insulin tolerance testing), data were analyzed as
repeated-measure mixed models with factor, time, and factor*time interaction as
fixed effects. Subject within factor was designated as a random effect. Correlation of
repeated measurements within subject were accounted for with a first-order
autocorrelation covariance structure.

For RNAseq analyses, gene counts were imported into the R/Bioconductor
package EdgeR and TMM normalization size factors were calculated to adjust for
samples for differences in library size. Ribosomal genes and genes not expressed in
the smallest group size minus one samples greater than one count-per-million were
excluded from further analysis. The TMM size factors and the matrix of counts
were then imported into the R/Bioconductor package Limma. Weighted likelihoods
based on the observed mean-variance relationship of every gene and sample were
then calculated for all samples by voomWithQualityWeights. The performance of
all genes was assessed with plots of the residual standard deviation of every gene to
their average log-count with a robustly fitted trend line of the residuals. Differential
expression analysis was then performed to analyze for differences between
conditions and the results were filtered for only those genes with
Benjamini–Hochberg false-discovery rate adjusted p values ≤ 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
There are no restrictions on data or material availability. Data are available upon
reasonable request. The RNAseq data in Fig. 2 used in this study are available in the GEO
database under accession code GSE184395. AdNAMPT db/db data generated in this
study in Fig. 4 have been deposited in the GEO database under accession code
GSE184513. The RNAseq data generated in this study and shown in Fig. 8 have been
deposited in the GEO database under accession code GSE184394. All other data
generated or analyzed during this study are included in this published article (and its
supplementary information files). Source data are provided with this paper.
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