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Stability bounds on superluminal propagation
in active structures
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Active materials have been explored in recent years to demonstrate superluminal group

velocities over relatively broad bandwidths, implying a potential path towards bold claims

such as information transport beyond the speed of light, as well as antennas and metama-

terial cloaks operating over very broad bandwidths. However, causality requires that no

portion of an impinging pulse can pass its precursor, implying a fundamental trade-off

between bandwidth, velocity and propagation distance. Here, we clarify the general nature of

superluminal propagation in active structures and derive a bound on these quantities fun-

damentally rooted into stability considerations. By applying filter theory, we show that this

bound is generally applicable to causal structures of arbitrary complexity, as it applies to each

zero-pole pair describing their response. As the system complexity grows, we find that only

minor improvements in superluminal bandwidth can be practically achieved. Our results

provide physical insights into the limitations of superluminal structures based on active

media, implying severe constraints in several recently proposed applications.
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Arguably one of the most fundamental laws of physics is
that light in free space travels at speed c0 in any inertial
frame1. Given that the response of a material cannot

precede the excitation field, causality requires the photon speed to
remain below c0 in any causal material. While of great interest
from both fundamental and applied viewpoints, faster-than-c0
and even negative group velocities have repeatedly been shown to
comply with severe constraints associated with relativity and
causality, most notably by Sommerfeld2 and Brillouin3, in parti-
cular associated with anomalous dispersion features. In passive
structures, these responses are therefore necessarily narrowband
and associated with large absorption, consistent with Kramers-
Kronig relations4,5. The group velocity ∂ω=∂k measures the speed
at which the peak of a narrowband pulse centered at frequency ω
travels in a medium with wave number k, which can indeed move
through a finite distance at any velocity, faster than c0 or even
negative (implying that the center of mass of the pulse exits the
system before entering it, due to distortion). The required pre-
sence of frequency dispersion and absorption guarantees however
that exotic values of group velocity are always associated with
large pulse distortions, with the pulse center shifting towards the
precursor to avoid noncausal responses. The integrated energy
exiting a system with anomalous group velocity at any instant in
time is always lower than the one passing through free space6.

In the quest to suppress absorption and distortions in super-
luminal media, there has been a recent interest in using structures
with gain. Breaking the assumption of passivity, it is indeed
possible to envision frequency dispersion profiles that, while
complying with Kramers-Kronig relations, offer superluminal or
negative group velocities over large bandwidths. Optical gain7–9

and non-Foster circuit elements10,11 have been explored to enable
inverted dispersion and define broadband superluminal propa-
gation, opening opportunities in a number of practical scenarios,
including enhanced bandwidth for small antennas12, broadband
leaky-wave antennas that do not scan the angle with frequency11,
and broadband electromagnetic cloaks13 defying to some extent
the limitations imposed by passivity14.

At microwave frequencies, for which amplifiers and broadband
gain are widely accessible, scientists have been able to observe
superluminal velocities with minimal dispersion over broad
bandwidths10,15. The fundamental challenge in these experi-
ments, and in related theoretical works, is that active systems are
inherently prone to instabilities, and defining the group velocity
based on the propagation of a signal through a finite, typically
short, distance does not necessarily ensure that the system
remains stable when considering arbitrary excitation schemes,
propagation over longer distances, or different loading condi-
tions. In Ref. 16, the authors derived the causality constraints of a
single amplifier, and then assumed that an array of such elements
would remain necessarily causal. Similarly, in Ref. 17, the authors
introduced a gain material obeying causality to obtain low-
dispersion superluminal group velocity tailored for broadband
cloaking, claiming that this technique can be applied to cloak an
arbitrarily large object to a broadband signal. These assumptions
are inherently misguided, as we discuss in the following, and it is
imperative to consider not only the causality of the constitutive
materials, but also the stability of the overall finite structure under
analysis. A structure made of causal media may not be stable if it
comprises a collection of active elements. For instance, adding a
number of active lumped elements, independently stable18, or
lengthening the slab of a gain medium19, is known to lead to
instabilities. In frequency domain, instabilities are manifested by
the emergence of transfer-function poles in the upper half of the
complex frequency plane under an e�iωt time convention, yield-
ing self-oscillations and unbounded outputs until saturation and
nonlinear effects kick in. Such instabilities are facilitated in the

case of reflecting discontinuities, which can add positive feedback
to the system, highlighting the necessity of considering also the
load in these discussions.

In this work, we derive bounds dictated by stability in the quest
to realize superluminal group velocities in active media,
inspecting the complex frequency response of these structures,
and we describe their implications on the functionality of
broadband devices based on these principles. Our work clarifies
the general nature of superluminal propagation in active systems,
and outlines fundamental limitations and important challenges in
practical implementations for the benefit of various device
functionalities, at the same time straightening recent unwarranted
claims in the context of active systems that may be able to support
broadband superluminal propagation.

Results
Causality limits. We start with a simple thought experiment to
predict what sort of relationship exists between propagation
velocity, length, and bandwidth that a slab of superluminal
material can support. Consider a symmetrically-shaped pulse of
duration Δt traveling in an unbounded medium for a length d, as
in Fig. 1. Causality requires that the Sommerfeld forerunner2

reaches the end of the slab at t0 ¼ d=c0, and no portion of the
signal can arrive before then, hence no part of the pulse may pass
the front. Applying this condition to the pulse peak, which passes
the starting plane at t ¼ Δt=2 and travels at the group velocity,
the system must satisfy the inequality

1
vg

≥
1
c0
� Δt

2d ð1Þ

If the spatial extent of the input pulse is shorter than d, so that
the entire pulse enters the slab before any feature leaves, a bound
for the maximum velocity is

jvg j≤
1

1
c0
� α

d BW

�����
�����; ð2Þ

where BW ¼ 2α
Δt represents the pulse bandwidth, and α is a

dimensionless proportionality coefficient. Equation (2) can also
be written as d BW ≤ αð1=c0 � 1=vgÞ�1, which shows that,
because of causality, the maximum bandwidth over which the
pulse peak can move at superluminal velocity is limited by the
velocity and distance traveled inside the medium. As the signal

Fig. 1 Pulse propagation through a dispersive medium. By causality, no
portion of the impinging pulse, in particular its peak, which nominally
travels at the group velocity, can surpass the forefront of the pulse. Since
the temporal duration of the pulse is inversely proportional to its
bandwidth, a pulse of narrower bandwidth should be able to support a
larger superluminal velocity before the peak reaches the front. This
example suggests a dependence of the allowed velocity on the bandwidth
over which it can be achieved, and the propagation length before
instabilities or distortions arise.
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bandwidth grows beyond the limits dictated by (2), the material
dispersion kicks in and distorts the pulse shape to a point for
which the same definition of group velocity loses its meaning
and/or instabilities may arise.

The bound (2) poses a clear limit to the velocity that a medium
can support before large distortions or instabilities kick in, and it
must apply to any type of finite excitation in time. This is in
contrast with claims that active superluminal structures are
physical as long as causal materials are employed. More
specifically, it has been argued that causal active media may
support dispersionless responses with arbitrary superluminal
velocity, bandwidth, and length, ideally suited for a variety of
applications, e.g., for broadband cloaking devices17. The bound in
Eq. (2), however, implies stringent constraints on the propagation
velocity that a medium can sustain for arbitrary pulse excitation
before distortions and nonlinearities necessarily kick in. In
agreement with this expectation, active structures become
unstable as their length is increased18. In Ref. 15, pulse reshaping
arguments have been used to derive usable bandwidths over
which superluminal propagation can be achieved, as a function of
the acceptable level of pulse distortion. However, distortion
usually depends on the input pulse, thus not permitting the
derivation of bounds that exclusively depend on material
properties. In the following, we derive a general bound stemming
from stability considerations to determine a fundamental trade-
off between velocity, bandwidth and propagation length in these
structures, quantifying what can and cannot be done in the
context of active media supporting superluminal propagation.

As a starting point, we investigate the response of an
active dielectric slab of finite thickness d supporting a single
inverted Lorentzian resonance, with relative permittivity εr ¼
1þ Aω0

2

ω0
2�ω2�iγω, where A< 0 implies an active medium [Fig. 2(a)].

This model corresponds, for instance, to an inverted two-level
system, and we assume no magnetic response (μr ¼ 1). The low-
frequency group and phase velocities coincide, given by
vp;gðω ¼ 0Þ ¼ c0ffiffiffiffiffiffiffi

1þA
p , which is superluminal for active materials,

providing a group velocity dispersion as in Fig. 2(b) (black line).
Its Lorentzian dispersion ensures a causal impulse response,
hence a wave traveling through an infinite sample of this material
is expected to satisfy the constraints stemming from the relativity
principle. This does not necessarily mean, however, that this
material can be utilized in arbitrary configurations and be
expected to maintain its linear causal features. To demonstrate
the challenges that arise when a finite slab thickness of
such material is considered, we numerically calculate the
transmission20 of a smooth compact support pulse21 with
spectrum [red line in Fig. 2(b)] mostly concentrated within the
superluminal bandwidth of the structure [shaded in Fig. 2(b)],
defined as the frequency range over which the length divided by
the group delay through the structure is larger than c0. Different
from Fig. 1, here we consider the pulse impinging from free-
space, for which mismatch and multiple reflections at the two
interfaces become important. Independent of the slab thickness d,
the pulse front is expected to exit the slab exactly at time d=c0
because of causality (the Lorentzian dispersion ensures that the
very high frequencies, corresponding to the pulse forefront, are
indeed traveling at velocity c0, as required by causality), but the
pulse peak emerges closer and closer to the front, consistent with
the superluminal group velocity. Correspondingly, the pulse is
increasingly distorted, as shown in Fig. 2(c) for different slab
thicknesses, including an amplifying oscillatory response [green
curve, Fig. 2(c)] for sufficiently thick slabs. Once a critical length
is reached (5λ0 in this example), consistent with Eq. (1), the poles
of the transmission coefficient (i.e., the slab eigenfrequencies),
plotted in Fig. 2(d), enter the upper half-plane, leading to an

unstable response. The occurrence of this instability may be
driven simply by noise, and so we can expect amplified
oscillations for this slab even in the absence of a driven input,
making the device unusable for any practical application.

Comparing this example with the previous calculations for an
infinite medium that led to Eq. (1), the finite slab thickness adds
reflections at the two interfaces, which can act as a positive
feedback mechanism and make the active system prone to
instabilities, despite the fact that the dispersion model of the bulk
medium is causal. In a real system of finite spatial extent, we
always expect interfaces and mismatched loads at least over some
frequency ranges, so instabilities must always be carefully
considered in analyzing active systems. In the unstable regime,
the occurrence of nonlinearities and saturation effects eventually
determines the actual overall response of the structure, but it is
clear that a naïve analysis based on the response of the
unbounded medium is bound to fail. Due to the scale invariance
of Maxwell’s equations, we can also fix the slab thickness and
instead vary the excitation and gain frequencies, yielding the same
result as in Fig. 2, implying that claims of broadband super-
luminal propagation by relying on broadband material gain need
to be carefully analyzed in the specific device implementation
against the possible insurgence of instabilities.

Next, we explore fundamental limits on the superluminal
bandwidth before instabilities set in. In passive systems, there are
well-established global bandwidth limits for various functional-
ities of interest, such as the Bode-Fano matching bound22,23, the
Rozanov absorption bound24, and similar bounds for cloaking14.
These all stem from causality (the system poles must all be in the
lower half plane), but also assume that, due to power
conservation, the response is bounded (the reflection/transmis-
sion coefficient is always less than or equal to 1 for propagating
waves). With active structures, the latter constraint does not hold,
and so developing bounds becomes trickier. As we show below,
there is no theoretical limit to the bandwidth over which
superluminal propagation can be achieved in principle, but strict
trade-offs and practical limitations arise in any realistic system.

Filter theory limits. Filter theory25 offers general models to
describe superluminal propagation in a variety of systems. For the
sake of simplicity, we start by considering a one-dimensional 2-
port network obeying causality, whose general transmission
response can be written as

TðωÞ ¼ e
iωd
c0 � HðωÞ ð3Þ

where d is again the length of the structure, c0 is the speed of light
in free-space, and HðωÞ is the structure-dependent response. The
exponential term, corresponding to free-space propagation, is
responsible for enforcing causality in the absence of any material
response [HðωÞ ¼ 1] and the appropriate delay of inflection points,
with frequencies approaching infinity expected to travel at c0. The
filter theory approach is usually performed in the Laplace s-plane25,
but we utilize the complex ω ¼ ωr þ iωi plane to be consistent with
the previous formulation. Stability restricts the poles of TðωÞ, and
therefore HðωÞ, to the lower half-plane (ωi < 0), and the real nature
of the fields [TðωÞ ¼ T*ð�ωÞ] dictates that poles and zeros exist in
pairs of opposite real part but same imaginary part, or otherwise lie
on the imaginary axis (ωr ¼ 0). To ensure a bounded jTj at high
frequencies, the number of zeros must not exceed the number
of poles.

For any real frequency ωr , the transmission phase θ is given by

θ ¼ ωrd
c0

� ∑
zeros

ffziðωrÞ þ ∑
poles

ffpjðωrÞ ¼ θfs þ θH ; ð4Þ

where the angles ffziðωrÞðffpiðωrÞÞ are defined as the acute vertex
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formed by the ω-plane points ω1 ¼ i1; ω2 ¼ ziðpiÞ; ω3 ¼ ωr
[see Fig. 3(a)], and we split the phase into the free-space
component and the one due to HðωÞ. The amplitude at a
given frequency is the product of the distance from the zeros
divided by the product of the distance from the poles, i.e.,
jTðωrÞj ¼

Q
i
jzi � ωrj=

Q
j
jpj � ωrj.

The group delay τgðωrÞ ¼ dθ
dωr

¼ τg;fs þ τg;H , written as the sum
of the delays in free space and in the structure. The zeros
contribute negatively to the group delay when in the lower half-
plane, and the poles positively. In order to yield a broadband
negative delay, the zeros should be optimally tailored to support a
broadband response (with bandwidth increasing as the zero
moves away from the real axis), but also have a fast angular
derivative over the bandwidth of interest (implying they should
not be too far from the axis). At the same time, to minimize the
positive delays introduced by the poles, they should be positioned
to have a small angular derivative over the operating
bandwidth. This can either be achieved with poles with large
negative ωi values (ffpjðωrÞ � 0), or placed near the ωr-axis
outside the frequency range (ffpjðωrÞ � ± π

2). In the former case,
the amplitude in the superluminal regime will be small, as in the
case of anomalous dispersion in the presence of large losses.
The latter requires active structures, as the system will exhibit
gain at frequencies near the pole.

We next define the figure of merit �τg;HBW, which quantifies
the normalized peak advance bandwidth product compared to
propagation through an equivalent distance in free-space [as
depicted in Fig. 2(a)]. With some algebra it can be found that this
figure of merit is bounded by α based on Eq. (2). We define the
bandwidth as the frequency range over which the smallest group
advance is at least τg;H . For one pair of complex-conjugate zeros,
geometric optimization shows that this product cannot be larger
than 3/2, a limit reached when the zero lies precisely on the line
ωi ¼ �

ffiffiffiffiffiffiffiffi
3=5

p
ωr . Figure 3(b) shows the advance-bandwidth

product �τg;HBW as a function of position of the zero in the
complex frequency plane, after we assumed that the pole is placed
on the real axis at ωr ¼ 1. In this case, the pole does not have an
appreciable effect on the group delay for 0 < ωr < 1. As the zero
moves away from the origin on the line ωi ¼ �

ffiffiffiffiffiffiffiffi
3=5

p
ωr , the

group advance at ωr ! 0 decreases, but the bandwidth
correspondingly increases keeping the product constant. If the
zero moves too far from the origin, the pole introduces a group
delay within the bandwidth supported by the zero, reducing the
total advance-bandwidth product. Figure 4 shows three examples
of group-advance dispersion curves as the position of the zero is
varied. We keep the pole at fixed position close to the axis, which
has the effect of introducing a positive group delay (negative
advance) for frequencies in its vicinity. The shaded regions

Fig. 2 Stability concerns in active superluminal strctures. a Comparison of free-space propagation of a pulse (black) and propagation through a
superluminal slab (red), where the peak of a pulse within the superluminal bandwidth advances by a time τg;H relative to free-space. b Group velocity
(distance divided by group delay) of the considered active material and power spectrum of the input pulse. The highlighted box shows the bandwidth of
superluminal propagation for which vg � vgðω ! 0Þ. c Time-domain signal transmitted through the slab, shifted by d=c0. The signal is calculated by
multiplying the input spectrum by the frequency-domain transfer function, and then inverse Fourier transforming into the time domain. The peak moves
closer to the front of the pulse as the length increases, until we find an unstable response, unbounded for large times. d Poles of the transmission
coefficient as a function of the slab length. The unstable response in (c) is associated with poles in the upper half-plane. Parameters: A ¼ �1=16, γ ¼ ω0=3.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28713-x

4 NATURE COMMUNICATIONS |         (2022) 13:1115 | https://doi.org/10.1038/s41467-022-28713-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


indicate the corresponding �τg;HBW. When the zero is too close
to the imaginary axis, there is a large group advance, but over a
sub-optimal bandwidth. If the real part of the frequency for the
zero is too large, the velocity is smaller and the bandwidth is still
limited by the pole’s position. At ωi ¼ �

ffiffiffiffiffiffiffiffi
3=5

p
ωr , corresponding

to the red curve in Fig. 4, the maximum advance-bandwidth
product is obtained.

This analysis assumes that the placement of pole and zero can
be arbitrary, though practical considerations are expected to
introduce additional limitations. For example, in a shunt
impedance-inverted RLC circuit, as considered in Supplementary
Discussion 1, the zero must lie on the unit circle due to its unitary
gain at DC, corresponding to the red dashed curve in Fig. 3(b).
Under this assumption, the maximum advance-bandwidth
product is

ffiffiffi
2

p
. To reach the limit α ¼ 3=2, the zero must move

off the unit circle closer to the origin, which means that we must
introduce loss at ω ¼ 0.

Dielectric slab. The derived limit applies to each zero of the
transfer function of a linear system. Due to the linearity of (4),
additional zeros in HðωÞ can each in principle provide an addi-
tional 1.5 contribution to the total �τg;HBW. With sufficient
control over the system, the total advance-bandwidth product can
therefore in principle be made large. Realistically though, a
practical system cannot support arbitrary dispersion engineering,
and limitations naturally arise. The dielectric slab considered
earlier is a good example: its multiple Fabry-Pérot modes corre-
spond to a large number of poles and zeros in the transmission
coefficient, hence the limit of α ¼ 1:5 does not have to hold, yet
its value of �τg;HBW does not become much larger. To see how
the single pole-zero bound relates to the dielectric slab, we sweep
the slab parameters over a wide parameter space to find the
optimal advance-bandwidth product. To this end, we rewrite and
simplify Eq. (2) as τg;H>� α

BW, which suggests that the minimum
α can be determined through the maximum value of �τg;HBW.
We assess this value by finding, for each value of slab thickness
and material parameters, the bandwidth for which the system
becomes marginally stable. Without loss of generality, we first fix
the material gain resonance ω0, and for each pair (A, d) we reduce
γ until a pole reaches the real axis from the lower half-plane. We
then define the bandwidth as the smallest frequency for which the
group advance drops below its value at ω ! 0. Figure 5 shows

∠p

( , , , )

(a)

(b)

∠z

( , , , )

( , , , )
( , , , )

Fig. 3 Filter Theory Limits for a Single Pole-Zero Pair. (a) Depiction of the
angle definitions for our derivation of the filter-theory bound, where the
circles indicate transfer function zeros and “x”s represent poles.
b Minimum group-advance-bandwidth product as a function of position of
the zero in the complex frequency plane. The pole defines the bandwidth,
and it is located at ω ¼ 1. The maximum advance-bandwidth product is
found to be 3/2. For unitary transmission at ω ¼ 0, the zero must lie on the
red curve in the figure, along which the maximum value is

ffiffiffi
2

p
. The

corresponding pole-zero pairs also exist at mirror positions around the
imaginary axis. The solid black lines indicate (unequal, for illustrative
purposes) contours of ½0:25;0:5;0:75; 1; 1:25;

ffiffiffi
2

p
; 1:49�.
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Fig. 4 Effect of pole position on group delay dispersion. Dispersion curves
for different positions of the zeros in the complex plane. In all plots, the pole
is at the complex frequency point ð1;�0:001Þ (white star). The dotted line
shows our bound, and the solid curves indicate the group advance for the
pole positions given by the dots in the lower half-plane, where we have also
included the same plot as Fig. 3(b). The shaded rectangles are the ones for
the curve of the same color (blue, red, or greed) that maximize the
�τg;HBW product.
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Fig. 5 Numerical limits. Group delay-bandwidth product in an active
superluminal dielectric slab relative to the delay in an equal thickness free-
space slab. For given d and A, γ is varied to maximize the bandwidth, while
ensuring that the structure remains inherently stable. For comparison, the
bound for a single-pole RLC resonator is 1.5.
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the advance-bandwidth product, indicating that α remains in the
order of unity. As the distance increases, for smaller values of gain
in the material, i.e., a smaller A, we observe a mildly improved
performance in terms of �τg;HBW, but at the price of reduced
group velocities that are only very moderately superluminal. For
example the maximum value of α for d ¼ 100λ0 occurs for a
group velocity of �1:01c0, corresponding to �τg;HBW � 2:5, still
in the same order of magnitude of the single pole-zero pair.

The dielectric slab is a good example to showcase the
fundamental limits and trade-offs imposed by stability on
broadband superluminal propagation, but active superluminal
structures can be implemented with additional degrees of
freedom in circuits. In Supplementary Discussion 1, we consider
a waveguide with second-order active shunt components (a single
pole/zero pair) to implement superluminal propagation, and
derive a closed-form bound α<

ffiffiffi
2

p
consistent with the previous

discussion. Even when considering multiple coupled resonances
tailored to dispersion engineer the response, easier to do in a
circuit layout than in a dielectric structure, we find that similar
bounds continue to apply (we explain more fully the involved
trade-off with complexity, stability, and sensitivity of these
systems in Supplementary Discussion 2). It may be possible with
complex dispersion engineering to improve this bound by relying
on multiple tailored resonances, but only at the price of increased
complexity and footprint, and with modest overall improvements.
In addition, these solutions would require a pole of the system to
approach the real axis, implying the requirement of very large
gain and Q-factors, as well as inherent sensitivity to small
deviations from the optimal parameter designs. Practical restric-
tions on these quantities pose additional limits on the achievable
�τg;HBW in realistic structures, as discussed in more depth in
Sup Supplementary Discussion 3. In short, α< 1:5 per pole/zero
pair is a quantitative bound directly stemming from stability
considerations that generally applies to a wide class of systems,
from optics to radio-frequencies, from materials to circuit
implementations, fundamentally limiting the realization of
superluminal propagation over large frequency ranges and long
distances. We performed an extensive review of the existing
literature on active superluminal structures with reported group
velocities/advances, distances, and bandwidths, finding that no
experimental structure has surpassed α ¼ 1:5 to the best of our
knowledge. These structures have been implemented in a wide
variety of settings, from Hz-level circuits to periodically loaded
waveguides to optically-pumped and Brillouin-driven optical
waveguides, yet all fall within the same range of behavior8,10,26–29,
validating our findings. This feature speaks to the generality of the
filter-theory approach derived here, but also to the difficulty of
engineering a more complex dispersion response to beat the
derived bound. We note that these works may not have been
explicitly engineered for maximum advance-bandwidth perfor-
mance, but in practice realistic systems are expected to obey
this limit.

As an extreme scenario that in principle may enable a very
large advance-bandwidth product, we can consider an ideal active
material in which the relative permittivity and permeability are
matched at all frequencies, μr ¼ εr . As we show in Supplementary
Discussion 4, in the ideal scenario a slab of this material can
provide an unbounded advance-bandwidth product for normal
incidence, thanks to the lack of reflections at its two interfaces for
all frequencies. However, this comes at the price of extreme
sensitivity to any mismatch from the ideal matching condition or
on the incidence angle of excitation. A realistic slab with small
deviations from the ideal matching condition, and/or a realistic
excitation involving a finite angular range of incident radiation,
would still incur self-oscillations and instabilities once we

consider any minimal mismatch in the material parameters,
and the inherent presence of noise triggering instabilities for
eigenmodes with nonzero transverse momentum.

Experimental verification. In order to validate our theory, we
implemented the tunable circuit shown schematically in Fig. 6a,
consisting of a transmission line (TL) of electrical length θ loaded
with an operational amplifier connected in shunt through the
positive input terminal (Vin;þ). A detailed theoretical study of this
circuit configuration is discussed in Methods and Supplementary
Discussion 1. In our scenario, Z3 (highlighted by the green box)
consists of a series combination of an inductor (LL), a tunable
capacitor (CL) and a tunable resistor (RL). In first approximation,
this circuit implements a negative capacitor, where the variable
CL controls the low-frequency group advance, and the variable RL
controls the stability and bandwidth. The circuit was fabricated
over a printed circuit board (PCB) using discrete components, as
shown in Fig. 6(b). In addition to the main circuit, an identical
unloaded TL was also fabricated on the same board as a reference,
used to compare the pulse propagation to the free-space group
delay τ0, coincident with the phase delay for the given TL
length,τ0 ¼ 0:4 ns. We use this value as a normalization constant
for the group delay measurements. The first step of our experi-
mental validation is to examine the variation in group delay as we
vary the circuit parameters. Since we utilize 50Ω ports, the critical
resistance value RL that brings the circuit to the instability
threshold is ~25Ω in this circuit configuration. We can inde-
pendently tune the varactor diode CL (by applying different VD)
and RL (mechanically) to probe different regimes. We plot in
Fig. 6(c–e) the measured group delay spectra after subtracting the
free space delay τ0. When RL � 35Ω (blue lines), the circuit is
well within the stable regime and it supports a moderately
broadband superluminal response. For RL � 25Ω, the system is
close to the instability threshold, and for all three levels of
capacitor bias this scenario supports a wider bandwidth for
superluminal propagation. When RL � 15Ω, the system has
entered the unstable regime, evidenced by continuous oscillations
in the time domain measurements shown in Fig. 6(g). In this
regime the derived group delay is meaningless, since the system is
not transmitting the input pulse but self-oscillating. In Fig. 6(c–e),
we also show with shaded rectangles the corresponding group-
advance bandwidth product. Due to nonidealities we do not
observe the ideal response of an inverted RLC impedance, and we
find additional ripples in the group-delay spectrum. By ignoring
these ripples in the bandwidth calculation, taking the most gen-
erous definition of bandwidth for the advance time, we still find
that the product lies well within our derived bound for any stable
parameter combination we tested.

As an additional verification, we also performed time-domain
measurements. First, we sent a time-domain modulated Gaussian
pulse centered around 60MHz, at which we can expect the largest
negative group delay within the bandwidth of operation. Then,
we adjust both CL (varying VD) and RL (changing the number of
turns), until we observe significant phase-advance of the
transmitted signal. Figure 6(f) shows the time-domain measured
signal, clearly highlighting superluminal propagation (signal in
solid red). The corresponding frequency spectrum is shown in the
bottom right inset together with the excitation spectrum. The
measured data show a phase advance of ~1.5 ns, nicely matching
the theoretical value that can be expected from the shaded blue
box in the bottom right inset. Decreasing RL results in
instabilities, which settle to oscillations due to nonlinearities
such as gain saturation, as measured and plotted in Fig. 6(g).
Slight deviations from the theoretical response are due to the Op-
Amp roll-off, which results in non-ideal impedance inversion.
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Implications for active cloaking. We consider now the impli-
cation of our bounds for the scenario of broadband cloaking
recently discussed in Ref. 17. The authors suggested that a
superluminal broadband cloak made of active materials may be
able to suppress the scattering of an object over a bandwidth
much larger than the cloaking bounds derived for passive
media14. They argued that an active material wrapped around
the object of interest may be able to exploit its superluminal
speed to route a broadband pulse with the same true-time delay
as if traveling in free space, as sketched in Fig. 7(a). Following the
argument made in Ref. 30, the velocity in the cloaking region
needs to be at least c0π=2 to enable the fastest signal to traverse
half of the circumference rather than the diameter of the sphere
enclosing the object (we assume here that the energy is
traveling as close to the perimeter as possible, otherwise even
faster speeds would be required). The total travel distance is
d ¼ πr, where r is the radius, and therefore τg;H ¼ r

c0
π 1� 2

π

� �
.

Applying our inequality between group delay and bandwidth

[τg;H � BW ¼ d
c0
� d

vg

� �
BW < 1:5], we find that r � BW<1:3c0.

Interestingly, this bound is of the same form as the limits for
passive scatters derived in Ref. 14, even though, different from the
general passivity bounds in Ref. 14, our derivation here stems
from a ray optics picture specifically tailored for impenetrable
objects31,32.

To test the applicability of our bound, we consider the case of a
subwavelength 3D perfectly conducting (PEC) sphere, previously
examined in Ref. 33. The scattering from a subwavelength
structure cannot be described with ray optics, but, as we show in
the following, it is found to exhibit the same tradeoff between size
and bandwidth, owing to stability considerations. The dominant
scattering term in such a particle is the electric dipole mode,
which can be effectively suppressed under the condition
εcloak � x3�1

x3þ2, where x is the ratio of outer radius of the cloaking
layer to the sphere radius. Notably, this condition on εcloak is
independent of the particular frequency, and requires34 that its
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value is <1. That is, to make a broadband cloak, we need a
superluminal permittivity over a wide frequency range, exactly
the kind of behavior we have discussed thus far. Such behavior
may be enacted with a causal dispersion by operating between a
loss and a gain resonance. Although there are a number of free
parameters to explore, we will study the behavior under the
dispersion profile

εcloak ¼ 1þ Aωc
�ω1

ω1
2 � ω2 � iγω

þ ω2

ω2
2 � ω2 � iγω

� 	
ð5Þ

where ω1 ¼ ωc þ Δω=2 corresponds to the higher-frequency gain
resonance and ω2 ¼ ωc � Δω=2 to the lossy resonance. This
particular dispersion provides a flat (∂ε∂ω ¼ 0) and essentially
lossless (Im½ε� ¼ 0) dispersion at ωc, desirable for broadband
cloaking. An example of such a dispersion profile is shown in
Fig. 7(b), compared to a lossless Drude-like material
(ε ¼ 1� ωp

2=ω2). For any given Δω and γ, the oscillator strength
A can be chosen to meet the cloaking condition at ωc. However,
as Δω increases to enhance the bandwidth, A must increase as
well, making the system more susceptible to instabilities. As clear
in Fig. 7(b), the dispersion of the active material offers the
potential for a flatter dispersion and broader cloaking than any
passive medium, considering that the Drude dispersion is the
least dispersive material without gain.

To explore the tradeoff between scattering suppression,
bandwidth and size, we fix ωc ¼ 2π ´ 200THz and x ¼ 1:1, and
for a given PEC sphere with radius r we increase Δω and the
corresponding A until the system develops an instability. We
parametrically sweep γ from 0:001ωc to 0:5ωc for each electrical
size and plot the corresponding bandwidth of scattering reduction
in Fig. 7(c), together with the same calculation in the case of a
Drude cloak. The bandwidth is defined as the frequency range
over which a 10 dB reduction of scattering cross section is
observed in comparison to the bare PEC sphere, both calculated
with Mie theory35. The active cloak can indeed provide a larger
bandwidth for all considered geometries compared to a passive
cloak, but both stay well below the stability bound discussed here.

Increasing Δω enhances the cloaking bandwidth, as shown in
Fig. 8(a), but the out of band scattering near the gain resonance
increases, until the stability threshold is crossed. The overall
behavior clearly falls within our bound [black line in Fig. 7(c)],
with the same BW / 1=rtrend. We note that changing the
cloaking reduction level changes the bandwidth that the structure
is able to attain, but the same fundamental tradeoff between size
and bandwidth is expected.

We can also explore the effects of the cloak on the scattering of
a pulse of finite temporal duration. In Fig. 8(b), we show the effect
of increasing Δω on the total scattered power for a Gaussian pulse

of fixed temporal and spectral extent, whose time-domain field is
plotted in Fig. 8(c), chosen to fit within the cloaking bandwidth
available before instabilities set in. Compared to the PEC
sphere, the cloaked object scatters less for certain bandwidths,
but then the scattering spikes up as the system approaches
the instability threshold. Figure 8(d, e) show the temporal
evolution of the dominant (dipolar) scattering component
pðωÞ ¼ �6πi

k0
3 EinðωÞC1;TMðωÞ35 for various values of Δω. Overall,

the active cloaks successfully suppress the scattering over the
main duration of the incident pulse. However, due to the presence
of gain that brings the pole closer to the axis, there is a significant
ringing after the incident pulse has subsided. When the pole
comes to the real axis, this ringing is sustained indefinitely,
corresponding to infinite scattered power.

This example demonstrates how the behavior we derived in a
1D wave-optics picture is more generally observed also in 3D
cloaking problems. Larger cloaks based on transformation optics
generally require more complex inhomogeneous and anisotropic
permittivity and permeability profiles, but our arguments are
expected to still apply. Refs. 33,36 have also explored stability
considerations in active scattering systems, pointing out related
limitations. Overall, the theoretical proposal in Ref. 17 for
broadband cloaking of large objects based on superluminal
propagation does not consider the inherent instabilities that these
objects necessarily run into as their size grows, implying that the
cloaked objects would become not only more visible, but actually
likely lead to lasing and bright self-oscillations rather than
cloaking.

Discussion
In this paper, we derived a quantitative relationship between
superluminal velocity, bandwidth, and maximum propagation
length in active materials, dictated by stability considerations,
applicable to a wide range of implementations, from metamaterial
devices to circuit networks. While active structures may be causal,
they are prone to instabilities when striving for extreme respon-
ses. Our derived bound indicates that the group advance-
bandwidth product is limited to order unity in any realistic
material and circuit layout supporting superluminal responses,
hence it cannot be used for arbitrarily broadband cloaking of
large objects or other extreme functionalities. Signal distortion,
expected when operating close to our derived bound, poses even
more stringent limitations on the bandwidth of operation and
group advance in these systems.

Methods
Experimental implementation. The negative capacitance in our experiment is
implemented by configuring the operational amplifier (Op-Amp) as a negative
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imparting the same time delay as if the waves propagated in free space, reconstructing the incident wavefront. These waves must travel with a speed
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impedance converter. The input impedance seen at the positive Op-Amp terminal
is �Z3

Z1
Z2
, i.e., by selecting Z1 ¼ Z2 ¼ 500Ω we obtain the input impedance �Z3.

The load Z3 is a series RLC, with tunable RL and CL , and a fixed LL � 51 nH.6(a).
The tunable capacitor is implemented with a varactor diode (SMV12555, Sky-
works) reversely biased, as shown in the green box in Fig. 6(a) through the tuning

voltage VD . The capacitance is tuned byVDC through the nonlinear relation C ¼
C0ð1þ VDC

Vj
Þ�M

where the parameters C0,Vj, and M are 80 pF, 135V , and 100,

respectively (SMV12555, Skyworks). In order to introduce full on-board tunability
and adjustment for the circuit (and to properly DC-bias the Op-Amp), the bias
voltage VB is introduced to DC-bias the positive input terminal through the biasing
resistor RB ¼ 10kΩ and the RF choke inductor Lch ¼ 4:7μH. The tunable resistor is
implemented using an SMD trimmer resistor (PVG5H201C03R00, Bourns)
through on-board mechanical tuning by a screwdriver, with a full range of 200Ω.
The corresponding S-parameters were extracted using a vector network
analyzer (VNA).

Data availability
All data generated or analyzed during this study are available upon contacting the
corresponding author.

Code availability
Codes used for this study are available upon request by contacting the corresponding
author.
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