
ARTICLE

Fast custom wavelet analysis technique for single
molecule detection and identification
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Many sensors operate by detecting and identifying individual events in a time-dependent

signal which is challenging if signals are weak and background noise is present. We introduce

a powerful, fast, and robust signal analysis technique based on a massively parallel con-

tinuous wavelet transform (CWT) algorithm. The superiority of this approach is demon-

strated with fluorescence signals from a chip-based, optofluidic single particle sensor. The

technique is more accurate than simple peak-finding algorithms and several orders of

magnitude faster than existing CWT methods, allowing for real-time data analysis during

sensing for the first time. Performance is further increased by applying a custom wavelet to

multi-peak signals as demonstrated using amplification-free detection of single bacterial

DNAs. A 4x increase in detection rate, a 6x improved error rate, and the ability for extraction

of experimental parameters are demonstrated. This cluster-based CWT analysis will enable

high-performance, real-time sensing when signal-to-noise is hardware limited, for instance

with low-cost sensors in point of care environments.
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The detection and identification of events in a time series is
the basis of countless sensors across all fields of science and
engineering. This task can often entail dealing with low-

quality signals, often in the presence of considerable background
noise, making it difficult to rely on simple thresholding algo-
rithms where a signal above a set value is used to detect and
classify an event. This can be addressed by improving the sensing
instrument itself, but this approach is at odds with minimizing
cost and complexity. An attractive alternative, therefore, is to
extract the most information from the available time-domain
signals by optimizing their analysis using appropriate signal
processing techniques.

Among the many different sensor types that produce time-
dependent signals, optical sensors are particularly representative
examples. They are ubiquitous and play an ever-increasing role in
biomedical applications such as molecular diagnostics, cell ana-
lysis, health and wellness monitoring, and more1,2. They are
incredibly diverse, relying on many different phenomena for
signal generation such as fluorescence, scattering, absorption, or
resonance shifts3–6. Many of these sensors generate, a time-
dependent sequence of individual events that arise from the
detection of individual targets, such as cells, biomolecules, or
reporter particles, that are moving or being scanned over. This
scenario has significantly grown in importance recently as bio-
sensor sensitivity has been improved with optofluidic techniques
all the way to detection of single molecular biomarkers, ushering
in the era of digital counting of different target types with a
universal detection device. Examples include chip-scale flow
cytometers7, DNA sequencing with zero-mode waveguides8, and
direct detection of single viruses and nucleic acids using liquid-
core waveguides9,10. Optofluidic waveguide devices have recently
received significant attention due to their capability of
amplification-free detection of single biomarkers such as nucleic
acids and proteins9,11,12.

These and other optical lab-on-chip approaches have opened
the door to the development of compact tests for infectious dis-
ease diagnosis in the field and at the point of care, capabilities that
are urgently needed as the global SARS-CoV-2 pandemic has
resoundingly shown. Point-of-care devices, however, impose
severe demands on the biosensor as they need to be inexpensive,
compact, and robust. Therefore, they represent a particularly
good example of the need to optimize signal processing techni-
ques to deal with sub-optimal data. In addition, it is desirable to
carry out this analysis in real-time which adds further demands
on the signal processing algorithm. Unlike recent studies invol-
ving supervised machine-learning techniques for event detection
and classification13–15, we employ an unsupervised early event
detection approach for immediate identification of events.

Here, we introduce a flexible signal processing algorithm for
unsupervised detection and identification of single-particle sig-
nals. It is based on highly parallel, multi-scale continuous wavelet
transform (CWT) analysis and meets the challenges for point-of-
care sensors described above, specifically speed, accuracy, and
sensitivity to low signal levels. The high accuracy, linear (O(N))
complexity, and high speed of the proposed algorithm are ideally
suited for real-time event detection applications. We demonstrate
the capabilities of this Parallel Cluster Wavelet Analysis (PCWA)
algorithm for both single- and multi-spot excitation signals and
validate it with a demonstration of single bacterial DNA detection
on an optofluidic waveguide chip. For single-peak signals, an
increase in speed by orders of magnitude over common CWT
methods is shown. For the first time, this allows for real-time
operation of the sensor which is a critical advance towards use in
the field and at the point of care. Equally strong performance for
other sensor types is also shown in the Supplementary Material
with the example of an electrical single-molecule nanopore

sensor. For multi-peak signals, custom-designed wavelets are
introduced that enable an over 4x increase in single-molecule
detection rate and 6x reduction in errors compared to previously
used techniques for periodic signals. In addition, this PCWA
method allows for real-time extraction of additional experimental
parameters such as the flow velocity of the sample liquid and its
dynamic evolution. Finally, the multi-scale is suitable for further
expansion by exploiting supervised machine-learning techniques
toward extremely accurate multiplex detection.

Results
Single-particle fluorescence detection. We emphasize that the
technique to be introduced below can be applied to any time-
dependent signal, irrespective of its nature (optical, electrical,
etc.), transduction mechanism, or the device platform on which it
is created. However, we have found that it is particularly attractive
for a liquid-core waveguide optofluidic platform on which mul-
tiplexed detection of single nucleic acids, proteins, and viral
particles have been demonstrated at clinically relevant con-
centration levels9,12,16. The devices are based on intersecting
solid- and hollow-core antiresonant reflecting optical waveguides
(ARROW) built with a foundry compatible fabrication process17.
Figure 1a shows a schematic view of the experimental setup used
in this study. The device under test consists of a 5 μm× 12 μm
microchannel terminated by fluidic reservoirs through which the
target particles are driven by applied pressure. These are optically
excited by orthogonally intersecting solid-core waveguides into
which light from an external laser source is coupled as shown.
The chip layout features two excitation options: single-spot via a
single-mode (SM) waveguide or multi-spot excitation (MSE) with
a multi-mode interference (MMI) waveguide. These different
excitation patterns are visualized by the colored patterns in the
top-down SEM image of the excitation region when the channel
was filled with quantum dots in DI water (Fig. 1b). This high
concentration solution creates a static image of the excitation
patterns through which a single target particle move in an actual
experiment. Single-spot excitation can be used for ultrasensitive
singleplex detection as demonstrated by amplification-free
detection of Ebola virus RNA9. MMI waveguides, on the other
hand, create spectrally and spatially varying excitation patterns
which has been successfully used for multiplexed single virus and
antigen detection12,18,19.

Figure 1c shows two examples of the signals for single-spot and
multi-spot excitation generated by SM and MMI waveguides.
They are produced by fluorescent nanobeads and labeled bacterial
DNAs (Klebsiella pneumoniae carbapenemase), respectively.
Clearly, the spatial excitation patterns are replicated in the
time-domain signal and can encode additional information for
each event. When the multi-spot signal is analyzed by a shift-
multiply algorithm (see below), a 50,000x SNR enhancement was
demonstrated20. These signals need to be detected and identified,
which is challenging when the background is high or the signal
level is low if the target is not bright or fluorescence collection is
reduced depending on the particle’s position in the channel21.
Therefore, an efficient, powerful, and accurate signal analysis
method is needed.

Wavelet analysis for time-dependent signals. Wavelet analysis is
a well-established technique that has been successfully applied to
a broad spectrum of applications, including but not limited to
denoising, baseline removal, and spike detection in noisy signals
(23–27). Among wavelet transform families, both continuous
wavelet transform (CWT) and discrete wavelet transform (DWT)
have successfully been used in multi-scale peak and event
detection. DWT efficiently decomposes a sampled signal into
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nonoverlapping sub-bands of frequencies. DWT is generally fast
and efficient but lacks a sufficiently high resolution of scale/fre-
quency. CWT, on the other hand, provides high scale/frequency
resolution which is one of the key pieces of information used in
time-frequency analysis. CWT is based on comparing the signal
f(t) to a temporal pattern of finite duration—the mother wavelet
ψ(t) —and identifying occurrences of the mother wavelet pattern
as real events. Mathematically, this is implemented by the CWT
function described by

C t; sð Þ ¼ f ;ψt;s

D E
¼
Z þ

�
f t0ð Þ 1ffiffi

s
p ψ� t � t0

s

� �
dt0; ð1Þ

where s > 0 is a scaling factor that effectively stretches or com-
presses the wavelet pattern in time. C(t, s) is, therefore, the cor-
relation of the real signal with a scaled and dilated basis function

which can be visualized in a 2D map of similarity coefficients of
the signal f with ψ at time t and scale s. Local maxima in the 2D
map indicate the presence of a particular pattern (similar to the
mother wavelet) and by the use of the scaling factor, we look for
this pattern at a broad range of scales. This turns out to be the
ideal unsupervised method to match patterns as the ones shown
in Fig. 1c without any extra training steps (collecting and labeling
training dataset). We note that the convolution calculation at
each scale can be done independently for CWT whereas in DWT
higher level coefficients depend on the lower level’s values. The
multi-scale nature of CWT analysis in the (t,s) plane is particu-
larly advantageous because events are commonly found at various
s values which can provide an additional source of information.
In our optofluidic devices, for example, particles flow at different
speeds and create fluorescence signals of different temporal
widths Δt. It is, therefore, convenient to relabel the scaling
parameter s as Δt to extract meaningful information for events
which can, in turn, be easily converted into the velocity of flowing
particles due to the direct correspondence with the known spatial
excitation patterns. This is a key advantage over DWT, whose
limited number of scale levels is not sufficient to extract the
continuous distribution of the velocity of flowing particles.

Consequently, CWT seems ideally suited for analyzing single-
peak signals such as in Fig. 1c. Indeed, the technique has been
used in numerous applications such as mass spectroscopy22,
powder x-ray diffraction23, seizure detection from EEG
signal24,25, radar target detection26 and trend detection, and
estimation in hydrology and climate research27. However, a major
challenge lies in dealing with large amounts of data in a fast and
memory-efficient way as well as with more complex signal shapes
such as the multi-peak signal of Fig. 1c. We introduce a fast CWT
event detection algorithm, that addresses these problems, using
the example of single-peak detection.

Parallel cluster wavelet analysis (PCWA) for single-peak
detection. Figure 2a shows a typical time-dependent signal for
single-particle detection with the optofluidic chip of Fig. 1 used
with the single-mode waveguide for excitation. A solution con-
taining 0.1 pM of 200 nm polystyrene beads (Fluospheres™) were
pulled through the analyte channel by connecting a vacuum line
to the outlet reservoir. The photon events corresponding to the
fluorescence emission from the beads were collected off the chip
in 10 μs bins for further analysis and, therefore, large amounts of
data points are acquired rapidly. The two-second long trace
displayed in Fig. 2a contains 200,000 points, and a 5 min acqui-
sition time produces over 30 million points. Each spike corre-
sponds to a single nanobead. The signal height and width vary
due to different particle positions in the fluidic channel21 and
fluctuations in flow speed, respectively.

The most straightforward way to detect the particles is to
define a threshold of photon counts above the background and to
count each crossing of this threshold as a particle9. While this
works reasonably well, CWT analysis offers significant advantages
in terms of accuracy, robustness, and information content.

The 2D CWT transform of the fluorescence trace according to
Eq. (1) was computed using a Ricker wavelet (also known as
Mexican hat wavelet) and is displayed as a color map in Fig. 2b.
Fluorescence signals in the real-time trace are now represented as
bright streaks, and the Δt locations with the largest CWT
coefficient correspond to the actual events and are highlighted
with white boxes. The challenge lies in carrying out this
assignment correctly and efficiently. To illustrate how this can
be accomplished with a new, cluster-based algorithm, we take a
look at a zoomed-in segment where a few events are displayed
both in real-time (Fig. 2c) and in the C(t, Δt) plane (Fig. 2d).
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Fig. 1 Optofluidic single-particle detection platform. a Schematic of the
experimental setup with a photo of comparison of fabricated ARROW chip
with a nickel coin. The chip layout offers two options: single-peak or multi-
peak fluorescence signals by coupling optical fiber into single-mode or
multi-mode interference (MMI) waveguides, respectively. b Microscope
image of detection region excited at 556 nm in the single-mode waveguide
and 633 nm in the MMI waveguide which generates seven distinct spots in
the analyte channel (analyte channel contains quantum dot-DI water
solution for visualization of the excitation patterns as indicated by the red
and green overlay colors). An example of target particles flowing across the
MMI pattern and creating an intensity-modulated temporal signal in the
collection waveguide is shown. c Examples of generated fluorescence
signals: Single-peak signal is taken from fluorescent nanobeads and the
multi-peak signal is generated by a single fluorescently tagged nucleic acid
from a Klebsiella pneumoniae carbapenemase (KPC) bacterium. Areas
under curves are shaded with the same color used in the overlay for
visualization purposes.
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First, local maxima (black dots in Fig. 2d) in the CWT map are
identified at each scale (Δt value) with a conventional peak-
finding (with a user-defined threshold) process. Previously
developed CWT algorithms now select the correct points using
a ridge-line approach starting from the maxima at the largest Δt
value22,28. In the most direct approach22, ridges of connected
points are developed sequentially by identifying maxima in the
adjacent Δt row that are within a predefined distance in the CWT
map. Once a ridge is formed, the time location of the filtered
ridges with an SNR value above a threshold is identified as the
event location. Since the algorithm is serial in nature (top to
bottom), it is computationally intensive and slow. It is also not
accurate to locate event locations. A refined version of this
method proceeds in the same way28, but uses additional ridges
that are calculated from zero crossings and local minima in the
CWT map for better identification and extraction of additional
information (peak width). Due to the additional information
used, this method is more accurate than the direct ridge analysis,
but it is also even more memory intensive.

In order to enable real-time CWT analysis, we introduce a
highly tunable, faster, and more memory-efficient algorithm
based on cluster analysis. The flowchart for this process called
Parallel Cluster Wavelet Analysis (PCWA) is depicted in Fig. 2f.
In contrast to previous algorithms, we first define macro clusters
(ΜC) of CWT maxima that are separated by gaps along the t-axis
by more than a predefined value. We then examine all clusters in

parallel by calculating the distance values around the local
maximum with the largest C(t, Δt) value which is the most likely
candidate for an event. This, too, is done in a parallel, vectorized
fashion, making the algorithm both efficient and fast. The overlap
OL with other maxima within the cluster is determined from

OL i; 0ð Þ ¼ sgn ri þ r0
� �2 � d2 i; 0ð Þ
� �

d2 i; 0ð Þ ¼ ti � t0
� �2 þ 4ti �4t0

� �2
ri ¼

whNi4ti
ffiffiffiffi
C0
i

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2N2

i sin
2θiþh2cos2θi

p ;C0
i ¼ Ci�min Cð Þ

max Cð Þ�min Cð Þ ; r0 ¼
whN04t0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2N2
i sin

2θiþh2cos2θi
p

;

ð2Þ
where r is the radius of the ellipses in Fig. 2d, d is the Euclidean
distance, w and h are adjustable spreading parameters that define
the refinement sensitivity in time and scale, respectively. N
represents the number of peaks in a multi-peak signal (here equal
to one). The addition of normalized CWT coefficient weights into
(ri+ r0)2 helps detect weak events near strong ones.

We then look for overlapping ellipses. If the number of points
connected to the original largest maximum (centroid) is higher
than a user-defined number, it is taken as a micro cluster (μC) in
which the actual event is immediately identified. The uncon-
nected points form a new, smaller macro cluster where a new
centroid is picked. The analysis repeats until no more clusters can
be formed with a minimal, user-defined number of candidate
points.
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Fig. 2 Parallel cluster wavelet analysis (PCWA) for single-peak analysis. a Cropped window of fluorescence signal taken from 200 nm fluorescent beads
excited by single-mode (SM) waveguide (inset: Ricker wavelet used with PCWA algorithm). b CWT coefficients in time-Δt space (where a scaled and
dilated version of the mother wavelet is convolved with raw data) with square markers indicating selected local maxima points found by the PCWA event
detector algorithm. c Zoomed-in window of three events with circle markers showing the adjusted location of peaks. d CWT map of (c) including local
maxima points (black dots). The clustering algorithm utilizes Euclidean distance and adjusted ellipses around each local maximum to search for links. The
overlap of an ellipse with the centroid point defines a link. e Macro and micro clusters (ΜC and μC): local maxima are first grouped into ΜC highlighted by
blue circles by simplified 1D overlap calculation. The clustering algorithm finds μC for each ΜC in parallel. A μC is a star graph containing a minimum of
links with the largest CWT coefficient maximum as the centroid (red-filled circles). f Flowchart of the clustering algorithm. g Run time comparison of
clustering algorithm with established CWT peak finders, showing orders of magnitude faster speed and run times below the real-time limit (gray
dashed line).
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Figure 2b showed the detection of fluorescent nanobeads using
this PCWA algorithm and suggests high accuracy. Indeed, when
compared to a conventional amplitude-based peak finder, 5.7%
more events were detected. In addition, the particles’ velocity is
also extracted from the scale values which correspond to the
temporal widths of the fluorescence peaks. This is discussed in
more detail in the next section, but the analysis for these single-
peak signals is also provided in the supplementary information
(Supplementary Fig. S1).

Figure 2g compares the run time of the PCWA algorithm with
the ridge-based CWT methods as a function of both the number
of data points in the signal trace and the actual run time of the
experiment. The comparison was done by running implementa-
tions of the algorithms in Python with 100 logarithmic scale
values on a single desktop computer (Intel® Core™ i9-900 CPU
with 32 GB of RAM). We find that our method has O(N)
complexity, where N is the number of data points. Consequently,
it is orders of magnitude faster than other techniques and, most
notably, our clustered CWT analysis is always faster than the
experiment itself (dotted line), e.g., 40 s of analysis for a 42 s trace,
while other methods always take orders of magnitude longer than
the experiment and quickly become impractical. Consequently,
PCWA enables real-time analysis of time-dependent particle
sensors. This is the first principal result of this work.

We note again that the PCWA method is widely applicable to
other sensor types. The example of single DNA detection with
nanopore electrical sensor chips is presented in the supplementary
information and confirms the performance improvements
described in Fig. 2. Another important question concerns the
accuracy of the PCWA method which can be assessed with the
help of a receiver operating characteristic (ROC) curve that
considers both true and false-positive events. In order to carry out
a ROC curve analysis, a dataset with known positive events is
required. We used a set of 75 mass spectrometry traces from a
simulated protein spectra dataset29 and found that our algorithms
slightly outperforms other CWT techniques. Details are provided
in the supplementary information (see Supplementary Fig. S3).
This shows that our cluster CWT algorithm is fast, efficient,
accurate, and can be applied to a diverse range of sensor types.

Clustered CWT analysis of multi-peak signals. Multi-peak sig-
nals offer significant advantages for practical sensing applications.
By introducing redundancy and patterning to the signal, more
reliable identification of events from a noisy background that
resembles single peaks becomes possible. Multi-peak signals also
enable multiplex detection if different targets produce different
signal patterns which is particularly desirable for biomedical
applications. In practice, this often involves the use of spatial
excitation patterns using masks30 or waveguides20,31 that result in
a corresponding time modulation of the signal created by a
particle that passes by such a pattern. These can then be analyzed
using Fourier transform analysis, shift-multiply algorithms (see
below)20, or matched filters. For example, signal-to-noise ratio
(SNR) enhancement via multi-spot excitation implemented with
Y-splitters and multi-mode interference (MMI) waveguides has
shown up to 50,000x SNR improvement20,31.

Improved signal analysis with spatially patterned excitation has
been demonstrated in various implementations32–34. To demon-
strate the benefits of the PCWA approach in this context, we
analyze signals from multi-spot excitation of individual fluores-
cently tagged plasmid molecules corresponding to the Klebsiella
pneumonia carbapenemase (KPC) bacterial species. The multi-
spot excitation pattern is generated by a multi-mode-interference
(MMI) waveguide18,35. In this experiment, a HeNe laser source
was fiber-coupled into the MMI waveguide (see Fig. 1a) while the
rest of the setup was identical to the one used in the single-peak
detection experiment. Figure 3a shows an example of a multi-
peak signal from a single DNA molecule that consists of seven
peaks in response to the MMI waveguide excitation pattern
generated at 633 nm. Also shown is the Fourier transform of this
signal which shows a strong peak at 4.5 kHz that arises from the
uniform spacing Δt of the seven signal peaks. In addition, the
second harmonic at 9 kHz and strong content at very low
frequencies are visible. In the past, such multi-peak signals have
been detected and classified (by peak number) for multiplex
detection using a shift-multiply algorithm20,31,34 with good
results. This benchmark algorithm is briefly reviewed in Fig. 3b.
It is based on recursively (N-1 times) shifting a selected multi-
peak event by Δt (the uniform spacing between N adjacent peaks)
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and multiplying all shifted signals with each other. The resulting
product is large for a correct signal and very small for incorrect
peak numbers or temporal spacing, resulting in significant SNR
improvement compared to purely threshold-based counting20,31.

We now demonstrate dramatic improvements using PCWA
with custom-designed wavelets. First, we choose another mother
wavelet that is commonly used in CWT data analysis. The Morlet
wavelet (Fig. 3c, top left) contains frequency information
embedded by enveloping a sinusoidal (real Morlet) or exponential
(complex Morlet) function with a Gabor window (Gaussian
function). The frequency spectrum (FFT) of the Morlet wavelet
(Fig. 3c, top right) correctly reproduces the main feature of the
fluorescence signal (the first harmonic) but does not show the
finer features of its spectral content at higher and lower
frequencies.

Figure 3c (bottom) shows the CWT map when the Morlet
wavelet is applied to the signal of Fig. 3a. Multiple red spots with
large CWT coefficients are seen at times where the Morlet wavelet
peaks line up with the peaks in the fluorescence signal. This
indicates that particles can indeed be detected, but with some
temporal uncertainty for the event as highlighted by the white
boxes on the time and scale axes.

An even better strategy is to construct a mother wavelet that is
custom-designed for the signal pattern to be detected, here the
7-peak MMI signal of Fig. 3a. To this end, we define a Multi-Spot
Gaussian (MSG) wavelet as seen in Fig. 3d (top, left). It is
constructed by the sum of N Gaussians separated by Δt and
surrounded by two negative skewed peaks and mathematically
described by

ψN t;4tð Þ ¼ ∑
N�1

n¼0
exp

� t � n� N�1
2

� �4t
	 
2

24t2σ2þ

 !

� ∑
k¼± 1

2a
4tσ�

ϕ
t þ k σ�m0 � N

2

� �4t

Δtσ�

� �
Φ kα

t þ k σ�m0 � N
2

� �4t

4tσ�

� �
;

ð3Þ

here, the σ+ parameter for positive peaks is fitted to those
measured from multi-peak signals normalized to Δt. a and σ− are
calculated according to positive peaks to achieve optimal
compactness and sensitivity. For higher sensitivity of the wavelet
to N, the maxima (m0) of the skewed Gaussian functions at both
ends are placed at Δt from the first and last positive peaks. The
negative side peaks of the wavelet ensure that the zero mean
condition applies36, and the wavelet is scaled for a square norm of
one. The parameters of the skewed Gaussian functions are
explained in the supplementary material.

The Fourier transform of the MSG wavelet is shown in Fig. 3d
(top, right) and shows excellent qualitative agreement with the
FFT of the multi-peak signal from the KPC target. Figure 3d
(bottom) shows the CWT map obtained with the custom MSG
mother wavelet in Eq. (3). It shows a single dominant bright spot
(black box) that demonstrates clear particle detection and
excellent localization on both the time and Δt axes (white boxes),
corresponding to precise determination of the particle detection
event and its velocity.

We then applied the PCWA method with the MSG mother
wavelet to a full, 20-min-long experimental trace of fluorescently
tagged DNA molecules detection. Figure 4a shows a snapshot of
this trace with clean identification of seven molecules, each
producing a seven-peak signal. The CWT map (Fig. 4b) shows
clean identification of these signals and also illustrates the
variation in Δt due to the different velocities of the molecules.
Note that the gaps in the time axis of Fig. 4a, b were added solely
to enable visualization of multiple plasmid detection events,
which are very sparse at low concentrations.

We note that conventional ridge-based CWT methods cannot
be applied to multi-peak signals. This is illustrated in Fig. 4c
where the local maxima (equivalent to Fig. 2c) around a single
seven-peak event are shown. Clearly, this single event results in
multiple maxima at each Δt level, creating multiple ridges.
Consequently, ridge-based identification would detect multiple
events and fails. In contrast, our PCWA algorithm recognizes all
of these points in a single step as connected to the largest
maximum in the group. As a result, the event forms a single
micro cluster that is quickly identified correctly. Like in the case
of single-peak signals, the analysis time remains shorter than the
run time of the experiment. The unique ability of the PCWA
algorithm to both detect and identify multi-peak signals using
custom wavelets represents the second principal result of this
manuscript.

In order to compare the performance of the three analysis
approaches (Shift-Multiply, PCWA (Morlet), and PCWA (MSG),
we evaluated both the measured single-molecule detection rates
and their accuracy. Here, accuracy was defined by the algorithms’
ability to identify the correct peak number (here: seven) of a
detected event. This is meaningful because multiplexing with
MMI waveguides can be implemented by simultaneously
generating signals with different peak numbers using the spectral
and/or spatial dependence of the MMI pattern18,35. Therefore, the
three methods were applied to each event with three different
peak numbers (6, 7, 8). For example, C(u,s) was determined with
three different MSG wavelets and the coefficient with the highest
value was chosen for each event. For each method, a series of
threshold values were scanned to find the optimal compromise
between accuracy and detection rate. The results of this
comparison are presented in Table 1 and clearly show that
PCWA analysis with the custom MSG mother wavelet offers by
far the best performance with over 4x more identified events and
6x fewer errors than the shift-multiply algorithm.

In order to verify the superiority of PCWA over Shift-Multiply
and MSG over Morlet wavelet, we did additional analysis done a
simulated multi-peak signal (Supplementary Fig. S4) with a
known ground truth events list. The results (see Supplementary
Fig. S5 and Table S1) show a close match with the real-world
results shown in Table 1.

Finally, we demonstrate the ability of the PCWA method to
instantly extract additional valuable information from the sensor
data. Because the optical excitation patterns are generated by
lithographically defined waveguides according to the MMI
principle, they have a well-defined physical spacing. Therefore,
the Δt value of an event identified in the CWT map, which
represents the temporal spacing between peaks in the fluores-
cence signal, can directly be converted into a flow velocity for the
particle. This is visualized in Fig. 4b by the velocity axis on
the right.

In Fig. 4d, the intensity and Δt (velocity) of all 300 detected
DNA molecules are visualized in a 2D histogram to provide joint
information analysis. The events are distributed in a pattern that
is determined by the waveguide mode patterns and the
(parabolic) velocity profile in the microchannel. The predicted
distribution of the majority of events for the chip under
consideration is shown as a white line and matches the data
well. A few noise peaks incorrectly identified by the CWT
algorithm as fluorescent particles lie outside the white dashed
ellipse and can now be rejected based on the additional velocity
information. Figure 4e shows the dynamics of speed and intensity
of particles inside the fluidic channel over the course of the
experiment. Good agreement of velocity fluctuations and
detection rate is observed. Real-time analysis can be easily
implemented by running the event detection algorithm on a
sliding window of the buffered signal during data acquisition.
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Such real-time statistics can help monitor proper experimental
operation, e.g., maintaining constant vacuum pressure.

Discussion
We have introduced a Parallel Cluster Wavelet Analysis (PCWA)
algorithm that operates in a highly parallel fashion, enabling fast,
accurate, memory-efficient detection, and identification of events
in real-time. The algorithm’s characteristics are ideal for single-
particle sensors that produce large amounts of data, possibly over
long periods of time. The PCWA principle was validated on a
diverse range of data sets, in particular, a chip-based, optical
single biomolecule detection assay that is compatible with diag-
nostic applications and settings with low signal-to-noise condi-
tions such as point-of-care use. Fluorescence signals from single
particles were rapidly and fully analyzed via a single transform
operation which also enabled the determination of the velocity
and intensity of the individual molecules. The use of multi-peak
signals with a customized mother wavelet outperforms other

established detection methods. This combination is especially
attractive for multiplex detection where different classes of targets
generate signals with a different number of peaks. In the future,
the technique can be further expanded to dynamically (on-the-
fly) adapt the shape of the multi-peak mother wavelets to the
patterns generated by a particular sensor to further improve the
performance. This flexibility would be ideal for point-of-care
devices because it further alleviates the demands on the tolerances
and cost associated with the device fabrication process to produce
identical excitation patterns. Moreover, the algorithm can also be
applied to automated dataset collection and labeling for super-
vised machine-learning tasks applications.

Methods
Optofluidic chip fabrication. Optofluidic chips were fabricated by depositing
alternating layers of high (Ta2O5) and low (SiO2) refractive index on top of an
<100> oriented silicon substrate, forming the ARROW layer to guide the light in
solid core and a liquid core. Waveguides were then built on top of the ARROW
layer stack using low-stress PECVD and a sacrificial layer process17. The present
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Fig. 4 Multi-peak analysis. a Concatenated 10ms cuts of detected single KPC molecules in a 9 s window. Inset is the multi-spot Gaussian (MSG) wavelet
used to analyze the trace. b Corresponding time-Δt CWT scalogram with white squares showing detected multi-peak events across a range of Δt values.
c Local maxima for a single example event render conventional ridge-line methods impractical. d Scatter plot for particle intensity and speed, showing a
cluster in the predicted region (white line); dashed line: confidence region for event identification as DNA molecules. e Time-varying information of events
during the measurement for dynamic determination of the flow characteristics. Intensity and velocity plots are the average value for events within a bin
from the histogram plot. Error bars represent standard deviation.

Table 1 Performance comparison for single-molecule KPC analysis using different algorithms.

Shift-multiply PCWA (Morlet) PCWA (MSG)

Detection rate [x104 events/mL] 1.03 1.84 4.60
Accuracy [%] 66.37 37.04 94.03
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implementation uses a dual-oxide buried ARROW design with optimized lateral
confinement and performance37

Sample preparation. The KPC sample used in the multi-peak signal experiment
was prepared by mixing a 1 μM concentration of cell-permeant SYTO 62 red-
fluorescent nucleic acid stain (Thermo Fisher Scientific) with a KPC plasmid
sample prior to detection. SYTO 62 dyes fluoresce when bound to DNA, making it
possible to detect and count individual nucleic acids without amplification11.

Experimental setup. A single-molecule detection setup was built to excite
fluorescent-tagged target particles and collect and record the emission from targets.
A solid-state diode neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12

(SSD Nd:YAG) laser (Shanghai Dream Laser Technology Co.) and a HeNe laser
(Melles Griot) working at 556 and 633 nm, respectively, were coupled into a single-
mode fiber using a 60x microscope objective lens (Newport). The single-mode fiber
was then butt-coupled into the optofluidic chip. The fluorescence emission from
tagged particles was coupled into the liquid-core ARROW waveguide and then
guided off the chip via a solid-core waveguide. These photons were collected by a
60x microscope objective lens (Newport), passed through a penta-bandpass optical
filter (FF01- 440/521/607/694/809–25, Semrock) to remove excitation light, and
detected by an avalanche photodiode (APD, Excelitas). Single-photon events were
recorded with a photon-counting card (Picoquant, TimeHarp 260 Nano) into a
desktop PC for further analysis.

Data availability
The raw fluorescence data are available under restricted access for data privacy reason.
Access can be obtained by a reasonable request from the corresponding author.

Code availability
The source code of the proposed PCWA algorithm with example scripts are available at
https://github.com/vganjali/PCWA 38.
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