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Single-cell gene fusion detection by scFusion
Zijie Jin1, Wenjian Huang 2, Ning Shen 3,4, Juan Li 5, Xiaochen Wang1, Jiqiao Dong6, Peter J. Park 4 &

Ruibin Xi 1,7✉

Gene fusions can play important roles in tumor initiation and progression. While fusion

detection so far has been from bulk samples, full-length single-cell RNA sequencing (scRNA-

seq) offers the possibility of detecting gene fusions at the single-cell level. However, scRNA-

seq data have a high noise level and contain various technical artifacts that can lead to

spurious fusion discoveries. Here, we present a computational tool, scFusion, for gene fusion

detection based on scRNA-seq. We evaluate the performance of scFusion using simulated

and five real scRNA-seq datasets and find that scFusion can efficiently and sensitively detect

fusions with a low false discovery rate. In a T cell dataset, scFusion detects the invariant TCR

gene recombinations in mucosal-associated invariant T cells that many methods developed

for bulk data fail to detect; in a multiple myeloma dataset, scFusion detects the known

recurrent fusion IgH-WHSC1, which is associated with overexpression of the WHSC1 onco-

gene. Our results demonstrate that scFusion can be used to investigate cellular heterogeneity

of gene fusions and their transcriptional impact at the single-cell level.
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Gene fusions are formed by juxtaposition of parts of two
genes, resulting from structural rearrangements such as
deletions and translocations1. In cancer cells, many gene

fusions are driver mutations that play important roles in carci-
nogenesis. Well-known examples include BCR-ABL1 in chronic
myeloid leukemia2, TMPRSS2–ERG in prostate cancer3, and the
ALK fusions in lung cancer4. Some gene fusions are strongly
correlated with tumor subtypes and are often used as diagnostic
markers for malignancy. Gene fusions are also important targets
for cancer drugs. A number of such drugs have been approved by
the US Food and Drug Administration such as imatinib targeting
BCR-ABL15, crizotinib targeting ALK fusions6, and the recently
approved TRK inhibitor larotrectinib targeting NTRK fusions7.

RNA sequencing (RNA-seq) provides an accurate and
unbiased platform for gene fusion detection. Gene fusions gen-
erate chimeric reads that cover junctions of independent partner
genes as well as discordant read pairs whose mates map to the
two sides of the junction. After mapping, gene fusions can be
detected based on a combination of these split and discordant
reads to the partner genes. Gene fusions can also be detected from
DNA sequencing data, especially for fusions that are difficult to
detect from RNA-seq due to their low expression.

Single-cell RNA sequencing (scRNA-seq)8–10 technologies
have transformed our understanding of transcriptional hetero-
geneity in tissues. Numerous algorithms have been developed to
quantify expression levels, identify clusters of cells belonging to
the same cell types, and identify developmental trajectories of
single cells11. With the greater coverage along the length of each
transcript by recent protocols, another potential application of
scRNA-seq is the detection of gene fusions at the single-cell level.
Such analysis could help to identify cell subtypes or subclones in
which a fusion plays a role and quantify its impact on tran-
scriptomic output. Although many computational fusion detec-
tion tools have been developed for bulk RNA-seq data12–20,
fusion detection using scRNA-seq data is still challenging due to
the following: (1) the heavy amplification step may generate
artificial chimeric reads, leading to false-positive fusion candi-
dates; (2) the power for detecting fusions shared among multiple
single cells can be improved if all single cells are jointly analyzed;
(3) current single-cell data often contain thousands or more
single cells, making the total size of a collection of cells large, even
though the data size for each cell is substantially smaller than that
of a bulk RNA-seq sample.

In this paper, we describe a gene fusion detection algorithm
named scFusion for scRNA-seq data. scFusion employs a statis-
tical model and a deep-learning model to control for false posi-
tives. To assess its performance, we first simulated single-cell data
based on real scRNA-seq data and found that scFusion achieved
high sensitivity while maintaining a low false discovery rate
(FDR). Next, we introduced spike-in fusions experimentally to
single cells and validated that those fusions could be detected
successfully. Finally, we applied scFusion to four publicly avail-
able scRNA-seq data and showed that scFusion identified cell
subtypes closely associated with gene fusions.

Results
scFusion detects gene fusions using statistical and machine
learning models. scFusion takes as input reads mapped by
STAR21 (Fig. 1). Following a standard procedure for fusion
detection in bulk RNA-seq, unique split-mapped reads and dis-
cordant reads mapped to different genes are identified and clus-
tered to obtain a candidate gene fusion list. After filtering fusion
candidates in pseudogenes, long noncoding RNAs (lncRNAs),
genes without approved symbols22 (such as RP11-475J5.6), and in
the intronic regions, we observed well over 10,000 fusion

candidates in most datasets tested (see the following sections).
When considering only candidates found in at least two cells,
there were still thousands of fusion candidates, nearly all of which
are likely to be false positives. For example, the T cells of a
hepatocarcinoma scRNA-seq dataset23 had ~1400 fusion candi-
dates shared in at least two cells (excluding candidates involving
T cell receptor-related genes). Since these T cells are normal cells,
true fusions should be very rare in this dataset. To control for
false discoveries, scFusion applies a statistical model and a deep-
learning model to filter the potential false positives (“Methods”).
Subsequently, scFusion applies two more filters to filter potential
false positives that are likely generated by incorrect alignments of
short reads (e.g., reads from genes with homologous sequences).
If the number of supporting discordant reads for a fusion is more
than 10 times that of its supporting split-mapped reads, scFusion
filters the fusion candidate. If a gene is in more than five fusion
candidates, we filter all fusion candidates involving this gene. The
lncRNA and no-approved-symbols filters are optional and users
can choose to disable these filters.

There are two assumptions in the statistical model: (1) the
candidate fusion list only contains a very small fraction of true
fusions, and (2) the true fusion transcripts generally should have
more supporting cells/reads than those arising from various
experimental and computational artifacts. The distribution of
supporting reads that arise due to this background technical noise
introduced during sequencing and mapping can be estimated
using all candidate fusions. True fusions can be identified if their
supporting reads are much larger than those that could be
observed from the background distribution. We model the
background distribution using the zero-inflated negative binomial
(ZINB) distribution. Compared with the Poisson or negative
binomial distributions that are often used in scRNA-seq
analysis24–27, the ZINB distribution can model count data with
overdispersion and the excessive number of zeros. The data
matrix of supporting chimeric reads has a large number of zeros
(>95%) and thus the ZINB model is more suitable. In addition,
we observe that, for each fusion candidate, the number of
supporting chimeric reads in a cell depends on the expression
level of the partner genes and the local GC content (Fig. 2a, b).
We describe this dependence using a regression model. Since
gene expression is linearly correlated with the supporting read
count for the most part (Fig. 2a), the regression functions for the
gene expression are chosen to be linear. The GC-content
dependency is nonlinear (Fig. 2b), and we use splines to represent
this nonlinear relationship. After estimating the parameters of the
regression model, we perform statistical tests to determine if the
fusion candidates come from the background noise (“Methods”).

The statistical model alone is not sufficient to filter out all false
fusion candidates that may be induced during the experimental
procedure (e.g., cell lysing, library construction, and sequencing).
We observed that the sequences near the junctions of the
chimeric reads are enriched with sequences like AAAA and
AGGT (Supplementary Fig. 1a), and hypothesized that the
technical artifacts might be learned by a machine learning model.
We therefore used a bi-directional Long Short Term Memory
network (bi-LSTM)28,29 to learn and filter the artifacts (“Meth-
ods” and Supplementary Fig. 1b). We set the negative training
data as the subsequences from chimeric reads, representing the
technical artifacts. Since the number of true fusions is too small
for the positive set of the bi-LSTM training, we use as the positive
set the sequences generated by concatenating random pairs of
short reads (“Methods”). The bi-LSTM assigns each candidate an
artifact score from 0 to 1 and candidates with artifact scores
greater than 0.75 are filtered.

We first evaluated the performance of the bi-LSTM model
using six publicly available scRNA-seq datasets23,30–34 from
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different cancer types. The positive data were the chimeric reads
from these data and the negative data were generated as described
above. The median of the area under the curve (AUC) was 0.884
and the median area under the precision-recall (PR) curve
(AUPR) was 0.913 (Fig. 2c, d). Since the bi-LSTM model was not
trained using true fusions, true fusions could be filtered by this
model. To evaluate this possibility, we applied the bi-LSTM
models trained using six public scRNA-seq data to 3500 gene
fusions reported in the Pan-Cancer Analysis of Whole Genomes
(PCAWG) studies35,36. The PCAWG fusions can be viewed as
gold standard true fusion candidates. The PCAWG fusions and
the chimeric reads had artifact scores centered around 0.1
(Fig. 2e) and 0.95 (Fig. 2f), respectively. More than 90% of the
PCAWG fusions had artifact scores smaller than 0.5, and only
~5% had scores larger than 0.75. This result indicated that the bi-
LSTM model could effectively filter chimeric artifacts at the
expense of filtering a very small portion of true fusions. Further,
the bi-LSTM did learn features of chimeric artifacts. Chimeric
reads with high artifact scores can be partially explained by
features such as their junction sequences (Supplementary
Fig. 2a–e).

scFusion detects fusions with high sensitivity and precision in
simulation. We compared the performance of scFusion with that
of directly applying several popular bulk-sample methods
(Arriba19, STAR-Fusion20, FusionCatcher13, and EricScript18).
We used FusionSimulatorToolkit20 to generate simulation data
with 100 fusions from PCAWG at various expression levels
(Supplementary Data 1). Since technical chimeric reads cannot be
generated by available simulation tools, we added technical chi-
meric reads using a method mimicking the mis-priming in PCR
amplifications37 (“Methods”). We set the percentage of chimeric
reads to be 1%, similar to that in the real scRNA-seq data
(Supplementary Fig. 3a). We varied single-cell numbers (500 and
1000 cells) and data sizes of single cells (2, 3, and 4 million reads,

similar to those in real data; see Supplementary Fig. 3b). In total,
we had six different simulation setups and generated ten datasets
for each setup. Simulated fusions were randomly added to 20% of
cells on average. For bulk methods, we only considered fusions
that were reported in at least two cells with at least three sup-
porting reads to reduce their false positives.

Compared with bulk methods, scFusion showed similar levels
of recalls but higher levels of precisions and F-scores (Fig. 3,
Supplementary Fig. 4, and Supplementary Data 2–6). For
example, in the simulation with 1,000 single cells and 4 million
reads per cell, the precision and F-score of scFusion are 0.921 and
0.925, respectively, whereas the precisions of the bulk methods
are only 0.434–0.503 and the F-scores are 0.574–0.667.

To see the effect of the deep-learning model, we also evaluate
the performance of scFusion without the deep-learning model.
We find that the deep-learning model greatly helps to improve
the precision (the precision increases by 0.049–0.168) and only
has a minimal influence on the sensitivity (the sensitivity
decreases less than 0.04). The fusions missed by scFusion are
mostly fusions with low expression levels (Supplementary Fig. 5).

Computational efficiency and effects of the filters in real
scRNA-seq data. We considered five scRNA-seq datasets. These
include a newly sequenced spike-in dataset (729 cells), a T cell
dataset23 from a liver cancer study (2355 cells), a multiple mye-
loma dataset33 (597 cells), and two prostate cancer datasets31,38

(288 cells and 922 cells, respectively). Details about the data are
described below. We first compared the computational time of
different algorithms in these datasets (Fig. 4a). The computational
time of scFusion is only about a half of Arriba and ~30% or less of
STAR-Fusion, EricScript, and FusionCatcher, demonstrating the
superior computational efficiency of scFusion. Figure 4b shows
the effects of different filters in the scRNA-seq data. The statistical
model is responsible for filtering most of the potential false
positives.
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scFusion detects fusions with low false discoveries in a spike-in
dataset. To test whether scFusion can detect fusions in real
scRNA-seq data, we introduced 27 known gene fusions to
27 single cells before performing single-cell sequencing8,9

(“Methods” and Supplementary Data 7). All 27 fusions are from
the PCAWG gene fusion study35,36 and include well-known
fusions such as EML4-ALK, ROS1-GOPC, and TMPRSS2-ERG. In
total, we obtained scRNA-seq data from 729 single cells
(~30 supporting reads for each fusion in each cell). scFusion
reported all 27 spike-ins as well as 24 other fusions (Supple-
mentary Data 8). All bulk methods except EricScript also detected
all the spike-ins (Fig. 5a and Supplementary Data 9–12), but they
reported a large number of fusions (310–9044, Fig. 5b), indicating
their potentially high FDRs. We also performed bulk RNA-seq for
the spike-in samples. 80% (41) of the fusions detected by scFusion
were the spike-in fusions or had supporting chimeric reads in the
bulk data, in contrast to the much lower percentage (0.5–17.7%)
for the bulk methods (Fig. 5c), again indicating that the FDR of
scFusion is much lower than the bulk methods.

scFusion demonstrates high sensitivity in detecting marker
fusions in a T cell dataset. Another dataset we tested consists of
2355 T cells selected from ~7000 immune cells in patients with
liver cancer23. The T cells of this population are non-malignant
cells. Thus, other than the V(D)J recombinations of TCR genes,

gene fusions should be very rare in these cells. scFusion identified
eight gene fusions, much fewer than bulk methods (Fig. 6a,
Supplementary Data 13–17). Among the fusions detected by
scFusion, six involve TCR genes, and four (50%) are V(D)J
recombinations, indicating that many of these candidates are
likely true positives. In comparison, only one (1.8%) of STAR-
Fusion candidates are V(D)J recombinations and no candidates of
other bulk methods are V(D)J recombinations (Fig. 6b). The two
most frequent V(D)J recombinations identified by scFusion are
TRAJ33-TRAV1-2 and TRAJ12-TRAV1-2, with 126 and 20 sup-
porting cells, respectively. Mucosal-associated invariant T
(MAIT) cells are known to express the invariant TRAJ33-TRAV1-
2 and TRAJ12-TRAV1-2 TCR α-chain23,39. Thus, the single cells
with one of these fusions are likely MAIT cells. SLC4A10, a
marker gene of MAIT cells40, was expressed only in a cluster of
T cells and many in this cluster had the TRAJ33-TRAV1-2 or
TRAJ12-TRAV1-2 fusion (Fig. 6c, d). Differential expression
analysis between the cells with and without these recombinations
identifies 70 upregulated genes in the cells with the recombina-
tions, among which TRAJ33, TRAV1-2, and SLC4A10 are the top
three most significantly upregulated genes (Supplementary
Fig. 6a, b). Further, the SLC4A10 expression is significantly
associated with the fusion (Fisher’s exact test, P-value < 10−16;
Table 1).

These results indicate that the TRAJ33-TRAV1-2 and TRAJ12-
TRAV1-2 fusions identified by scFusion are bona fide fusions and
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the cells with either fusion are MAIT cells. MAIT cells are an
important component of the immune system. However, until
recently, the detection of MAIT cells still relied on the
combinations of cell markers and it is unclear how well these
markers define the MAIT cells in different tissues or diseases41.
scFusion provides an alternative way to sensitively define the
MAIT cells. STAR-Fusion was the only bulk method that
identified the TRAJ33-TRAV1-2 fusion (62 cells) (Fig. 6e), and
no bulk method reported any cells having the TRAJ12-TRAV1-2
fusion (Fig. 6f), indicating that scFusion is more powerful in
detecting shared fusions among single cells.

Sensitive fusion detection by scFusion provides mechanistic
insights in a multiple myeloma dataset. We applied scFusion to a
multiple myeloma (MM) dataset consisting of 597 single cells from
15 patients33. MM is a cancer of plasma cells. Approximately half of
the myelomas have immunoglobulin heavy (IgH) chain transloca-
tions and around 10% of the myelomas have translocations invol-
ving immunoglobulin lambda (IgL) light chain locus42,43. In this
dataset, scFusion identified 38 fusions while the bulk methods
identified many more (41 to 1492, Fig. 7a, Supplementary Data 18-
22). Around 94.7% (36) of scFusion candidates involve immu-
noglobulin genes (including 33 recombinations of immunoglobin
genes), much higher than that for bulk methods. (Fig. 7b). scFusion
successfully identified the recurrent IgH-WHSC1 fusion in MM with
two different breakpoints within WHSC1, positions 1902353 and

1905943 on chromosome 4 (Supplementary Data 18). The IgH-
WHSC1 fusions are in-frame fusions of WHSC1. All 52 cells with
the breakpoint at 1902353 are from the patient SMM0. Similarly, all
20 cells with the other breakpoint are from the patient RRMM2
(Fig. 7c).

The expression of WHSC1 is significantly higher in cells with
the WHSC1 fusions than in other cells (Fig. 7d). Interestingly, in
cells with the WHSC1 fusions, the sequencing coverage of
WHSC1 sharply increases downstream of the breakpoints, but the
sequencing coverage of WHSC1 in other cells is largely kept
constant, indicating that the fusions probably lead to the
overexpression of WHSC1 (Fig. 7e and Supplementary Fig. 6c).
WHSC1, also known as NSD2 and a known oncogene44, is one of
the most commonly-fused partners with IgH in multiple
myeloma45–47. Overexpression of WHSC1 drives the chromatin
change in an H3K36me2-dependent manner48. Differential
expression analysis found 115 upregulated genes and 12 down-
regulated genes in the cells with the IgH-WHSC1 fusions (q-value
< 0.05 and log2 fold-change <−0.5 or >0.5) (Supplementary
Fig. 6d and Supplementary Data 23). The upregulated genes
include genes known to be co-expressed with WHSC1 such as
MAL49 and SCARNA2250. The downregulated genes include
known oncogenes in MM such as CCND1 and FRZB. In fact,
CCND1 and FRZB tend to only express in cells without the IgH-
WHSC1 fusions (Supplementary Fig. 6e, f).

The bulk methods also detected the IgH-WHSC1 fusions, but
they reported fewer number of cells with the fusions than
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scFusion (Fig. 7f) and potentially many more false positives
(Fig. 7a, b). The large number of false positives given by the bulk
methods makes it very difficult for downstream analysis, thus
limiting their application in single-cell analysis.

scFusion detects known fusions in prostate cancer datasets.
Finally, we applied scFusion to two prostate datasets, from the
cancer cell line LNCaP with 288 cells (LNCaP data)31 and from
14 prostate cancer patients (prostate patient data)38. scFusion

detected 4 fusions in the LNCaP data whereas the bulk methods
detected 14–288 fusions (Supplementary Fig. 7a and Supple-
mentary Data 24–28). We compared the detected fusions with the
fusions of the LNCaP cell line listed in the Cancer Cell Line
Encyclopedia (CCLE) database. All of the four fusions reported
by scFusion are in the CCLE fusion database and only 2.4–42.9%
by the bulk methods are in the database, again indicating the high
precision of scFusion. It is known that the LNCaP cell line does
not have the well-known TMPRSS2-ERG fusion in prostate
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cancers51. Consistent with this fact, no method detected the
fusion.

The prostate patient dataset contains more single cells (922
epithelium cells), but the read length is only 38 bp, making fusion
detection more difficult. scFusion only reported 10 fusions
including TMPRSS2-ERG in 27 cells. The bulk methods reported
23–113 fusions including TMPRSS2-ERG in 17–26 cells (Supple-
mentary Fig. 7b, c, and Supplementary Data 29–33). The cells
reported to harbor the TMPRSS2-ERG fusions by different
algorithms are largely consistent with scFusion (Supplementary
Fig. 7d). Differential expression analysis shows that ERG is highly
expressed in cells with the TMPRSS2-ERG fusion (Supplementary
Fig. 7e), consistent with the previous research that TMPRSS2-
ERG could lead to the overexpression of ERG52. Patient 1115655
had the largest number of cells (21) with the TMPRSS2-ERG
fusion. scRNA-seq data of this patient before and after the
enzalutamide (an androgen receptor inhibitor) treatment are
available. Before the enzalutamide treatment, 16.7% (18/108) of
cells contain the fusion, a much higher fraction than in cells after
the treatment (3.7% or 3/81), consistent with the previous

observation that the TMPRSS2-ERG fusion can confer efficacy of
enzalutamide53 (Table 2). Differential expression analysis also
shows that ERG is significantly downregulated in the cells after
the treatment (Supplementary Fig. 7f).

Discussion
A major challenge in fusion detection in single cells is the large
number of false positives obtained when conventional methods
are applied. To address this challenge, we introduced a statistical
testing procedure to control the FDR. This procedure assumes
that most fusion signals originate from technical noise and that
true fusions generally have stronger signals than false positives.
To remove systematic artifacts that may occur recurrently in
multiple single cells (e.g., due to mis-priming during PCR
amplification37), we developed a deep-learning model to learn the
unknown technical artifacts and to filter the false positives gen-
erated by these artifacts. Another important difference compared
to existing bulk methods is that scFusion takes advantage of the
fact that multiple cells from a sample should contain the same
fusion. Rather than considering each sample independently as
bulk methods do, scFusion performs joint analysis of related cells,
thus substantially increasing the detection power.

Although we have attempted to maximize its detection power,
scFusion has reduced sensitivity for fusions with low expression
(as shown in the simulation), just as is the case for all RNA-based
methods. The detection power is also limited for rare fusions in
highly heterogeneous tumor samples. These inherent limitations
can be overcome only by sequencing more cells and/or sequen-
cing each cell deeper.

One important application of scFusion, as illustrated by our
detection of MAIT cells in our T cell data, is that fusions can
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Fig. 6 The T cell scRNA-seq data. a The number of detected gene fusions by the five methods. b The percentages of V(D)J recombinations in fusions
detected by the five methods. c The expressions of SLC4A10 shown in the tSNE plot of all T cells. d The cells with TRAJ33-TRAV1-2 and TRAJ12-TRAV1-2
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Source data are provided as a Source Data file.

Table 1 The contingency table between the TRAJ33-TRAV1-
2/TRAJ12-TRAV1-2 fusion and the expression of SLC4A10.

TRAJ33-TRAV1-2/TRAJ12-
TRAV12

Other

High expression 108 90
Low expression 40 2,117

The high expression indicates the cells whose SLC4A10 expression is greater than 1 and the low
expression are other cells. Fisher’s exact test (two-sided) gives a p-value smaller than 10−16.
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serve to identify a subpopulation of cells in a given sample. Cells
are typically clustered based on the expression level of a known
marker gene or based on the overall similarity of the transcrip-
tional profiles. However, choosing the appropriate thresholds to
define distinct populations is a difficult issue. The presence of
fusion transcripts would be one way of distinguishing a sub-
population, thus aiding in the cell type annotation task. Identi-
fying such subpopulations may prove invaluable in studying
drug-resistant or drug-sensitive subclones in a tumor.

In the real data analysis, we found that scFusion generally
detected much fewer fusions compared with the bulk methods.
Among the fusions detected by the bulk methods, many were very
likely to be technical artifacts (Supplementary Fig. 8). For example,
the GADD45G-HSPH1 fusion was identified by all four bulk
methods, but it contained a poly-A subsequence and its artifact score
was almost 1. When deep-learning model was turned off, the pre-
cisions of scFusion reduced (Fig. 3, Supplementary Fig. 4, 9, and 10).
We also noticed that many potential artifacts were also filtered by
the ad hoc filters (Supplementary Fig. 11).

MAIT cells in humans are known to express three TCR α-
chains, of which the most abundant is TRAJ33-TRAV1-241.
scFusion identified two of the three and found that TRAJ33-
TRAV1-2 is about 6 times more abundant than TRAJ12-
TRAV1-2. The TRAJ20-TRAV1-2 was not identified possibly
because it was rare in MAIT cells. Gene differential expression
analysis discovered 15 genes significantly differentially expres-
sed between TRAJ33-TRAV1-2 and TRAJ12-TRAV1-2 cells
(Supplementary Data 34). Interestingly, ALPK1 and TIFA are
highly expressed in the cells with TRAJ12-TRAV1-2 (Supple-
mentary Fig. 12). Recent studies54 show that ALPK1-TIFA axis
is a core innate immune pathway against pathogens such as
Helicobacter pylori, implying that MAIT cells expressing dif-
ferent TCR α-chains might have different roles in the immune
system. In the MM data, the IgH-WHSC1 fusions are the most
significant immunoglobulin-related fusions reported by scFu-
sion, leading to the overexpression of the oncogene WHSC155.
WHSC1 is highly expressed in single cells from three patients
(SMM0, RRMM1, and RRMM2). scFusion did not find WHSC1
fusions in single cells from RRMM2. It is likely that the
expression of WHSC1 was activated in RRMM2 by mechanisms
other than WHSC1 fusions or that the fusion was missed by
scFusion.

The scRNA-seq technology continues to improve, both in
terms of the number of genes captured and the evenness of
coverage across each transcript. As its data quality approaches
that of bulk RNA-seq data, it will enable a more comprehensive
profiling of fusion transcripts. We expect that scFusion and the
statistical/machine learning framework introduced therein will
find useful applications in future single-cell studies.
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Fig. 7 The MM scRNA-seq data. a The number of detected gene fusions by the five methods. b The percentage of IgH-related fusions in fusions detected
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Table 2 The contingency table between the TMPRSS2-ERG
fusion and the enzalutamide treatment.

With the fusion Without the fusion

Before treatment 18 90
After treatment 3 78

The Fisher’s exact test (two-sided) gives a p-value of 0.0047.
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Methods
Statistical Model. Suppose that there are n cells and N fusion candidates. Let yij be
the number of split-mapped reads supporting a fusion candidate i in a cell j. The
fusion candidate i can either be a true fusion or from the background noises. If the
distribution of the background noises is known, we can perform a statistical test to
test if the observed numbers of supporting reads yij ’s (j ¼ 1; ¼ ; n) fit well to the
distribution of the background noise. Candidates with significant p-values would
be more likely to be true fusions. However, we do not know the distribution of the
background noises and hence we need to first estimate this distribution. scRNA-seq
data are count data and are often modeled by Poisson, negative binomial (NB) or
zero-inflated negative binomial (ZINB) distributions24–27. The ZINB distribution is
the most generalized version of these distributions. Since the data matrix of sup-
porting chimeric reads has an excessive number of zeros (>95%), we assume that
the distribution of the background noises is a ZINB distribution25. Estimating the
distribution can be achieved by estimating the parameters in the ZINB distribution.
Since we observed that the number of supporting chimeric reads depended on
covariates such as the local GC content and expressions of partner genes (Fig. 2a,
b), we establish a regression model to link the parameters in the ZINB distribution
and the covariates. The parameters of the regression model can be estimated by the
maximum likelihood estimation. Details of the model are given below.

Denote Yij the random variable corresponding to yij: Since the candidate
fusions have very few true fusions, we can safely use all yij to estimate the
distribution of the background noises. Assume that Yij follows the ZINB
distribution25. The ZINB distribution has three parameters. One parameter is pi,
the probability that the cell j has no split-mapped read supporting the fusion

candidate i or pi ¼ P Yij ¼ 0
� �

. The other two parameters of the ZINB are the

mean μij and the overdispersion parameter λ of the negative binomial (NB)
distribution. Thus, we have Yij � ZINBðpi; μij; λÞ. Conditional on Yij > 0, Yij

follows a zero-truncated NB distribution. We assume that the ZINB distribution
depends on the expression levels of the partner genes and the GC content56. Let
e1ij < e2ij be the expressions of the two partner genes corresponding to Yij and ti be
the GC content of the exonic sequence near the junction of the candidate gene
(200 bp). Further, define �e1i <�e2i as the mean expression of the two partner genes of
the candidate fusion i across all single cells. The gene expression is largely linearly
dependent on the supporting read number (Fig. 2a) and the regression functions
against the gene expression is set as linear. The GC-content dependency is
nonlinear (Fig. 2b) and is represented by spline functions. Thus, we consider the
following regression model

logit pi
� � ¼ β10 þ f ti

� �þ β11�e1i þ β12�e2i; ð1Þ

log μij

� �
¼ β20 þ g ti

� �þ β21e1ij þ β22e2ij; ð2Þ

where f and g are unknown functions, and the β1 ¼ ðβ10; β11; β12Þ and β2 ¼
ðβ20; β21; β22Þ are unknown parameters. We represent f and g using spline
functions, f ðxÞ ¼ ∑K

k¼1βkf BkðxÞ and gðxÞ ¼ ∑K
k¼1βkgBkðxÞ, where K is the number

of spline base functions (by default K is set as 5). Denote θ ¼ ðβ1; β2; βf ; βg Þ with
βf ¼ ðβ1f ; � � � βKf Þ and βg ¼ ðβ1g ; � � � βKg Þ. We estimate the unknown parameters θ
by maximizing the following likelihood (MLE),

l β1; β2; λ
� � ¼

YN

i¼1
li θ

��� ∑
n

j¼1
1yij>0 ≥ 2

� �
; ð3Þ

li θ
��� ∑

n

j¼1
1yij>0 ≥ 2

� �
¼

p
∑n

j¼11yij¼0

i

Q
j:yij>0

ϕ yij ;μij ;λ
� �

1�ϕ 0;μij ;λ
� �

1� pni � n 1� pi
� �

pn�1
i

;
ð4Þ

where N is the number of fusion candidates supported by at least 2 cells, n is the
number of cells, ϕ is the probability density function of NB distribution with mean
μijand overdispersion λ. Note that to reduce the computational burden, we only
consider the candidates with at least two supporting cells and thus the likelihood li
for the candidate i is a conditional probability.

Statistical Test for Significant Fusions. Plugging-in the MLE estimates of the
regression parameters, we can estimate the background noise distribution for each
fusion candidate. With the distribution estimate, we can test if the observed number of
supporting chimeric reads for the fusion candidate is likely to be sampled from the
background distribution. If the background distribution is unlikely to generate an
observation that is larger than the observed supporting reads number, or in other
words, if we obtain a very small p-value, we reject the null hypothesis that the fusion
candidate is from the background noise and retain the fusion as a true fusion candidate.
Details of the testing procedure are given below.

Let θ̂ ¼ ðβ̂1; β̂2; β̂f ; β̂g Þ and λ̂ be the MLE of the parameters θ and λ, respectively.

Plugging-in θ̂ to the formula (1) and (2), we can get the parameter estimates p̂i; μ̂ijand λ̂

of the ZINB distribution and can estimate the ZINB distribution by ZINBðp̂i; μ̂ij; λ̂Þ. We
use a resampling scheme to obtain a p-value for each fusion candidate. Specifically, for

each fusion candidate i, we sample eY ðbÞ
ij from ZINBðp̂i; μ̂ij; λ̂Þ for each cell j and obtain

the sum eSðbÞi ¼ ∑n
j¼1

eY ðbÞ
ij (b ¼ 1; � � � ;B). Denote eνi and eσ2i be the sample mean and

variance of eSðbÞi , respectively. The distribution of eSðbÞi can be approximated by a normal
distribution with the mean and variance approximately eνi and eσ2i , respectively. Let
Si ¼ ∑n

j¼1Yij . The p-value for the fusion candidate i is set as pi ¼ 1�ΦððSi � eνiÞ=eσiÞ,
where Φ is the cumulative distribution of the standard normal distribution. We set
B ¼ 1000 in all analyses.

To determine a p-value cutoff to control the FDR, we split our candidate fusion set
into two subsets. The first subset is a high-quality subset that more likely contains the
true gene fusions and the second subset is the remaining candidates. Suppose that n1
and n2 as the total number of candidates in the first and the second subset, respectively.
Given a p-value cutoff c, let m1ðcÞ and m2ðcÞ be the number of candidates in the two
subsets with p-values less c, respectively. Since the second subset contains much fewer
true positives than the first subset, ðn1 þ n2Þ m2 ðcÞ

n2
can be used as an estimate of total

number of false discoveries at the p-value cutoff c and thus the FDR is roughly
fdr cð Þ ¼ m2ðcÞ

n2

n1þn2
m1 cð Þþm2 ðcÞ. We choose c such that fdr cð Þ≤ α for a given α (usually 0.05).

In general, we believe that candidates with more supporting cells are more likely to be
true. Hence, we choose the first subset as the fusion candidates with at least 1% of the
total cells having the fusion and with at least s supporting reads per cell on average,
where s is taken as 1.25 in all simulation and real data analysis.

The bi-LSTM. Each single cell usually has over 10,000 chimeric reads (Supple-
mentary Fig. 3c) and the vast majority of them are obviously not signals of gene
fusions but technical artifacts. We set the negative training data as the sub-
sequences from chimeric reads, representing the technical artifacts. An ideal
positive training data would be chimeric reads from true fusions. Unfortunately, we
do not know which chimeric reads are from true fusions. Even if we knew some,
the number of such reads would be too small to train the bi-LSTM network. To
overcome this challenge, a proxy task strategy is applied: we set the positive
training data as sequences generated by concatenating random pairs of short reads.
Since the sequences are randomly generated, they should not contain features of
technical chimeric reads and hence characteristics of technical artifacts could be
learned by comparing with these random sequences. More specifically, the negative
training data of the bi-LSTM is chosen as the subsequences (60 bp) of chimeric
reads covering the junction positions and the junction positions are required to be
at 15-45 bp of the subsequences. The positive training data is the similar 60 bp
subsequences of randomly concatenated short read pairs.

In the bi-LSTM (Supplementary Fig. 1b), the DNA sequences, with 60 nucleotides
and one fusion site, are given as the input to the embedding layer. The four types of
nucleotide (i.e., A, T, G, and C) and the fusion site are represented by five different
5-dimensional feature vectors. The output of the embedding layer is passed on to three
sequence-to-sequence bi-LSTM layers (with 32, 64, and 128 bi-LSTM units,
respectively) and further to a sequence-to-one bi-LSTM layer for sequential feature
extraction. The extracted features are fed to two fully connected layers and finally to a
softmax layer to produce the softmax probabilities of the read being classified to
technical chimeric artifacts. In the training process, the binary cross-entropy is used as
the loss function and model parameters are updated using the Adam optimizer57. The
model is pre-trained for 200 epochs with the batch size set to 500.

Using this bi-LSTM model, scFusion gives each fusion candidate a technical
artifact score. By default, fusions with scores greater than 0.75 are filtered. The
training step is computationally expensive. To expedite the training, scFusion
provides a pre-trained model that can be used as the initial value to train bi-LSTM
models for new datasets. The retraining is trained for 30 epochs with the pre-
trained model as the initial value. Note that if we directly used the pre-trained
model, the median AUC and AUPR were 0.673 and 0.749 (Supplementary Fig. 2f,
g), respectively. The convolutional neural network (CNN) is another popular
neural network model used in many biological applications58. We also built a CNN
model for comparison and found that the bi-LSTM generally performed better
than the CNN (Supplementary Material, Supplementary Fig. 13). Hence, we use the
bi-LSTM in all data analyses.

Simulation setup. The simulation data was generated using
FusionSimulatorToolkit20. This toolkit can simulate RNA-seq data with gene
fusions by learning from a real RNA-Seq dataset such as its expression, insert size,
read length and mutation rate. We provided the immune cell scRNA-seq23 data to
FusionSimulatorToolkit to train a single model and provided this model to
FusionSimulatorToolkit to generate RNA-seq data with 100 simulated fusions from
PCAWG at various gene expression levels. For technical chimeric artifacts, we
design a new method to add technical chimeric artifacts to the simulated data.
Briefly speaking, we randomly sample transcript pairs to generate technical fusions
between the sampled transcript pairs. The sampling probabilities of the transcript
pairs depend on their sequence features to mimic the random annealing and mis-
priming in PCR amplification37. After a technical fusion is introduced to a cell, we
further assign a random expression to the technical fusion and add short reads
from the fusion to the cell.

More specifically, given any two transcripts T1 and T2 (or their reverse
complements) and their potential breakpoints b1; b2, we define a mis-priming
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likelihood

A T1; b1;T2; b2
� � ¼ 1

1þ exp 180� 3ψ T1; b1;T2; b2
� �� � ; ð5Þ

where ψðT1; b1;T2; b2Þ is the “binding energy” between T1 and T2 near the
breakpoints b1, b2. Here, we define

ψ T1; b1;T2; b2
� � ¼ ∑6

i¼1ϕ S1i; S2i
� �

; ð6Þ
where S1 ¼ S11 � � � S16 (S2 ¼ S21 � � � S26) is the 6-mer subsequence of T1(T2) near
b1(b2), ϕ A;Tð Þ ¼ ϕ T;Að Þ ¼12, ϕ G;Cð Þ ¼ ϕ C;Gð Þ ¼ 21 and ϕ N1;N2

� � ¼ 0 for all
other nucleotide pairs ðN1;N2Þ. Then, using A T1; b1;T2; b2

� �
as the weighting

probability, we randomly generate a library of 2.2 million potential technical chimeric
sequences. If T1; b1;T2; b2

� �
is sampled, the corresponding chimeric sequence is

chosen as T11T22, where T11 is the subsequence of T1 upstream of b1 and T22 is the
complementary of the subsequence of T2 downstream of b2. Then, for each cell, we
randomly select chimeric sequences from this library with a new sampling weight

W T1; b1;T2; b2
� � ¼ ψ T1; b1;T2; b2

� �

1þ exp 195� 3ψ T1; b1;T2; b2
� �� � ð7Þ

and generate chimeric short reads from the selected sequences. The expressions of the
technical chimeric sequences are randomly sampled from 1 to 100. The total number of
chimeric reads for each cell is set as around 1% of the total number of reads, at the
similar level as real scRNA-seq data.

Gene fusion spike-in and single-cell sequencing. cDNA sequences of 27 fusion
genes were synthesized and constructed into independent lentiviral vectors. Every
lentiviral vector along with two auxiliary packaging plasmids was co-transfected into
independent 293T cells. After 48 hours, the supernatant was collected from the
293T cells and filtered through a 0.45 uM membrane. The 27 different recombinant
lentiviral particles containing the target fusion genes and the green fluorescent protein
(GFP) reporter gene were collected. Then, the 27 recombinant lentivirus particles were
infected into 293 T cells, respectively. 72 hours after infection, the medium was changed
and the expression of GFP in cells was checked under a fluorescence microscope to
determine if lentivirus infection was successful. After the infection, 27 cell cultures
expressing different target fusion genes were collected. The collected cells were washed
with 1x PBS and resuspended with 2mL PBS. Single-cell sorting was performed on the
BD Biosciences FACS-ARIA platform and the single GFP positive cells (27 cells from
each of the 27 cell cultures) were screened into 96-well PCR plates, respectively, for the
next step of single-cell RNA library construction. Poly(A)-transcripts of total RNA of
single cells were reverse transcribed and amplified using the SMART-seq2 protocol. The
amplified cDNA was tagmented by Nextera XT kit (Illumina) and libraries were
sequenced by NovaSeq (Illumina). The 293 T cells were purchased from the National
Infrastructure of Cell Line Resource (http://www.cellresource.cn/).

scRNA-seq data analysis. For scFusion, short reads are first aligned with STAR(v
2.7.4a) to the human reference genome (hg19). scFusion only considers short reads
mapped to uniquely mappable positions in the exonic regions of the reference
genome (uniquely mappable for 75 bp sequences). Then, the split-mapped reads
are clustered. If the breakpoints of two split-mapped reads are no larger than 20 bp
away from each other, the two split-mapped reads are clustered together. A fusion
candidate’s breakpoint is taken as the median of the breakpoint positions of its all
supporting chimeric reads.

FusionCatcher(v1.10) was run on the default parameters. Arriba(v1.0.1),
EricScript(v0.5.5b), and STAR-Fusion(v1.8.1) were all run on the default
parameters except the minimum-supporting-reads parameter. We tuned the
minimum-supporting-reads parameter for all bulk methods except FusionCatcher
(since it does not have any tuning parameter) using the simulation data. We found
that the bulk methods had the highest F-scores when the parameter was set as
three. So we set the minimum-supporting-reads parameter as 3 for EricScript,
STAR-Fusion and Arriba in all data analyses. The reference genome was chosen as
hg19. For the bulk methods, we also applied the same ad hoc filters of scFusion to
make different algorithms comparable. Specifically, we applied the pseudogene-,
lncRNA-, no-approved-symbol-gene-, intron-, too-many-partner- and too-many-
discordant- filters to the fusion candidates of bulk methods. lncRNA- and no-
approved-symbol-gene- filters are optional, and Supplementary Fig. 14 shows the
numbers of detected fusions in each dataset when these two filters are turned off.

Gene expression analysis. The expression matrix of T cell and the multiple myeloma
dataset were downloaded from the Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo/). First, we used Seurat (v 3.2.0)59,60 to read the Transcripts
Per Million (TPM) matrix. The expression was further normalized using the Nor-
malizeData function in Seurat. The highly variable genes were identified using the
function FindVariableGenes. Their expression was scaled and centered along each gene
using ScaleData. Then we performed dimension reduction using principal component
(PC) analysis. We selected the first 30 PCs for t-distributed stochastic neighbor
embedding (tSNE), and tSNE plots were generated using Seurat. To identify differen-
tially expressed genes, we used the function FindAllMarkers in Seurat with the Wil-
coxon rank-sum test. Genes expressed in at least 10% cells within the cluster and with

the log fold-change more than 0.5 and the adjusted p-value smaller than 0.05 were
considered as differentially expressed genes.

Statistics and Reproducibility. The linear correlation tests were performed by two-
sided Student’s t test. The significance of difference in the contingency tables was tested
by Fisher’s exact test (two-sided). The tests on differential expressed (DE) genes were
performed by two-sided Wilcoxon rank-sum test adjusted by Benjamini-Hochberg
procedure. A p-value or adjusted p-value lower than 0.05 was considered significant.

In this study, we spiked-in gene fusions to single cells and performed single-cell
RNA sequencing using SMART-seq2 to evaluate the fusion detection algorithm.
Simulation showed that sensitive detection of gene fusions need ~20 cells for each
fusion and we chose to spike-in 27 cells for each fusion. We chose to spiked-in 27
gene fusions for stable evaluation of the algorithms. This gave us 729 cells of
scRNA-seq data, largely similar to the cell numbers in studies using full-length
scRNA-seq techonologies23,33. No statistical method was used to predetermine
sample size. No data were excluded from the analyses. The experiments were not
randomized. The Investigators were not blinded to allocation during experiments
and outcome assessment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw data of the spike-in data generated in this study have been deposited in the Genome
Sequence Archive (GSA) of BIG Data Center, Beijing Institute of Genomics (BIG),
Chinese Academy of Sciences, with an accession code HRA001199. The scRNA-seq data
used in this study are available in Gene Expression Omnibus (GEO) under accession
code GSE81812, GSE99795, GSE110499, GSE118900, GSE127298, GSE140228. Raw
sequence data of the prostate patient data used in this study are available in dbGaP under
accession codephs001988.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001988.v1.p1). Source data are provided with this paper.

Code availability
scFusion is available at GitHub (https://github.com/XiDsLab/scFusion)61.
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