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A cattle graph genome incorporating global breed
diversity
A. Talenti 1✉, J. Powell 1, J. D. Hemmink 1,2,3,4, E. A. J. Cook 2,4, D. Wragg1,3, S. Jayaraman 1,

E. Paxton1, C. Ezeasor5, E. T. Obishakin 6,7, E. R. Agusi6,7, A. Tijjani 8,9, W. Amanyire10, D. Muhanguzi10,

K. Marshall2,4, A. Fisch 11, B. R. Ferreira 11, A. Qasim 12, U. Chaudhry1, P. Wiener1, P. Toye2,4,

L. J. Morrison1,3, T. Connelley1,3 & J. G. D. Prendergast 1,3✉

Despite only 8% of cattle being found in Europe, European breeds dominate current genetic

resources. This adversely impacts cattle research in other important global cattle breeds,

especially those from Africa for which genomic resources are particularly limited, despite

their disproportionate importance to the continent’s economies. To mitigate this issue, we

have generated assemblies of African breeds, which have been integrated with genomic data

for 294 diverse cattle into a graph genome that incorporates global cattle diversity. We

illustrate how this more representative reference assembly contains an extra 116.1 Mb (4.2%)

of sequence absent from the current Hereford sequence and consequently inaccessible to

current studies. We further demonstrate how using this graph genome increases read

mapping rates, reduces allelic biases and improves the agreement of structural variant calling

with independent optical mapping data. Consequently, we present an improved, more

representative, reference assembly that will improve global cattle research.
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Cattle are one of the most populous farmed animals
worldwide, with their global population of almost one
billion seconds only to chickens1. Due to their use as draft

animals and their ability to convert low-quality forage into
energy-dense muscle and milk, they provide a significant source
of nutrition and livelihood to over 6 billion people. Since their
domestication almost 10,000 years ago, hundreds of distinct cattle
breeds have been established, displaying a diverse range of heri-
table phenotypes, from differences in production phenotypes
such as milk yield, to environmental adaptation, disease tolerance
and altered physical characteristics such as horn shape and skin
pigmentation2,3.

This phenotypic diversity between cattle breeds is mirrored by
substantial genetic diversity, but this is poorly reflected by current
reference resources. The primary reference genome is derived
from a single European Hereford cow4 and projects such as
the 1000 bulls genomes project are heavily skewed towards
European-derived breeds (Bos taurus taurus) due to a number of
factors such as geographic distribution and sample accessibility5.
Although European breeds largely all originate from the same
domestication event that occurred in the Middle East, at least one
further domestication event occurred in South Asia giving rise to
the humped indicine breeds (Bos taurus indicus)6. These two Bos
lineages have been estimated to have last had a common ancestor
over 210,000 years ago7 meaning the current Hereford reference
genome particularly poorly represents the indicus sub-species.

As well as this primary split, it has been suggested that intro-
gression with further Auroch populations has occurred in Africa,
with the adaptation of certain African cattle breeds to local dis-
eases potentially the result of this historical introgression6. In
Africa alone there are over 150 indigenous cattle breeds, and
almost 350 million head of cattle making up 23% of the global
cattle population1. This compares to only 8% of cattle being
located in Europe. Africa’s unique history, with multiple waves of
migration of both Bos indicus and Bos taurus cattle into the
continent, along with its variety of environments, pathogens and
cultures have led to unusually high levels of diversity among the
cattle in the region. However, this diversity is not reflected in the
genomic resources currently available.

The reliance of cattle research on the European Hereford
reference genome has two main limitations. First, because it
represents one consensus haplotype of a single animal, large
sections of the cattle pan-genome are missing from this reference
sequence. This is exemplified by a recent human study that
identified almost 300 million bases of DNA among African
individuals that were missing from the human reference
genome8. This DNA sequence, equivalent to 10% of the human
pan-genome, is consequently inaccessible to studies reliant upon
the current human reference genome. The second major limita-
tion, common to all linear reference genomes, is that even where
they contain the region being studied, downstream analyses are
biased towards the alleles and haplotypes present in the reference
sequence9,10. The emerging field of graph genomes aims to
address these issues by incorporating genetic variation and
polymorphic haplotypes as alternative paths within a single graph
representation of the genome. This has the advantage that reads
which do not directly match a linear reference may still perfectly
match a route through the graph, increasing the accuracy of read
alignment. Several recent studies have highlighted how the use of
such genome graphs can increase read mapping and variant
calling accuracy, reduce mapping biases11,12, identify ChIP-seq
peaks not identified using linear genomes13,14, and better char-
acterise transcription factor motifs15. However, there are cur-
rently few high-quality graph genomes available. In livestock, the
use of graph genomes has so far been restricted to studies simply
incorporating variants from short-read sequencing data into the

Hereford reference16,17 or to only large (>100 bp) differences
between non-Hereford assemblies with the ARS-UCD1.2 refer-
ence genome18. Although not able to capture wider cattle diver-
sity, these studies illustrated that the variant calls using the graph
genome were more consistent between sire-son pairs than those
obtained using the linear Hereford reference, with the current
standard variant calling algorithms GATK HaplotypeCaller19 and
FreeBayes20. Graph genomes consequently have the potential to
improve the detection of genetic variants, including those
potentially driving important phenotypic differences between
populations and breeds. However, the construction of high-
quality graph genomes is dependent upon the availability of
representative reference sequences, a resource that has been lar-
gely lacking for non-European cattle.

In this study, we address the current lack of reference genomes
for African cattle breeds by generating assemblies for the N’Dama
and Ankole breeds. These breeds display tolerance to two of
Africa’s most important livestock diseases; African Animal Try-
panosomiasis (AAT), a disease that costs African livestock
farmers billions of dollars a year21, and East Coast fever (caused
by Theileria parva), which causes an annual economic burden of
~$600 million22. We combine these genomes with three public
reference assemblies representing Hereford, Angus and Brahman
cattle, along with genetic variation data for 294 animals repre-
sentative of global cattle breeds23, to provide a high-quality cattle
graph genome spanning global breed diversity. We go on to show
how this novel, more representative, cattle graph genome can
substantially improve omics studies across global cattle breeds
relative to the standard primary Hereford reference.

Results
Generating African genome assemblies. Global cattle breeds
display high levels of genetic diversity (Fig. 1). Whereas European
breeds represent only a small fraction of this diversity, African
breeds display a broad spectrum of indicine to taurine variation.
As the currently published Hereford4, Brahman24 and Angus24

genomes poorly represent global diversity, and in particular that
found in Africa, we generated two new assemblies for the West
African Taurine N’Dama and East African Sanga Ankole (an
ancient stabilized cross between indicine and taurine breeds). We
sequenced the genomes of N’Dama and Ankole bulls at an
approximate coverage of 40X Pac Bio long-read data for the
assembly process and 70X of Illumina paired end reads for
the genome polishing. The N’Dama contigs were scaffolded using
the previously published cattle genomes, whereas the Ankole was
scaffold using 100X of novel monocyte-derived bionano data. The
genomes consisted of 1210 and 7581 sequences with scaffold
N50s of 104.8 Mb and 84.5 Mb for the N’Dama and Ankole
genomes, respectively. The final contig N50s were 10.7 Mb and
18.6 Mb for the N’Dama and the Ankole respectively, with total
genome lengths of 2,766,829,411 and 2,921,040,163 bp (Fig. 2).
For further details on the assembly process, see the methods
section, Supplementary data 1 and 2, and Supplementary Docu-
ments 1 and 2.

BUSCO (v3.0.2)25 reported 92.6% and 93.1% complete
mammalian universal single-copy orthologs in the N’Dama and
Ankole assemblies, comparable to the 92.6–93.7% observed across
the three previous cattle genomes24. Likewise, the duplication
levels of 1.4 and 2.1% are comparable to the range of 1.0–1.3%
observed across the Hereford, Angus and Brahman genomes.
Similarly, the QUAST26 software (v5.0.2) calculated that the two
assemblies cover 93.9% (N’Dama) and 94.0% (Ankole) of the
ARS-UCD1.2 Hereford genome, again consistent with the 94.2%
and 96.2% of the Angus and Brahman assemblies. Quality values
(QV) were calculated using merqury (v1.1)27 in combination with
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meryl (v1.2; https://github.com/marbl/meryl), and were respec-
tively 34.3 (37.9 autosomal) and 30.6 (34.2 autosomal) for the
N’Dama and Ankole, with a base accuracy over 99.9%. Finally,
RepeatMasker shows that these two genomes share similar
contents of the different classes of repetitive elements (Supple-
mentary Fig. 1). These two African cattle assemblies are
consequently of good quality (Fig. 2) and represent novel spaces
in global cattle diversity. Full details on the assembly processes
and their statistics are reported in Supplementary Note 1 and 2.

Detection of non-Hereford sequence. We first defined the non-
reference sequence present in the non-ARS-UCD1.2 (Hereford)
genomes. We aligned the five genomes using the reference-free
aligner CACTUS28, which generates multiple whole-genome

alignments (mWGA) in the form of a CACTUS graph. We
then converted the graph to PackedGraph format using hal2vg29

(v2.1), and used a series of custom scripts to extract all the nodes
that were not present in the Hereford genome. After excluding
nodes encompassing an N-mer, an extra 257.2 Mb of non-
Hereford reference sequence across over 29 million nodes was
identified (76.7 Mb was from over 23 million nodes in primary
autosomal scaffolds; the remaining sequence was on sex chro-
mosome scaffolds or unplaced contigs; Table 1). This value is
inclusive of a large number of small nodes, including SNPs, small
indels and repetitive elements. Therefore, we excluded all nodes
in potentially misassembled regions as identified by FRC_Align30,
combined neighbouring regions (≤5 bp) and filtered out
sequences of short length (<60 bp) and those close to a telomere
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Fig. 1 Principal component analysis of the 294 cattle. The positions of the populations of origin of the five assemblies considered in this study are shown.
The source data are provided with the paper.

Fig. 2 Snail plots of the N’Dama (NDA1) and Ankole (ANK1) genome assemblies. Key metrics are shown for the (A) N’Dama and (B) Ankole genomes
such as the longest scaffold (red vertical line), N50 (orange track), N90 (light orange track), GC content (external blue track) and BUSCO scores (outer
circular pie chart in green). The region of elevated N content in the N’Dama assembly corresponds to a 5Mb gap in one of the contigs matching a region of
generalised low identity in all of the five assemblies (Supplementary Fig. 4). Even though this region contained an unfilled gap we observe that the regions
flanking the gap align to directly contiguous portions of the genome in other assemblies, and therefore that the gap in this region is potentially smaller than
represented here.
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or gap, leaving a total of 116,098,017 bp in 62,337 sequences. We
further filtered down to sequences that were not significantly
more repetitive compared to the average level observed across
the autosomes of the different genomes (Bonferroni-corrected
P-value > 0.05 using a genome-wide mean repetitiveness of
53.99%, see methods for calculation). We finally removed any
redundant sequences. This left a total of 16,665 sequences, for a
total of 20.5 Mb of high-quality, non-repetitive sequence not
present in the Hereford assembly (NOVEL set). The sequences
presented a motif content analogous to the genomes of origin, as
highlighted by HOMER when using the 5 reference pooled gen-
omes as a background (Supplementary data 3).

The amount of unique and shared sequences within and across
breeds is shown in Fig. 3A. The majority of the additional
sequence was representative of the indicine ancestry, shared
between the Brahman and Ankole, closely followed by the non-
Hereford sequence shared across all other genomes, and then
from the non-European shared sequence (common across
N’Dama, Ankole and Brahman). Of the five breeds, the Ankole
genome contained the most non-Hereford sequence (12.4, 7.1 Mb
of which resided on primary autosomal scaffolds; Table 1),
followed closely by the Brahman genome (12.0, 7.4 Mb on
primary autosomal scaffolds; Table 1). A key advantage of
multiple genomes is improved representation of divergent loci
and Fig. 3B illustrates the divergence between the sequences at the
important major histocompatibility complex (MHC). Alignments
generated through minimap2 over the whole of chromosome
23 show an identity ranging between 98.77 and 99.31% (for
Brahman and Angus, respectively), whereas the 4Mb interval
ranging from 25 to 29Mb shows an average identity ranging from
96.17 to 98.21%, with local values as low as 43% for some multi-
KB fragments (Supplementary Fig. 2).

Gene content in the novel sequences. We assessed the NOVEL
set of sequences for the presence of genes and gene structures
using three complementary approaches (see methods). Blastx
alignment identified a total of 191 genes in 272 regions passing
the filtering (see “Methods”). Augustus predicted 923 and 1008
genes using the non-reference sequences and the non-reference
sequences expanded with 100 bp flanking regions where possible.
After filtering out regions that matched, we predicted 182 and 169
using Augustus with and without the 100 bp flanks. Complete
genes were then extracted, aligned using BLASTP and genes
passing mapping filters were identified for both sets. This iden-
tified a total of 132 genes in 158 sequences and 140 genes in
164 sequences in the non-reference contigs and the non-reference

contigs with flanking regions, respectively (Supplementary
data 4).

We then combined the resulting 132, 140 and 191 genes from
the three methods, and identified a total of 76 genes that were
found to be consistent across them. Consistent with their recent
origin, most of these genes represented multi-gene families
including several predicted immune genes (e.g. Ig lambda chain
V-II region MGC, interferons alpha and T-cell receptor beta
chain V region LB2), melanoma-associated antigens (MAGEB1,
MAGEB3 and MAGEB4) as well as a number of olfactory
receptors (Supplementary data 4).

Constructing the graph. We next assessed the potential of using
these new assemblies as part of a graph genome. To enable the
comparison of graph-based variant calling performance, four
versions of vg-compatible genomes were generated (a schematic
representation of these can be seen in Fig. 4A). The first con-
tained the Hereford genome only (which we refer to as VG1). The
second was VG1 augmented with 11,215,339 million short var-
iants called across 294, largely unrelated, animals (Fig. 1) from a
globally distributed selection of cattle breeds23 (VG1p). The third
contained all variants (SNP, small InDels and SVs) derived from
the five cattle assemblies (VG5), and the fourth contained all
variants from the five assemblies previously described and aug-
mented with the over 11 million variants (VG5p). We also con-
structed a version of VG1p prioritizing 754,144 variants for the
three breeds considered in the downstream analyses (Angus,
N’Dama and Sahiwal) using FORGe31 (see “Methods” for the
details of the prioritization). However, due to the very modest
change in the reads mapped when compared to the VG1p graph
(see Supplementary data 5), we did not take this version forward
for downstream analyses.

The graph genome based on the CACTUS alignment only (VG5)
had an order of >147 million nodes (i.e. the number of fragments of
sequences) and a size of >173 million edges (i.e. the number of
connections between nodes), doubling the order of the linear graph
produced using just the autosomal sequence of the Hereford
genome (VG1), that had >77M nodes and edges (Supplementary
Table 1). Including the genetic variants from the 294 cattle led to
>105M nodes for VG1p and 163M nodes and 194M edges for
VG5p (10% more nodes and 12% more edges than VG5).

Read mapping to linear and graph genomes. To assess the
performance of these genome versions we aligned short-read
sequencing data from nine animals spanning three diverse breeds

Table 1 Sequence contribution from the two African genomes.

Angus Ankole Brahman N’Dama Total

Non-reference nodes (total) #nodes 6,188,973 14,994,500 14,627,206 10,338,166 29,315,173
bp 46,066,551 118,203,105 60,100,791 87,792,217 257,235,506

Non-reference nodes (autosomes) #nodes 5,823,611 11,262,561 13,362,852 8,832,454 23,599,013
bp 17,903,582 41,317,786 39,647,314 25,806,882 76,660,696

Filtered non-reference nodes (total) #nodes 285,307 780,815 705,024 494,781 1,008,401
bp 4,612,021 12,486,639 12,023,827 6,760,434 15,491,621

Filtered non-reference nodes (autosomes) #nodes 198,393 429,652 443,737 313,670 571,123
bp 3,290,022 7,093,645 7,435,063 4,595,327 9,046,464

Final set of contigs Number of contigs 2,250 5058 6387 2970 16,665
Length (total) 3,274,775 4,508,339 10,507,420 2,246,905 20,537,439
Length (min) 61 61 61 61 61
Length (max) 92,590 34,789 103,683 29,488 103,683
Length (mean) 1455.00 891.00 1645.00 757.00 1,232.37
Length (std) 5177.00 1990.00 4957.00 1885.00 3,875.06

The table shows the amount of sequences from non-ARS-UCD1.2 genomes, and how much the two novel assemblies from African breeds contribute to the numbers.
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(three European taurine Angus animals, three African taurine
N’Dama and three indicine Sahiwal) to each version. Importantly,
genotypes from these animals had not been included when con-
structing the graphs. An advantage with graph genomes is in
theory they should increase the number of reads directly
matching a route through the graph and, consistent with this, we
observed between 10 and 27% more reads perfectly mapped with
vg to the CACTUS graph representation of the cattle genome
(VG5) than to the Hereford only version (VG1) (Fig. 4B). The
greatest increase in perfect read mapping was for the indicine
Sahiwal breed, followed by the N’Dama and finally the Angus
animals, mirroring the relative divergence of each from the
Hereford breed. A modest further improvement was observed
when aligning to the full graph incorporating the short variant
data (VG5p) (an extra 0.52% of perfectly mapped reads among
the Angus to 3.25% among the Sahiwal). Although direct com-
parisons across different software tools are difficult and need to
be treated with caution, we found that vg aligned 7–10% more
reads to the graph than BWA to the primary chromosomal
scaffolds of the ARS-UCD1.2 (Supplementary data 5).

Variant calling from linear and graph genomes. We calculated
several key metrics to describe the variants called using VG,
GATK and FreeBayes, and collected them in Supplementary

Note 3, both considering the fixed set of 11M variants as
“known” variants (case A) and considering the variants used to
construct each graph as “known” (case B). These plots show how
the variants called using the three algorithms (VG, FreeBayes and
HaplotypeCaller) presented similar quality, depth, number of
variants, mapping quality and, generally, comparable metrics
when looking at depth of sequencing (DP), quality of the variants
and number of variants called (Supplementary Note 3).

A key metric when assessing the quality of read alignments to a
genome is allelic balance (AB). Ideally, reads carrying each allele
at a polymorphic site should be equally well mapped to the
reference genome (i.e. have an AB= 0.5). In practice though,
there is usually a bias towards reads matching the sequence
present in the reference genome at the location. Skewed allelic
balance can adversely affect variant calling and therefore reducing
it can improve downstream genetic analyses. The allelic balance
observed across genomes, variant sizes and types is shown in
Fig. 4C, with alternative representations which consider all the
types of graph considered shown in Supplementary Note 3.
Consistent with previous studies in humans, this figure illustrates
that the allelic balance at short variants is generally comparable
for single nucleotide polymorphisms, and the allelic balance at
small InDels (<15 bp) doesn’t show a particular improvement
compared to variants called using standard variant callers.

BA

Fig. 3 Comparison of genomic content across the genomes. A High-quality (NOVEL) sequence specific to, or shared among, each non-reference genome.
Numbers represent the kilobases of non-Hereford sequence associated with the set of genomes defined by the group(s) highlighted in green. Each genome
is indicated by a number (1=Ankole, 2=Angus, 3= Brahman and 4=N’Dama); B Multiple genome alignments of the MHC region on chromosome 23
generated with AliTV (v1.0.6)75. The plot represents the shared sequences among the different genomes; blue to green segments are representative of
higher to lower similarity (100 to 70% respectively); the enlarged region is the MHC region, which shows a large amount of variation between the
assemblies.
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However, calls from the graph shows an overall better allele
balance for larger variants (>15 bp long) than both GATK and
FreeBayes, staying closer to the desirable value of 0.5 (Supple-
mentary Note 3). Defining the variants as known if used when
constructing a particular graph allows for a less uniform
comparison, but still confirms the ability of the graph to call
larger variants with an overall better allelic balance than the
standard variant callers (Supplementary Note 3). Interestingly,
while marginally more reads were successfully mapped to the
VG1p graph than to VG1, it displayed a less consistent allelic
balance at insertions between 10 bp and 40 bp long. The best
results were achieved using the VG5p graph, though with the
largest gains observed in VG5 vs VG1 and VG1p, highlighting the
benefits of the additional assemblies in the graph (Supplementary
Note 3).

We also evaluated other metrics for the different approaches,
including DP, average quality of the call (QUAL), number of
variants called, transition/transversion rate (Ti/Tv), that are
presented in Supplementary Note 3. Overall, the metrics for the
VG graphs look similar to the classical callers, with just the Angus
sample from public databases presenting a lower Ti/Tv ratio.

Assessment of graph genome structural variant calls. One of the
most important benefits of graph genomes is the ability to directly
detect large variants using short-read sequencing data. Using the
VG5p graph genome we were able to genotype thousands of
structural variants of 500 bp or longer, i.e., longer than the length

of the reads being mapped (Supplementary Note 3). These SV
regions are inaccessible and uncalled using linear callers such as
GATK or FreeBayes, making vg a suitable tool for explicit gen-
otyping of large variants. To assess the quality of these SV calls,
and to test its utility when applied to the study of African breeds,
we compared the variants called on the VG5p graph to inde-
pendent Bionano optical mapping (OM) data for two additional
N’Dama samples. As OM is a distinct technique for identifying
the location of SVs, based on staining and imaging large DNA
fragments, it provides an independent indication of SV location.
It should be noted that the N’Dama used for whole-genome
resequencing and the OM were from completely different coun-
tries (Nigeria and Kenya, respectively) though the OM data and
N’Dama assembly was from animals from the same research
institute.

In total, vg detected 12,306 structural variants of >500 bp
across the nine samples, each of which might have one or more
alleles per region. Of these, 6598 overlapped with regions detected
by the Bionano OM data. Despite the comparison with OM data
of one breed only, this number is ~3.4 times higher than expected
from randomly selecting sections of the genome of the same size
(mean ± standard deviation of 1571.2 ± 36.9 across 10,000
permutations; Z-score= 136.1, P < 2.2 × 10−16; Supplementary
Table 2). Further supporting the validity of the indel calls, in-
frame indels called from the graph were observed to be more
common than other coding indels, consistent with selection
disproportionately removing frameshift changes (Supplementary
Fig. 3).

Fig. 4 Graph genome descriptions and their performances. A A cartoon representation of the four types of graph genomes considered (the linear VG1,
VG1 expanded with 11 M short variants (VG1p), the CACTUS VG5 graph and the CACTUS graph expanded with the 11 M short variants (VG5p)). Regions
indicated in blue are regions coming from the backbone sequence, those in grey are the short variants from Dutta et al. (2020), and in yellow the variants
derived from the CACTUS graph; B the percent enrichment of reads mapped by vg (primary axis) using the different graphs over the bwa mem linear
mapper; and C the allelic balance for the linear callers FreeBayes and GATK HaplotypeCaller compared with vg call, showing how the latter reduces the
allelic bias for large variants. For other versions of this plot looking at different sets of known and novel variants see Supplementary Note 3; and D the
intersection of structural variants longer than 500 bp called using the VG5p graph (blue), Delly V2 (green) and the Bionano optical mapping (orange),
showing how most variants called with vg are also confirmed using one of the other methods. Note an SV called by one method may overlap more than one
SV called by a different method. The source data for panels (B), (C) and (D) are provided with the paper.
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Consistent with the OM data being deriving from the same
breed, the number of graph SVs >500 bp overlapping the OM SV
calls was greatest in the taurine N’Dama (2932/7280, 40.3%;
average size 2055.4 bp), followed closely by the taurine Angus
(2797/7318, 38.2%; average size 2050.7 bp) with the lowest
overlap with the indicine Sahiwal (3368/10,046, 33.5%; average
size 1880.9 bp; Supplementary Table 3). Again, the number of
variants detected in each different breed is reflective of the
distance from the reference genome considered.

We detected 19, 49 and 299 high-quality, large structural
variants found across all Angus, N’Dama and Sahiwal samples,
respectively, but not in the other breeds (i.e. that were specific for
a breed and with QUAL > 30, 20 < DP < 90, alternate allele
count ≥ 5, >500 bp). These SV are therefore common to a given
group but not found across breeds, and the numbers likely reflect
the relative genetic divergence of each breed from the Hereford
genome used as the backbone for the graph.

To confirm the quality of these variants, we overlapped them
with the N’Dama OM data. Results for each breed are shown in
Supplementary Table 2. Despite the OM data being derived from
different individuals, there was a substantial overlap between the
N’Dama SV calls, with 42 out of 49 overlapping across both
approaches (85.7%), much more than the number of overlaps
expected by chance (mean ± standard deviation of 6.2 ± 2.3 on
10,000 repetition; Z-score= 15.3, P-value= 1.40 × 10−52; Supple-
mentary Table 2). Although the overlap between the N’Dama OM
and Angus and Sahiwal graph SV calls was lower, both showed a
significant overlap (10/19; 52.6% and 111/299; 37.1%, respec-
tively; Supplementary Table 2) The partial overlap with these
breeds may reflect that not all of these SV are actually breed
specific but rather are just more common in the breeds, or
potentially the comparatively low resolution of the OM data
results in false positive overlaps. Either way a much higher
overlap is observed with the N’Dama SV calls, consistent with
these group-restricted calls being much more enriched in this
population, and consequently the genome graphs appear effective
at identifying these larger SV.

Comparison with Delly SV calls. Next, we compared the results
from VG5p with structural variants called through a classical SV
caller, Delly (V2), using the linear Hereford genome as the refer-
ence. After excluding SVs with low depth, imprecise positioning
and translocations, we found on average 7218 variants for the
Angus (6878 to 7533), 15,978 for the N’Dama (15,061 to 17,399)
and 30,856 for the Sahiwal samples (30,466 to 31,162) as shown in
Supplementary Table 4. These SVs were combined using SURVI-
VOR (v1.0.7) merging SV regions if <100 bp apart when accounting
for the SV type. SVs were further filtered to those with at least
1 sample supporting it and with a size >500 bp to make them
broadly comparable to the OM data given the latter’s resolution
(Supplementary Table 4). This filtering excluded all the insertions,
since Delly is incapable of calling insertions with precise break
points, limiting the types of SV analysed to deletions, duplications
and inversions. The filtering left 3175 unique SVs for the Angus
(ranging from 1940 to 2167 genotyped in each samples), 5206
unique SVs for the N’Dama (ranging from 2945 to 3418 genotyped
in each samples) and 8421 unique SVs for the Sahiwal samples
(ranging from 5356 to 5396 genotyped in each samples).

In total, 11,562 precise non-translocation Delly SVs with
suitable depth and size were retained across all individuals. Of
these less (5371, 46.4%) overlapped with an SV called from the
OM data than for vg (6598, 53.6%) (Supplementary Table 4).
Therefore, from the same sequencing data, more SVs were called
using vg that were also more likely to overlap an SV called from
the independent OM data.

Figure 4D shows how the structural variants called by vg are
confirmed by at least one of the other methods, with only 274 out
of 12,306 remaining unsupported (2.2%). In contrast Delly called
4936 SV unsupported by either other method. It should be noted
though that Delly called 2219 SVs overlapping an SV in the OM
data not identified by vg. These are potentially sample-specific
SVs, that being absent from the graph will be largely uncalled by
vg. Further improvements to the graph, for example by including
further assemblies, would be expected to reduce this number.

Finally, when looking specifically at deletions, the only class in
common among the three methods, we find that Delly calls a
higher raw number of SVs compared to vg, detecting 3186
deletions with a match in the OM data, whereas vg calls 1887 SVs
with overlaps. This higher number of SVs called by Delly is
probably reflective of its ability to take advantage of split reads
and unaligned reads to identify novel SVs in the sample.
However, in proportion to the number of deletions called by
each, Delly has a lower proportion of confirmed SVs (3186/
9030= 35.3%) than VG (1887/3972= 47.5%), highlighting the
higher specificity of the graph approach.

An example of a high-quality 1530 bp sequence absent in the
Hereford genome, but present in the graph, is in an intronic
region of HS6ST3 (Heparan-sulfate 6-O-sulfotransferase; here-
ford.12: 73,579,158, Fig. 5). This SV was identified by both OM
samples (Fig. 5A), the three re-sequenced N’Dama genomes
(Fig. 5B) and was present as an alternate sequence in the graph
but not identified by Delly, even without filtering any SVs from
the different samples (Fig. 5C).

In conclusion, assembly-based graphs are a viable solution for
reliably calling SVs with explicit alleles, including insertions that
are generally of lower quality in classical SV callers. Future
additions of new breed-specific reference assemblies would be
expected to further improve the number of variants represented
in these graphs, ultimately improving the structural variant
calling and analysis.

ATAC-seq peak calling. After analysing variant calling on the
graph genome, we tried to investigate whether other omics ana-
lyses may also benefit from these novel resources. To do so, we
obtained ATAC-seq data for three animals belonging to the three
main clusters of cattle diversity: European taurine (1 Holstein-
Friesian), African taurine (1 N’Dama) and indicine (1 Nelore),
plus a nucleosome-free DNA as an input sample to remove likely
false positive peaks.

Peak calling directly from graph genomes is currently an under-
developed field, with ongoing issues in supporting graphs inclusive
of large variants; therefore, in the short-term, studies of chromatin
and the epigenome are likely to continue to use linear genomes. We
consequently took advantage of the NOVEL set of high-quality
non-reference sequences described above to create an expanded
version of the current linear genome we term here ARS-UCD1.2+.
This expanded genome contained in total an additional 16,665
contigs across the over 20Mb of sequence, with a mean length of
1.23 kb (S.D. 3.87 kb and a range of 61 to 103,683 bp long Table 1).
This increased the reference size by 0.7% to 2780Mb.

To explore the potential benefits of these new data to such
analyses we aligned the reads and called the peaks for each sample
separately to the five different linear genomes, as well as the
expanded ARS-UCD1.2+. We aimed to minimise the impact of
multi-mapping reads (see “Methods”) and after calling peaks, we
excluded all peaks shared with the input sample for more than
50% of their length.

Figure 6 shows using the ARS-UCD1.2+ genome leads to a
modest increase in the number of peaks called relative to the
standard Hereford ARS-UCD1.2 sequence (Supplementary
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Table 5). This increase is confirmed also when using only
uniquely mapped reads, with the ARS-UCD1.2+ calling con-
sistently more peaks than the standard ARS-UCD1.2 (Supple-
mentary Table 6).

Peak calling on the ARS-UCD1.2+ genome returned up to
3.7% more peaks when compared to the ARS-UCD1.2 genome at
the same significance thresholds despite ARS-UCD1.2 being only
0.7% longer. This expanded genome worked particularly well for

Fig. 5 Example of an insertion in the N’Dama relative to the Hereford reference. The insertion was detected A in both Kenyan N’Dama OM samples as
represented by an increase in the distance between labels (vertical lines) on each bionano haplotype (blue rectangles) over that expected given the labels’
in silico locations in the Hereford reference (green rectangle). B This SV was identified as homozygous in all three Nigerian N’Dama resequenced genomes
when called against the graph genome. C A Bandage76 representation of the graph genome in this region showing the large structural variant (blue loop) in
the Hereford genome (grey line).
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the Holstein, which generally showed a higher number of peaks
called compared to the ARS-UCD1.2 assembly (+3.7% peaks
called), followed by the N’Dama sample, with an extra 1.6% of
additional peaks called and finally the Nelore (+1.3% peaks
called; Fig. 6A and Supplementary Table 6). Intersecting these
novel ATAC-seq peaks with the predicted genes in the 20.5 Mb of
non-Hereford (Supplementary data 6), non-highly repetitive
sequences identified a general enrichment around their predicted
TSSs, consistent with these novel peaks marking regulatory
elements uncaptured by the Hereford genome (Fig. 6B). Over
93–96% of these peaks matched a peak in the genome of origin
(i.e. a peak called on a non-reference sequence from the Angus
genome has a matching peak on the Angus genome in the same
region), further supporting the potential content of functional
elements (Supplementary Table 6).

Consequently, the use of more representative pan-genome
resources likely has utility to downstream analyses beyond
just variant calling, including identifying the location of novel
regulatory elements missed when using current reference
resources.

Discussion
In this study we generated the first two cattle reference genomes
of African taurine and Sanga (an ancient stabilized cross between
indicine and taurine breeds32) lineages. These two new sequences
have quality metrics comparable to those of other currently
available reference genomes, and will likely be important
resources for future bovine genomic studies, in particular those
studying non-European breeds.

By aligning the five cattle assemblies, we illustrate that a sub-
stantial portion of the cattle pan-genome is likely missing from
the Hereford reference. The amount of non-reference sequence
identified by our approach broadly matches that from another
study using a different but overlapping set of genomes and graph
assembly approach33. This has important implications for cattle
research as it suggests significant amounts of the bovine genome
is inaccessible in most current analyses. Although a proportion of
this extra sequence is repetitive, unsurprisingly given its recent
origins and the simple fact that large parts of mammalian gen-
omes are made up of repeats, this does not preclude it from being
functional. For example, the importance of repetitive elements in
gene regulation is becoming increasingly clear34. Consequently,
the study of these DNA segments that are not common to all
animals may provide further insights into the drivers of pheno-
typic diversity between breeds.

One noteworthy observation was that the amount of extra
sequence in each genome matched the prior assumptions of the
relationships between the breeds: the two indicine genomes (the
Ankole and Brahman) had the highest amounts of unique, non-
repetitive sequence. Considering that the sequences identified
might contain functional elements as predicted by our analyses,
there is the case for sequencing more genomes from the most
distantly related lineages from the reference Hereford assembly,
such as the Bos indicus lineage, since they might contribute fur-
ther additional functional regions.

In this study we illustrate that the use of the graph cattle
genome does not lead to substantial improvements in the calling
of SNPs and small indels, even when large numbers of them are
integrated into the graph. This is likely reflective of the relative
maturity of short variant callers such as GATK which are already
highly accurate and which already effectively adopts a simplified,
localised graph approach by constructing and aligning to plau-
sible haplotypes at polymorphic regions. Previous studies have
shown that the prioritization of variants included in the graph
can potentially lead to further improvements in alignment

accuracy17,31. Although this approach has proven powerful for
population-specific graphs, its use for pooled populations or less
standardized breeds is less clear, and comes with the disadvantage
that different genomes are used in different analyses. A key aim of
this project was to generate a more representative, non-breed
specific, genome more relevant to researchers studying the diverse
set of often admixed breeds across low and middle-income
countries.

While variants calling of SNPs and small InDels is appro-
priately addressed by standard algorithms, graph genomics
improves both read mapping and calling of larger structural
variants thanks to the presence of non-reference sequences across
the different assemblies. Arguably, neither GATK Haplotype-
Caller nor FreeBayes is a structural variants caller, and this
function typically requires specialised tools such as Delly35. Our
analyses show how the structural variants called using a multi-
genome graph are more consistent with SVs called using inde-
pendent OM data than those from Delly, with over 53% of SV
called from a graph genome overlapping an SV region called from
OM data whereas the SV called through Delly overlap 46% of the
time. When looking specifically at overlapping deletion calls these
numbers were 48% and 35% respectively. Importantly, whereas
tools such as Delly struggle to accurately call SVs such as inser-
tions from linear references, graph genomes enable these to be
accurately genotyped where present in the graph. The greater the
diversity present in the graph, the better SV calling will become.
Unlike linear genomes whose content is largely fixed. Reassur-
ingly, SVs called among N’Dama samples using the genome
graph were more consistent with N’Dama OM data than the SV
called in other breeds. Although a perfect overlap would not be
expected given different animals were being studied, the overlap
among the N’Dama was 86% compared to 37% among the more
distantly related Sahiwal. It should be noted that Delly was able to
call a large number of potential SVs not present in the graph.
Further augmenting the graph with more genomes should though
reduce this number.

In comparison to linear reference genomes there are currently
few viable software tools for epigenetic and chromatin analyses
using graph genomes. However, using ATAC-seq data across
breeds we demonstrated it is possible to call substantially more
peaks using an expanded version of the linear reference genome
incorporating the extra sequence found in the other genomes.
When applying the same thresholds and accounting for multi-
mapping reads, 3.7% more peaks were called across Holstein-
Friesian ATAC-seq datasets compared to using the standard
linear reference. This is despite the expanded reference only being
0.7% longer, and not less than 1.3% of extra peaks being called on
each individual considered. Although the use of pan-genomes to
study chromatin is a particularly immature field, pan-genomes
have the potential to reduce noise due to the more accurate
representation of structural variants and large rearrangements.

When looking across the results of both structural variants
calling and ATAC-seq peak analyses, we can see that our gen-
omes work well, and in particular for breeds present or closely
related to ones used to generate the graph and expanded genome,
highlighting the need to increase the genetic diversity that
underpins the graph, particularly for lineages that are poorly
represented.

Despite these improvements, graph genomes still have draw-
backs. These methods are still under active development, and still
have a greater requirement of computer memory, disk space and
analytical time. Generating a whole-genome assembly is time
consuming, generating the vg graph itself still requires large
amount of memory (up to several terabytes), and still can only be
done on primary chromosomal scaffolds due to high storage
demands. Alignments are also more computationally intensive
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than with their linear counterparts, with the requirements affec-
ted by the number of variants represented. Moreover, variant
calling currently relies on a pile-up approach, which is arguably
less sophisticated than methods implemented by GATK or
FreeBayes, that likely helps explain the good performance of
traditional tools at calling SNPs and small indels36. Methods for
peak calling on graph genomes are not always compatible with
graphs generated through CACTUS or similar software, which
limits their application and was one of the stimuli for generating
the ARS-UCD1.2+ genome. Last but not least, although efforts
are being made to resolve the coordinate system for graph gen-
omes, downstream analyses are more complicated due to most
current resources being referenced to the positions on one linear
genome.

Nevertheless, it is clear graph genomes already have advantages
in certain areas such as SV calling. As the field of graph genomes
is less mature, arguably there is greater scope for further
improvement. New genomes are being released at a much higher
frequency than in previous years, and initiatives such as the
recently announced bovine pangenome project37 will open new
possibilities and allow a better understanding of cattle genetics
and phenotypic diversity.

We consequently present the first African cattle genome
assemblies integrated into a cattle graph genome representing
global breed diversity. This graph, incorporating both large SVs
and millions of SNPs from across global breeds, is demonstrated
to improve downstream analyses such as SV calling and the
detection of novel functional regions and therefore has the pro-
mise to improve our insights into the genomics of this important
livestock species.

Methods
African breed assemblies. Whole blood of the N’Dama bull N195 was collected in
PAXgene DNA tubes. The bull was located at ILRI’s Kapiti research station in
Machakos county, Kenya. The PAXgene DNA tube was stored at room tempera-
ture overnight and then the fridge at 4 °C for 1 day prior to DNA extraction. The
standard procedure was used as outlined in the PAXgene blood DNA kit hand-
book. Resulting DNA was sequenced using the Pacific Biosciences (PacBio) Sequel
platform at Edinburgh Genomics, yielding a total of 13M reads and 109 Gbp,
corresponding to a genomic coverage of ~40X. In addition to long reads, the same
animal was re-sequenced using Illumina HiSeq X Ten paired-end short-read (PE-
SR) sequencing, yielding 260Gbp with an average insert size of 250 bp, corre-
sponding to a genomic coverage of ~80X.

A whole blood sample of the Ankole bull UG833 was collected in PAXgene
DNA tubes from a farm in Uganda, and DNA was extracted using the same
protocol described for the N’Dama sample. It was then sequenced by Dovetail
genomics using the Pacific Biosciences Sequel sequencing platform which yielded a
total of 10 M reads and 107Gbp, corresponding to a genomic coverage of ~38X. the
same animal was re-sequenced using Illumina HiSeq X Ten paired-end short-reads,
yielding 260Gbp with an average insert size of 250 bp, corresponding to a genomic
coverage of 60X. Finally, OM samples were prepared starting from monocytes
using blood collected by jugular venupuncture into EDTA vacutainers. Following
erthyrocyte lysis monocytes were purified from the leukocytes using a positive
selection MACS protocol with an anti-bovine SIRPα mono-clonal antibody (ILA-
24, Roslin Institute purified stock (lot 14), concentration 1 μg/ml38). Agarose plugs
containing 5 × 105–1 × 106 isolated monocytes were prepared using the Bionano
Blood and cell culture DNA isolation kit (Bionano Genomics, San Diego, US)
according to the manufacturer’s instructions and the extracted DNA used for
analysis on the Bionano Saphyr platform. The procedure yielded 3.5 M molecules
with an N50 of 245.25 Kbp and spanning a total length of 611 Gb, corresponding to
120X haploid genomic coverage.

DNA from Uganda was received under a license from the Uganda National
Council for Science and Technology (permit number A579). All protocols
involving animals were approved prior to sampling by the relevant institutional
animal care and use committee (ILRI IACUC or Roslin Institute Animal Welfare
Ethical Review Body). All blood sampling was carried out by trained veterinarians,
according to the approved institutional protocols.

N’Dama assembly. Briefly, N’Dama long reads were assembled testing both the
CANU (v1.8.0)39 and FALCON-Unzip pipeline (v1.2.5)40, keeping the assembly
with the highest contiguity. The assembly generated with FALCON was retained
due to presenting the highest contiguity and polished twice using minimap2-
mapped (v2.16-r922)41 long reads and the racon (v1.4.3) software42, and then

further polished once using Pilon v1.2343 and the 80X of short reads. After that
step, contigs were aligned to the three high quality cattle reference genomes (ARS-
UCD1.2 [http://bovinegenome.elsiklab.missouri.edu/sites/bovinegenome.org/files/
GCF_002263795.1_ARS-UCD1.2_with_y_refseq_chrids.fa.gz], UOA_Brahman_1
[https://www.ncbi.nlm.nih.gov/assembly/GCF_003369695.1/], UOA_Angus_1
[https://www.ncbi.nlm.nih.gov/assembly/GCA_003369685.2/] representative of
Hereford4, Angus24 and Brahman24, respectively) using SibeliaZ (v1.1.0)44 and
then scaffolded into chromosomes with Ragout2 (v2.1.1)45 allowing for the break
of chimeras, and processing separately the autosomes, mitogenome, X, Y and the
remaining contigs (Supplementary Note 1). Briefly, autosomes have been assem-
bled using the complete set of polished contigs and considering the autosomes
from the Angus, Hereford and Brahman genomes as references. Then, we identified
the mitochondrial genome by aligning the unscaffolded contigs with the Hereford
mitogenome, and fixed misassemblies manually. The remaining unplaced frag-
ments have then been used to scaffold the sex chromosomes. By using the same set
of contigs we tried to (a) overcome the limited number of reference sexual chro-
mosomes available (X from Hereford and Brahman, and Y from Hereford and
Angus) and (b) address the pseudo-autosomal regions. Then, fragments unplaced
in both X and Y were collected and used to identify the N’Dama specific sequences
by comparing them to the remaining contigs from the three reference genomes (for
details on the reference-assisted scaffolding, see Supplementary Note 1). Although
an alternative strategy to scaffolding this genome would have been to use Bionano
data from its offspring we did not find using this approach substantially altered the
genome or the conclusions of this study. Unlike Ragout, the Bionano scaffolding
did not successfully generate chromosome-level scaffolds in all cases, and we
estimated that using the OM approach would lead to <30 Kb of N’Dama-specific
sequences being altered among the primary scaffolds.

Following the generation of chromosomes, we proceeded with the gap filling
through LR_GapCloser (v1.1)46, using the PacBio long reads and performing three
mapping and filling iterations with chunks of 300 bp. Finally, the assembly has
been polished five times using Illumina PE-SR and the Pilon v1.23 software. By
keeping tracks of the changes introduced by each polishing it was possible to define
at which step to freeze the genome version. Resulting assembly statistics are show
in Table 1: after the scaffolding, there was a minor reduction of the contig N50 due
to some contigs being found to be chimeric and, therefore, fragmented at the
breakpoints. However, gap filling and subsequent polishing increased the N50 of
the contigs to >10Mb, confirming the high contiguity of the assembly. Scaffold
N50 and L5 are 104,847,410 bp and 11, respectively. Several quality metrics have
been collected, such as BUSCO (v3.0.2)25 completeness scores, QUAST (v5.0.2)26

evaluations, Merqury (v1.1)27 QV and FRC_Align (v1.3.0)30 to identify the
candidate misassembled regions. Key metrics (N50, L50, longest contigs, number of
contigs, GC content, BUSCO scores) have been represented as SnailPlots using
BlobToolKit (v2.3.3)47. Details of the assembly, with all the steps performed, is
reported in Supplementary Note 1.

Ankole assembly. The Ankole long reads were assembled using both the
WTDBG2 (v2.3) ultra-fast assembler48 and CANU39. Both sets of contigs were
polished twice using minimap2-mapped long reads and the wtpoa-cns software48.
Then, to overcome the differences that can be produced by the two assemblers,
contigs from both software were joined using quickmerge49 (v0.3; parameters -hco
15.0 -c 5.0 -l 2,500,000 -ml 50,000). This generates a set of contigs with a four-fold
improvement in contiguity. The scaffolding step was performed on this set of
molecules using the OM data and the Bionano Solve assembly and hybrid scaf-
folding pipelines, which has the additional advantage of detecting and fixing
eventual chimeras introduced by the assemblers and quickmerge pipelines.

Following the generation of chromosomes we proceeded with the gap filling
through LR_GapCloser46, using the PacBio long reads and performing three
mapping and filling iterations with chunks of 300 bp. The gap filled assembly was
polished five times using Illumina PE-SR and the Pilon software (v1.23). The same
metrics collected for the N’Dama assembly have been used to freeze the genome
version. Several quality metrics have been collected, such as BUSCO25

completeness scores, QUAST26 evaluations, Merqury27 QV and FRC_Align30 to
identify the candidate misassembled regions. Key metrics (N50, L50, longest
contigs, number of contigs, GC content, BUSCO scores) have been represented as
SnailPlot using BlobToolKit47. Details of the assembly, with all the steps
performed, is reported in Supplementary Note 2.

Genome alignment and comparison. We compared the five genomes by first
generating mWGA using CACTUS28 (v2019.03.01, installed through bioconda).
CACTUS is a mWGA tool allowing reference-free comparison of multiple
mammalian-sized genomes. The software requires only the soft-masked genomes
(soft-masking largely decreases the computational time) and a phylogenetic tree
defining the relationships among the genomes analysed used to guide the alignments.

We masked repetitive elements inside the assemblies using sequentially
DustMasker (v1.0.0 from blast 2.9.0)50, WindowMasker (v1.0.0 from blast 2.9.0)51

and finally RepeatMasker (v4.0.9, with trf v 4.09)52. The reports generated by
RepeatMasker on repetitive element composition for the different sequences
have been collected using an in-house script and summarized in Supplementary
Figure 1. Then, we generated a tree inclusive of the different cattle breeds
using mash (v2.2)53 on a broader set of genomes, inclusive of water buffalo
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(UMD_CASPUR_WB_2.0)54, goat (ARS1)55, sheep (Rambouillet_1.0), horse
(EquCab3.0) and pig (SScrofa_11)56 in order to achieve a more stable tree and
extracting from that the specific branch of interest.

Following the generation of alignments with CACTUS, we used a custom
pipeline to detect nodes that were not present in the Hereford genome, ARS-
UCD1.2, considered as the reference genome. We first used a custom python script
and the libbdsg57 library to extract the nodes not present in any Hereford paths.
These nodes have then been screened for N-mers, and then misassembled regions
detected by FRC_Align30 on the two de novo assemblies here presented were
discarded. Each node passing the filtering has been labelled depending on which
path it was found. We then combined regions that were <5 bp apart using bedtools
(v2.30.0)58, and classified depending on their length (short if <10 bp, intermediate
if between 10 bp and 60 bp and large if ≥60 bp), position (telomeric if within 10 Kb
from the end of the chromosome and flanking a gap if with 1 Kb of a N-mer), type
of sequence (non-reference if >95% of the bases in the region are not present in any
Hereford node, haplotype otherwise). We then added the proportion of masked
bases in the regions generated. We then applied multiple filtering to retain only the
high quality non-reference contigs, keeping a region if (1) classified as large, (2)
consisting of more than 50% non-reference bases, (3) not telomeric, (4) not
flanking a gap and (5) not significantly enriched for repetitive elements (retained a
region if Bonferroni-corrected P-value > 8e–7) when compared to the average
number of soft-masked bases in the autosomal sequences by calculating a z-score
(54% of masked bases). Finally, we reduced the complexity of the contigs by
overlapped the sequences with minimap2, converting the alignments into blast
tabular format and detected the most likely unique sequences by a custom script.
Briefly, we considered all alignments with >99% identity as referring to the same
sequence, and only if each alignment spanned 95% of the total length of the
shortest contigs involved. For example, an alignment of 296 bp with identity of
99.5% between contig1 (1000 bp) and contig2 (300 bp) would be considered, and
only contig1 would be kept for downstream analyses.

Intersections between the different genomes have been visualised using the
SuperExactTest package59. Motif enrichment was computed using HOMER
(4.10.4)60 on the non-reference sequences using all the genomes pooled together as
background. Finally, sequences were characterized for gene content.

The proteins prediction was performed three ways: (1) using Augustus61

(v.3.3.3) on the non-reference sequences with default parameters; (2) using
Augustus (v3.3.3) on the sequences with 100 bp flanking regions included; and (3)
aligning the sequences using DIAMOND (v2.0.6)62 BLASTX to a database
consisting of proteins from UniProtDB, SwissDB and 9 ruminants (taxa id 9845)
RefSeq genomes downloaded from NCBI (GCF_000247795.1, GCF_000298355.1,
GCF_000754665.1, GCF_001704415.1, GCF_002102435.1, GCF_002263795.1,
GCF_002742125.1, GCF_003121395.1, GCF_003369695.1). Predicted proteins
have been extracted through a custom python script and were aligned using
DIAMOND62 BLASTP to the same protein database previously described. We
considered a high-confidence protein structure if the three methods consistently
predicted the same complete protein structure, inclusive of start and stop sites.

The full pipeline, including the custom scripts used to generate all outputs, is
accessible on GitHub (https://github.com/evotools/CattleGraphGenomePaper/tree/
master/detectSequences)63.

Linear expanded genome. Due to memory and computational constrains, we
could not use the full mWGA to generate the set of vg indexes required to align and
process short-read sequencing to a graph. Instead, we used autosomal
chromosome-by-chromosome alignments of the five assemblies to generate a graph
genome that can be successfully indexed with the vg12 software allowing us to align
reads and perform variant calling.

We generated a linear expanded genome with the purpose of providing an easy to
use, expanded version of the cattle reference genome that is also easy to implement in
current best practice pipelines. We extracted all nodes not present in the linear
Hereford genome, but that were found in the other 4 assemblies considered using
libbdsg (v0.3)57. Nodes were then labelled based on the genome in which they were
found (i.e. a node can be from 1 to 4 different assemblies). The nodes were then
trimmed for N-mers, and regions overlapping a candidate misassembled region in the
N’Dama or Ankole genome were excluded. We then combined the regions if they
were <5 bp apart using bedtools, and then labelled the regions depending on their
proximity to a gap (<1000 bp from a gap) or to a telomere (10 Kb from the end of a
chromosome or scaffold >5Mb long), classified them based on their length (short if
<10 bp, intermediate if between 10 and 60 bp and long if >60 bp) and whether they
were haplotypes (<95% of the bases coming from a non-reference node) or novel
(≥95% of the bases coming from a non-reference node). We retained all long regions
(>60 bp), those not at telomeres and not flanking a gap. Finally, we excluded all
regions that were too repetitive in comparison to the autosomes in the different
genomes and sequences that were too similar, retaining only the largest of the two.
For details of the selection of the NOVEL set of contigs, see section “Genome
alignment and comparison” in Materials and Methods. This generated a final set of
contigs that, once combined with ARS-UCD1.2, formed the final extended linear
genome (ARS-UCD1.2+).

Graph genome. Comparatively few pieces of software capable of handling large
genomes and graphs are currently available. Two in particular prove to be

particularly promising: the vg tools12 and Seven Bridges graph genome pipelines11.
In the current study we chose to apply the vg pipeline, which is able to call
structural variants detected through multiple assembly comparisons. This is also
supported by recent studies that have proven graph alignments to be superior in
performance when alignments were generated through a reference-free
comparison64.

We first aligned the five cattle assemblies using CACTUS chromosome-by-
chromosome (i.e. all chromosomes 1 from the five genome together). The
CACTUS alignments were then converted to a vg graph using hal2vg (v2.1)
(https://github.com/ComparativeGenomicsToolkit/hal2vg), dropping the ancestral
genomes, referencing to the Hereford assembly and processed as recommended on
the vg wiki page (VG5). We also generated second and third graphs with more and
no diversity, respectively. To create the second graph, hereon called VG5p, we
added >11M short variants from 294 worldwide cattle23 to the VG5 graph through
the ‘vg add’ command. To create the third graph, we simply provided the linear
ARS-UCD1.2 genome to ‘vg construct’ specifying the VCF with the 11M variants
described in Dutta et al.23 (VG1p). To create the fourth and last graph, we simply
provided the linear ARS-UCD1.2 genome to ‘vg construct’, without specifying any
source of variation, and ultimately generating a graph representation of this single
linear genome (VG1). The script used to generate the graphs are available on
GitHub (https://github.com/evotools/CattleGraphGenomePaper)63. Finally, we
used FORGe31 to prioritize a subset of the 11 M variants for the three breeds
considered (Angus, N’Dama and Sahiwal). We performed the prioritization using
the hybrid method and selecting the top 10% of the variants considered.

We evaluated the performances of the graph genomes in two ways. We aligned
to a variant-free linear graph based on the Hereford genome using vg (VG1). We
also aligned and called variants using the standard BWA-HaplotypeCaller (bwa v
0.7.17; GATK v4.0.11.0)65,66 and BWA-FreeBayes (FreeBayes v 1.3.1-16-g85d7bfc-
dirty)20 pipelines on the ARS-UCD1.2 genome.

All the graphs were generated using vg version 1.20.0. Short reads processing
was performed using vg v1.22.0. Despite the change of version, the graphs
generated in the version 1.20 can be used also in the next releases. All the script
used for the analyses were generated through bagpipe (https://bitbucket.org/
renzo_tale/bagpipe/src/master/).

Reads for the nine samples of three different breeds (Angus, Nigerian N’Dama
and Pakistani Sahiwal) with a similar coverage (~30–50X) were considered for the
analyses. Six of the nine samples were novel to this study with the three Angus
taken from databases67,68 (Supplementary Table 7). Whole blood for the three
novel N’Dama samples was collected into PAXgene tubes, and DNA was extracted
through the standard procedure as outlined in the PAXgene blood DNA kit
handbook. Whole blood for the three novel Sahiwal samples was collected into
EDTA tubes, and DNA was extracted through the standard procedure as outlined
in the TIANamp Blood DNA Kithandbook (TIANGEN Biotech Co. Ltd, Beijing).
Samples were then sequenced on a Illumina HiSeq X Ten at the Edinburgh
Genomics sequencing facility. Samples were aligned using the guidelines reported
in the vg GitHub wiki page, and implemented in the bagpipe pipeline (https://
bitbucket.org/renzo_tale/bagpipe/src/master).

Bionano optical mapping. We generated ~100X OM data for two Kenyan
N’Dama samples, one of which was an offspring of the assembled individual.
Blood was collected by jugular venupuncture into EDTA vacutainers. Following
erthyrocyte lysis, monocytes were purified from the leukocytes using a positive
selection MACS protocol with an anti-bovine SIRPα mono-clonal antibody
(ILA-24, concentration 1 μg/ml38). Agarose plugs containing 5 × 105–1 × 106

isolated monocytes were prepared using the Bionano Blood and cell culture
DNA isolation kit (Bionano Genomics, San Diego, US) according to the man-
ufacturer’s instructions and the extracted DNA used for analysis on the Bionano
Saphyr platform. Resulting reads were processed through the Bionano Solve
pipeline (v3.3_10252018, refAligner v7915.7989rel). We then converted the
resulting outputs to vcf through smap_to_vcf_v2.py. Then, we converted all
non-translocation SVs into bed format expanding the initial and end positions
defined by the Bionano Solve pipeline with the largest values defined by the
confidence interval, and then added an additional kilobase to account for the
resolution of OM data and uncertainty in the positions inherent in OM.

After generating bed intervals for each of the two individuals, we concatenated
the bed files, sorted them, combined them through bedtools merge and, finally,
retained the regions mapped on an autosomal region.

Benchmarking the graph. To evaluate the performances of the graph genomes we
collected different metrics, which can be split into two categories: (a) read-based
metrics and (b) variant-based metrics.

The first category includes the number of reads mapped to the genomes by the
different algorithms, and how many of the reads called by vg are perfectly mapped.

The second category includes metrics based on the variants called, including
number of variants identified, DP, transitions/transversions rate and allelic balance
(i.e. the ratio of reads supporting the reference and the alternate allele used for the
variant calling). These metrics have been computed for different variant lengths to
see how the callers perform with different types of variants, using the script
available on GitHub (https://github.com/evotools/CattleGraphGenomePaper)63.
The analyses have been carried out considering (a) the variants present in the given
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graph as known and all other as novel, and (b) the 11 M variants as the set of
known variants and all the other as novel.

After gathering overall metrics, we focused our attention on large structural
variants called by vg on the VG5p graph, since these are the hardest to genotype
with current broadly adopted methods. First, we combined variants across the
nine samples using bcftools (v1.10) merge, and checked how many overlapped
with OM signals detected on two N’Dama samples. Although being called for
two different samples than the N’Dama sequenced, it can still provide insights
into N’Dama-shared variants not present in the current linear genome. We
assessed the significance of the overlap by randomly selecting 10,000 times
regions of the same sizes as the detected ones and overlapped them with the OM
data to estimate a Z-score. We defined the size of a structural variant as equal to
the size of the reference allele. Also, we checked whether the size distribution of
indels in genes shows a higher number of in-frame than out-of-frame variants
(i.e. insertions and deletions of size multiple of 3 versus rest). Second, we
checked if the structural variants called for the different breeds overlapped
differently with the OM data to assess whether individuals genetically closer to
the two N’Dama genotyped with OM have a proportionally higher number of
overlaps between graph-based and OM structural variants.

Third, we investigated high-quality, group-specific large structural variants
identified by vg. We iteratively intersected individuals of a target breed with
samples of the other two breeds using bcftools isec, retaining a variant if found only
in the target individual (e.g. we intersect Angus1 with Sahiwal1; then, we keep the
specific variants for Angus1, and intersect it with Sahiwal2, and so on). Then,
samples of the same breed are combined with bcftools merge, that kept all variants
found in at least one animal of the same breed. Then, we retained a variant if they
had high quality (QUAL > 30), DP close to the expected value (20 < DP < 90) and
allowing no missingness and with sufficient evidence for the alternate allele (non-
reference allele count ≥ 5). Finally, we focused on variants with length > 500 bp in
order to keep the results comparable with the OM and allowing direct comparison
with the N’Dama samples.

We compared the structural variants from the graph with the ones called from
Delly2 (v0.8.5)35. Variants called by Delly2 for each individual with no soft-filter
and high quality (QUAL > 30) were retained. Individuals’ SVs of the same type
were combined using SURVIVOR69 (v1.0.7), allowing 100 bp of distance between
break points, not accounting for the strand, retaining only SV longer than 500 bp
and excluding translocations. These were then intersected with the OM regions.
We also combined the samples of the same breed as done for the graph genome,
retaining variants with no missingness and sufficient support for the alternative
allele (non-reference allele count > 5), dropped translocations and finally,
intersected with the regions from the OM analysis.

Finally, we compared SVs called from Delly and VG5p based on their type
(insertions, deletions, inversions and duplications). This approach, though more
consistent, comes with limitations since the different callers call different types of
SV: VG5p can only call insertions, deletions and complex SV, with the latter
inclusive of inversions and more complicated rearrangements (e.g. a substitution
and a deletion at the same site); Delly can call only precise deletions, duplications
and inversions; finally, the OM can call insertions, deletions, inversions and
duplications. SVs called from VG5p were first broken into single-allele variants
using vcfbreakmulti from vcflib (v1.0.1)70 annotated using vcf-annotate --fill-type
from the vcftools library71; the variants were then split by annotated type,
multiallelic SV recombined with vcfcreatemulti and converted to BED format using
SnpSift72 (v 4.3t build 2017-11-24 10:18) and a series of custom scripts. Delly
variants were separated based on the alternate allele field into separate SVs, and
similarly SVs from OM were split by the SVTYPE annotated field. Insertions and
deletions from VG5p were then intersected using bedtools (v2.30.0) with insertions
and deletions from OM, respectively. Analogously, deletions, duplications and
inversions from Delly were intersected with the same categories from OM data
using bedtools (v2.30.0). Resulting unique SVs were combined and counted as
number of consistent, overlapping SV.

ATAC-seq data processing. Illumina paired-end reads for B-cells of three samples
(1 Holstein-Friesian, 1 N’Dama and 1 Nelore) were generated using Illumina HiSeq
X Ten at the Edinburgh Genomics facility. Details on the preparation of the DNA
libraries can be found in Supplementary Methods 1. In addition to the three
samples, one nucleosome-free DNA sample was processed to identify and exclude
false positives. All read accession numbers are listed in Supplementary Table 7.

We processed paired-end reads as follow: we first trimmed the reads, extracting
only the paired ones with length ≥ 36 bp using trim_galore (v0.6.3)73. As a spike-in
of mouse cells had been used in these samples trimmed reads were aligned to the
target genome concatenated with the mouse genome GRCm38 using bowtie2
(v2.3.1) and only one mapping per read was saved in order to account for repetitive
elements (parameters -X 1000 --very-sensitive). Reads aligned to the mouse
genome and mitogenome were excluded with samtools and peaks were called using
Genrich (v 0.5_dev, parameters: -j -r -e MT -v). The full pipeline to process the
samples was generated using bagpipe (https://bitbucket.org/renzo_tale/bagpipe/src/
master). We also compared the effect of using only uniquely mapped reads when
peak calling. We aligned the reads as previously described to ARS-UCD1.2 and
ARS-UCD1.2+, and then retained only reads uniquely mapped using Sambamba

(v0.5.9; command view -h -f sam -F “[XS]== null and not unmapped and not
duplicate”).

We called peaks on all five linear assemblies and ARS-UCD1.2+ separately. For
each sample, we excluded peaks overlapping a peak in the nucleosome-free DNA
sample for more than 50% of their length (bedtools subtract -A -f 0.5), which were
considered as false positive peaks. We then calculated the Q-scores for each peak
using the Benjamini-Hochberg correction, setting the number of independent tests
to the theoretical size of the cattle genome (2.7 Gb). For each region, we also
checked which one did not overlap a masked region in the respective assembly for
at least 40% of its length.

Heatmaps have been created using Deeptools (v3.5.1)74 with the aligned reads
as inputs, first filtering out reads mapping to the mouse spike-in genome and then
converting them to bigWig using bamCoverage (options --minFragmentLength
35 --maxFragmentLength 150 --normalizeUsing RPGC -bs 10 -e
--effectiveGenomeSize 2779691414). The generated bigWig files are then used as
inputs to computeMatrix (reference-point mode with parameters -a 3000 -b 3000
--missingDataAsZero --skipZeros) using the ARS-UCD1.2 annotation (Ensembl
version 103) and the genes predicted by Augustus as annotations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The long reads and short read data for the Ankole assembly have been deposited in the
ENA database under project accession code (PRJEB39282). The long read and short
reads data for the N’Dama sample have been deposited in the ENA database under
project accessions codes (PRJEB39330) and (PRJEB39334). The short read sequencing
for the three Sahiwal and the three N’Dama samples have been deposited in the ENA
database under project accessions codes (PRJEB39352) and (PRJEB39353), respectively.
The N’Dama (GCA_905123515) and Ankole (GCA_905123885) assemblies have been
deposited in the ENA database under accession codes (PRJEB41519) and (PRJEB41564),
respectively. The optical mapping reads for the two N’Dama samples have been
deposited in the ENA database under accession code (PRJEB47998). The ATAC-seq
reads have been deposited in the ENA database under accession code (PRJEB49075).
Output for the analyses can be visualised in (BOmA)[www.bomabrowser.com/cattle].
Source data are provided with this paper. Finally, the five VG graphs (VG1, VG1f, VG1p,
VG5 and VG5p) as well as the CACTUS five-way whole genome alignments have been
uploaded on Zenodo with doi 10.5281/zenodo.5749842 and 10.5281/zenodo.5750390.
Source data for Figs. 1, 4B–D, 6A and Supplementary Fig. 1 are provided with this
paper. Source data are provided with this paper.

Code availability
Code for running the analyses presented in this work can be found at https://github.com/
evotools/CattleGraphGenomePaper and on Zenodo with https://doi.org/10.5281/
zenodo.574943263.
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