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A self-driving laboratory advances the Pareto front
for material properties
Benjamin P. MacLeod 1,2,5, Fraser G. L. Parlane 1,2,5, Connor C. Rupnow1,2,3, Kevan E. Dettelbach 1,
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Useful materials must satisfy multiple objectives, where the optimization of one objective is

often at the expense of another. The Pareto front reports the optimal trade-offs between

these conflicting objectives. Here we use a self-driving laboratory, Ada, to define the Pareto

front of conductivities and processing temperatures for palladium films formed by combus-

tion synthesis. Ada discovers new synthesis conditions that yield metallic films at lower

processing temperatures (below 200 °C) relative to the prior art for this technique (250 °C).

This temperature difference makes possible the coating of different commodity plastic

materials (e.g., Nafion, polyethersulfone). These combustion synthesis conditions enable

us to to spray coat uniform palladium films with moderate conductivity (1.1 × 105 S m−1) at

191 °C. Spray coating at 226 °C yields films with conductivities (2.0 × 106 S m−1) comparable

to those of sputtered films (2.0 to 5.8 × 106 S m−1). This work shows how a self-driving

laboratoy can discover materials that provide optimal trade-offs between conflicting

objectives.
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Self-driving laboratories combine automation and artificial
intelligence to accelerate the discovery and optimization of
materials1–3. The increasing flexibility of laboratory auto-

mation is enabling self-driving laboratories to manipulate and
measure a broader set of experimental variables4. Consequently, a
growing number of self-driving laboratories are being developed
across a range of fields5–28. While many self-driving laboratories
are able to test multiple experimental variables, most optimize for
only a single objective (e.g., process parameter, material
property)7–16. This situation is not consistent with most practical
applications, where multiple objectives need to be simultaneously
optimized29–35. Consider, for example, how a solar cell must be
optimized for voltage, current, and fill factor to yield a high power
conversion efficiency36,37; how an electrolyzer must form pro-
ducts at low voltages and high reaction rates and selectivities38;
and, how structural alloys are optimized for both strength and
toughness31,35. These and other applications motivate the emer-
ging use of self-driving laboratories for multiobjective
optimization18–28.

The optimization of materials for multiple objectives can be
challenging because improving one objective often compromises
another (e.g., decreasing the bandgap of the light-absorbing
material in a photovoltaic cell increases the photocurrent but
decreases the voltage39). As a result, there is often no single
champion material, but rather a set of materials exhibiting trade-
offs between objectives (Fig. 1). The set of materials with the best
possible trade-offs lie at the Pareto front. Materials on the Pareto
front cannot be improved for one objective without compro-
mising one or more other objectives. Most self-driving labora-
tories used for multiobjective optimization, however, identify only
a single optimal material based on preferences specified in
advance of the experiment18–25.

Here, we use a self-driving laboratory to map out an entire
Pareto front27,28. We apply this approach to thin film materials for
the first time by mapping out a trade-off between film con-
ductivity and processing temperature. In doing so, our self-driving
laboratory identifies previously untested conditions that decrease
the temperature required for the combustion synthesis of palla-
dium films from 250 to 190 °C40. This finding increases the scope
of polymeric substrates that palladium can be deposited on by
combustion synthesis to include Nafion41, polyethersulfone42, and

heat-stabilized polyethylene napththalate42. Our self-driving
laboratory also identifies conditions suitable for spray coating
homogeneous films on larger substrates with conductivities
approaching those of films made by vacuum deposition methods.
The approach presented here is highly relevant to the materials
sciences because it identifies optimal materials for every preferred
tradeoff between objectives.

Results
Autonomously discovering a Pareto front. We upgraded the
hardware and software of our existing self-driving laboratory,
Ada8, (Fig. 2) to study the combustion synthesis of conducting
palladium films. This upgraded self-driving laboratory was
designed to map out a Pareto front that shows the tradeoff
between the temperature at which the films are processed and the
film conductivity. We selected combustion synthesis as an opti-
mization problem because it is a solution-based method for
making functional metal coatings. This method, however, has not
yet been scaled and has not been proven for making high-quality,
conductive metal films40,43,44. Combustion synthesis can form
coatings at lower temperatures, enabling the potential use of
inexpensive polymeric substrates45,46, but film conductivity
typically decreases with processing temperature43. This situation
presents a trade-off: to what extent can the conductivity be
maximized while the processing temperature is minimized? The
answer to this question would enable the researcher to determine,
for example, what types of substrates could be layered with a
metal coating of certain conductivity. We therefore leveraged Ada
to effectively study the numerous compositional47,48 and pro-
cessing variables43,49 that influence processing temperatures and
the corresponding conductivities.

For this study we configured Ada to manipulate four variables:
fuel identity, fuel-to-oxidizer ratio, precursor solution concentra-
tion, and annealing temperature (Fig. 3a). We confined the study
to mixtures of two fuels, glycine and acetylacetone, that we
independently identified to yield conductive films at temperatures
below 300 °C. The fuel-to-oxidizer ratio was varied because it
controls product oxidation in bulk combustion syntheses50,51.
The precursor concentration influences the morphology of the
drop-casted films. Finally, we varied the processing temperature
which may influence the conductivity through solvent removal,
precursor decomposition, film densification, impurity removal,
grain growth, oxidation, or cracking52–54.

Flexible automation4 enabled us to upgrade Ada (Fig. 2a) by
coupling a larger, 6-axis robot to the existing smaller, 4-axis
robot. The smaller robot (Fig. 2b) deposited and characterized the
thin films8, while the larger robot transported the samples to a
commercial X-ray fluorescence (XRF) microscope for elemental
analysis. These two robots jointly executed a 7-step experimental
workflow (Fig. 2c, see “Methods” section). First, a combustion
synthesis precursor solution was formulated from stock solutions
and then drop-cast onto a glass microscope slide. The resulting
precursor droplet was imaged and then annealed in a forced-
convection oven to form a film. The film was subsequently
characterized by XRF microscopy, imaging, and 4-point probe
conductance mapping. The conductivity of each film was
determined by combining the conductance with a film thickness
estimated by XRF (see “Autonomous workflow step 7” in
“Methods” section, Supplementary Fig. 2). Finally, the conduc-
tivity and processing temperature for each film were passed to a
multiobjective Bayesian optimization algorithm55 to plan the next
experiment based on all the available data (see “Autonomous
workflow step 8” in “Methods” section). The algorithm we used is
called q-expected hypervolume improvement (qEHVI)55.

Ada
closes this

gap

Pareto front of
best possible

materials

objective A

objective B

suboptimal
materials

Pareto front
of best

known materials

Fig. 1 A Pareto front. No single optimal material exists when searching for
materials that satisfy two or more conflicting objectives (e.g., film
conductivity and processing temperature). Rather, there is a set of
materials that offer the best possible tradeoffs between the objectives
(indicated by the blue curve). The state-of-the-art materials that offer the
best known compromises between the two objectives form the
experimentally observed Pareto front (black points).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28580-6

2 NATURE COMMUNICATIONS |          (2022) 13:995 | https://doi.org/10.1038/s41467-022-28580-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


All of the steps in the autonomous workflow were performed
without human intervention at a typical rate of two samples an
hour. Ada could run unattended for 40–60 experiments until the
necessary consumables (e.g., pipettes tips, mixing vials, glass
substrates, and precursors; see “Methods” section) were
exhausted. We used Ada to execute a total of 253 combustion
synthesis experiments that explored a wide range of pertinent
composition and processing variables.

The qEHVI algorithm is one of a number of a posteriori
multiobjective optimization algorithms designed to identify the
Pareto front55–58. These multiobjective optimization methods are
known as a posteriori methods because preferred solutions are
selected after the optimization. We chose to use an a posteriori
method for this exploratory study, because we sought to identify a
range of Pareto-optimal outcomes rather than a single optimal
point. We selected the qEHVI algorithm because previously
reported benchmarks show that the qEHVI algorithm often
resolves the Pareto front in fewer experiments than other
algorithms.55

The qEHVI algorithm directed our self-driving laboratory to
quantify the trade-off between film conductivity and annealing
temperature (Fig. 3). We manually selected eight synthesis
conditions spanning most of the design space to provide
initialization data for the qEHVI algorithm (Supplementary
Table 1). After executing these initial experiments, Ada executed
more than 50 iterative qEHVI-guided experiments to map the
Pareto front of annealing temperature and conductivity. We
performed this autonomous optimization campaign in quad-
ruplicate. Each replicate generated a Pareto front showing a clear
trade-off between temperature and conductivity (Fig. 3b).

The synthesis conditions tested during the optimization are
shown in Fig. 3a; the conditions that created materials on the
Pareto front are highlighted. The data revealed that the optimal
precursors typically were those of concentrations near 6 mgmL−1,
fuel-to-oxidizer ratios below 1, and fuel blends consisting
primarily of acetylacetone. Notably, our experiments did not
reveal a single optimal synthesis condition. The conditions
required to obtain the maximum conductivity depended in part

Fig. 2 The Ada self-driving laboratory and autonomous experimental workflow. a Schematic of the Ada self-driving laboratory. Ada consists of two
robots (N9 and UR5e) with overlapping work envelopes. These robots work together to synthesize and characterize thin film samples. The N9 robot is a
4-axis arm equipped to mix, drop cast, and anneal precursors to create thin-film samples. The N9 also performs imaging and 4-point probe conductance
measurements on the films it creates. The UR5 robot is a larger 6-axis arm equipped to transport samples to additional modules, including an XRF
microscope. b Steps in the automated experimental workflow. Each iteration of the experiment produces a single, drop-cast, thin-film sample; images of the
sample before and after annealing; an XRF map of the quantity of palladium in the film; and a map of the film conductance measured by the 4-point-probe
at different locations on the sample. After the sample is characterized, the film conductivity is calculated and the qEHVI algorithm is used to autonomously
plan the next experiment. All scale bars are 5mm.
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on the annealing temperature. Specifically, conductive films
created below 200 °C required precursors with predominantly
acetylacetone fuel. At higher temperatures, however, glycine-rich
fuel blends also yielded samples on the Pareto front. The data
shows how the fuel-to-oxidizer ratio could vary widely for fuels
rich in acetylacetone yet still yield films on the Pareto front. The
Pareto-optimal samples resulting from glycine-rich fuel blends,
however, did not exhibit a wide range of fuel to oxidizer values.
These observations highlight the richness of the data generated by
the self-driving laboratory.

Quantification of algorithm performance. We used computer
simulations to quantify the benefit of the qEHVI algorithm
relative to random search (an open-loop sampling technique that
does not use feedback from the experiment to determine which
experiment to do next). These simulations were performed by
running both the random and qEHVI sampling techniques on a
response surface fit to the experimental data (see “Methods”
section). Scenarios with and without experimental noise were
simulated by adding synthetic noise to the response surface as
appropriate (see “Models of the experimental response surface
and noise” in “Methods” section).The hypervolume (i.e., the area
under the Pareto front) was used to measure the progress of
optimization (Fig. 4a). We used acceleration factor (Fig. 4b) and
enhancement factor (Fig. 4c) to compare our closed-loop sam-
pling using qEHVI to open-loop sampling using random search;
see “Methods” section59. In a noise-free scenario, qEHVI required
less than 100 samples to outperform 10,000 random samples
(Fig. 4a). The performance of the qEHVI algorithm degraded in
the presence of simulated experimental noise (see “Methods”
section), but still exceeded the performance of random search.
This performance decrease due to noise emphasizes the impor-
tance of minimizing experimental noise when developing a self-
driving experiment. Benchmarks comparing other closed-loop

and open-loop sampling techniques yielded similar results (see
Supplementary Fig. 11). These findings highlight how self-driving
laboratories can effectively search large materials design spaces
without requiring extremely high throughput.

Translation of discovery to a scalable manufacturing process.
The practical application of combustion synthesis would require
the deposition of uniform films over large areas that are inac-
cessible to drop casting. On this basis, we set out to combine
palladium combustion synthesis with ultrasonic spray coating60.
We sprayed precursors directly onto a preheated glass substrate60

(Fig. 5a, see “Methods” section). The precursors decomposed in
less than five minutes to yield reflective, conductive palladium
films (Fig. 5b). An XRF map of the films (Fig. 5c) showed
improved homogeneity relative to the drop-cast films (Fig. 2b).

We performed additional spray coating experiments to verify
that the trends observed in the autonomous optimization
translate to spray coating (i.e., that conductive palladium films
can be obtained below 200 °C and that the film conductivity
increases with temperature). Specifically, we spray coated
palladium films using three recipes from the autonomously
identified Pareto front, with temperatures of 191, 200, and 226 °C
(Fig. 6 and Supplementary Table 2). Triplicate samples were spray
coated using each recipe. All three recipes yielded films
approximately 50–60 nm thick, as measured by XRF microscopy
(see “Methods” section). All the films were relatively uniform,
with spatial variations in the film thickness less than 5% of the
mean within an 8 mm × 20mm region at the center of each
sample (see “Methods” section and Supplementary Table 3).
Spatial variations in the conductivity within the same region were
measured using the robot and were less than 18% of the mean for
all samples (see “Methods” section and Supplementary Table 3).
The film conductivity of the lowest temperature recipe
(T= 191 °C) was 1.1 × 105 S m−1, which is approximately 1%
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of the bulk conductivity of palladium61. The film conductivity can
increase by more than an order of magnitude when the spray
coating temperature is increased by 35 °C. The highest tempera-
ture recipe tested (T= 226 °C) yielded palladium films with a
conductivity of 2.0 × 106 S m−1, which is comparable to the
conductivities of sputtered palladium films reported in the
literature (2.0–5.8 × 106 S m−1; Fig. 6)62–64. These findings create
new opportunities to deposit palladium films without vacuum
onto large-area substrates, including an expanded range of
temperature-sensitive polymers (e.g., Nafion41, polyethersulfone42,
and heat-stabilized polyethylene naphthalate42). One application
of this deposition process could be the fabrication of large,
supported palladium membranes for more cost-effective electro-
catalytic palladium membrane reactors65.

Discussion
Here, we mapped out a Pareto front between film processing
temperature and conductivity using a self-driving laboratory
guided by the qEHVI multi-objective optimization algorithm.
This tradeoff is just one example of the conflicting objectives
routinely faced by materials scientists to which our method could

be applied. Our approach eliminates the need for the researcher
to specify preferences between competing objectives in advance of
the experiment, and also produces a richer, more valuable data
set. In this case, the temperature–conductivity Pareto front is
more useful than optimizing conductance for a fixed temperature
limit because processing temperature limits vary depending on
the application. Our self-driving laboratory also identified
synthesis conditions that translated to a scalable spray-coating
method for depositing high-quality, high-conductivity palladium
films at temperatures above 190 °C. This work shows how self-
driving laboratories can potentially accelerate the translation of
materials to industry, where satisfying multiple objectives is
essential.

Methods
Materials. MeCN (CAS 75-05-8; high-performance liquid chromatography
(HPLC) grade, ≥99.9% purity), glycine (CAS 56-40-6, ACS reagent grade, >98.5%
purity) and acetylacetone (CAS 123-54-6; ≥99% purity) were purchased from
Sigma-Aldrich. Urea (CAS 57-13-6, ultra-pure; heavy metal content 0.01 ppm) was
purchased from Schwarz/Mann. Palladium(II) nitrate hydrate (Pd(NO3)2•H2O; Pd
~40% m/m; 99.9% Pd purity, CAS 10102-05-3) was purchased from Strem Che-
micals, Inc. All chemicals were used as received without further purification.

Fig. 4 Quantification of the benefit provided by the qEHVI algorithm in simulated optimization campaigns. a The hypervolumes achieved by the
simulated qEHVI and random searches. The median (solid line) and interquartile range (shaded bands) of the results are shown for simulations with and
without simulated experimental noise. b The acceleration factors for the qEHVI algorithm relative to random search. The geometric mean is also shown
(dashed line). c The enhancement factor for the qEHVI algorithm relative to random search.
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Manual preparation of stock solutions. The self-driving laboratory is provided
with starting materials in the form of stock solutions which are prepared manually
and then placed in capped 2 mL HPLC vials in a tray where they can be accessed by
the self-driving laboratory. All solutions were prepared at a concentration of
12 mgmL−1. The Pd(NO3)2•H2O solution was prepared using MeCN as a solvent
while all other solutions were prepared using deionized H2O.

Preparation of glass substrates and other consumables. In addition to stock
solutions, the self-driving laboratory uses consumable glass substrates (75 mm ×
25mm × 1mm microscope slides; VWR catalog no. 16004-430), 2 mL HPLC vials
(Canadian Life Science), and 200 µL pipettes (Biotix, M-0200-BC). These are placed
in appropriate racks and trays for access by the robotics.

The HPLC vials and pipettes were used as received, whereas the microscope
slides were cleaned by sequential sonication in detergent, deionized water, acetone,
and isopropanol for 10 min each8. Wells of 18 mm diameter were then created on
the microscope slides using a sprayed enamel coating (DEM-KOTE enamel finish)
and circular masks placed at the center of each slide (Supplementary Fig. 1). The
wells serve to confine the precursor solution before it dries.

Self-driving laboratory. The self-driving laboratory consists of a precision 4-axis
laboratory robot (N9, North Robotics) coupled with a 6-axis collaborative robot
(UR5e, Universal Robotics). The 4-axis robot is equipped to perform entire thin
film deposition and characterization workflows and is described in our previous
work8. The 6-axis robot enables samples to be transferred to a variety of additional
modules, including the XRF microscope used here. Both robots are equipped with
vacuum-based tools for substrate handling. All robots and instruments were
controlled by a PC with software written in Python.

Overview of autonomous robotic workflow. The majority of operations in the
autonomous robotic workflow are performed by the 4-axis laboratory robot.
Samples are transported between the 4-axis robot and the XRF microscope by the
6-axis robot.

The 4-axis robot prepared each sample by combining stock solutions to form a
precursor mixture, drop casting this precursor onto a glass slide, and then
annealing the sample in a forced convection oven (Supplementary Fig. 1). The
samples were characterized by white light photography before and after annealing,
X-ray fluorescence microscopy, and 4-point-probe conductance measurements.
The resulting data was then automatically analyzed using a custom data pipeline
implemented in Python. Finally, the result of the experiment was fed to a Bayesian
optimizer which used an expected hypervolume improvement acquisition function
to select the next experiment to be performed. Each of these steps is described in
further detail below.

Autonomous workflow step 1: mix precursors. The 4-axis robot formulated each
precursor by pipetting varying volumes of the stock solutions described above into
a clean 2 mL HPLC vial. Gravimetric feedback from an analytical balance (ZSA120,
Scientech) was used to minimize and record pipetting errors. The precursor was
mixed by repeated aspiration and dispensing.

Autonomous workflow step 2: drop cast precursor. The 4-axis robot used a
vacuum-based substrate handling tool to place a clean glass slide onto a tray. This
robot then created a thin film sample by using a pipette to drop cast 98 µL of the
precursor into a predefined well on the slide. The solution was ejected from the
pipette at a rate of 5 µL s−1 from a height of approximately 1.5 mm above the top
surface of the substrate.

Autonomous workflow step 3: image precursor droplet. The 4-axis robot
acquired visible-light photographs of each sample before annealing. This robot
positioned samples 90 mm below a camera (FLIR Blackfly S USB3; BFS-U3-
120S4C-CS) using a Sony 12.00 MP CMOS sensor (IMX226) and an Edmund
Optics 25 mm C Series Fixed Focal Length Imaging Lens (#59–871). The C-mount
lens was connected to the CS-mount camera using a Thorlabs CS- to C-Mount
Extension Adapter, 1.00″-32 Threaded, 5 mm Length (CML05). The sample was
illuminated from the direction of the camera using a MIC-209 3-W ring light. For
imaging, the lens was opened to f/1.4, and black flocking paper (Thorlabs BFP1)
was placed 10 cm behind the sample.

Autonomous workflow step 4: annealing. After drop casting, the 4-axis robot
used the substrate handling tool to transport the precursor-coated slide into a
purpose-built miniature convection oven for annealing at a variable temperature
between 180 and 280 °C. The most important features of the oven are a low-
thermal mass construction (lightweight aluminum frame with glass-fiber insula-
tion) and internal and external fans. These features enable rapid heating and
cooling of the sample (Supplementary Fig. 12). A pneumatically actuated lid
enables robotic access to the sample. The oven employs a ceramic heating element
(P/N 3559K23, McMaster Carr) controlled by a PID temperature controller (P/N
CN7523, Omega Engineering). A type-K thermocouple located in the oven air
space provides temperature feedback to the controller. In the experiments per-
formed here, the sample was inserted into the oven which was then ramped at
40 °C per minute to the temperature set point, which was then held for 450 s. Upon
completion of the hold, the oven lid was opened and a cooling fan turned on to
blow ambient temperature air through the oven and over the sample. The sample
was removed from the oven after the temperature dropped below 60 °C. The oven
was further cooled to below 40 °C prior to loading of the next sample.

Autonomous workflow step 5: XRF imaging and data analysis. The self-driving
laboratory acquired hyperspectral X-ray fluorescence (XRF) images of each sample
using a Bruker M4 TORNADO X-ray fluorescence microscope equipped with a
customized sample fixture. Samples were transported to the XRF microscope by the
UR5e 6-axis robotic arm equipped with a vacuum-based substrate handling tool
similar to the one used by the 4-axis N9 robot. A dedicated exchange tray accessible
to both robots enabled samples to be passed from one robot to the other.

The XRF microscope has a rhodium X-ray source operated at 50 kV/600 µA/
30W and polycapillary X-ray optics yielding a 25 µm spot size on the sample. The
instrument employs twin 30 mm2 silicon drift detectors and achieves an energy
resolution of 10 eV. Hyperspectral images were taken over a 20 mm × 20 mm area
at a resolution of 125 × 125 pixels. The XRF spectra obtained (reported in counts)
were scaled by the integration time (50 ms) and the energy resolution (10 eV) to
yield units of counts s−1 eV−1.

To quantify the relative amount of palladium in the film, the palladium Lyman-
alpha X-ray fluorescence line (2.837 keV) was integrated from 2.6 to 3.2 keV. The
resulting counts were converted to film thickness estimates by applying a
calibration factor obtained using reference samples (see below). Ninety-seven
points of interest are defined within the XRF hypermap of the sample, as defined in
Supplementary Fig. 3. For each point of interest, the average XRF counts
per second were calculated over a 3 mm × 3mm area.

Autonomous workflow step 6: image annealed film. The self-driving laboratory
acquired visible light photographs (as described in step 3) of each sample after
annealing.

Autonomous workflow step 7: film conductivity measurement. After hyper-
spectral XRF imaging, the sample was returned by the UR5e robot to the N9 robot for
film conductance measurements. Four-point probe conductance measurements were
performed with a Keithley Series K2636B System Source Meter instrument connected
to a Signatone four-point probe head (part number SP4-40045TBN; 0.040-inch tip
spacing, 45 g pressure, and tungsten carbide tips with 0.010-inch radii) by a Signatone
triax to BNC feedthrough panel (part number TXBA-M160-M). The source current
was stepped from 0 to 1mA in 0.2mA steps. After each current step, the source meter
was stabilized for 0.1 s and the voltage across the inner probes was then averaged for
three cycles of the 60Hz power line (i.e., for 0.05 s) and recorded. Conductance

Fig. 6 Comparison between the conductivity of the spray-coated
palladium films and sputtered films. The conductivity values for sputtered
films62–64 and bulk palladium61 are from previous literature. The spray
coating recipes are taken directly from the Pareto front and are given in
Supplementary Table 2. For the spray combustion data (see also
Supplementary Table 3), each point shows the conductivity of one of the
three replicate samples for each recipe. The bars show the average
conductivity across all three replicates for each recipe.
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measurements were made on the same 97 points of interest as analyzed in the XRF
data, as defined in Supplementary Fig. 3.

The film conductivity was calculated using a custom data analysis pipeline
implemented in Python using the open-source Luigi framework66. This pipeline
combined conductance data and XRF data to estimate the film conductivity at each
of the 97 points of interest on the sample.

For each set of current–voltage measurements at each position on each sample,
the RANSAC robust linear fitting algorithm67 was used to extract the conductance
(dI/dV). The voltage compliance limit of the K2636B was set to 10 V and voltage
measurements greater than 10 V were therefore considered to have saturated the
Source Meter instrument and automatically discarded by the data analysis pipeline.

The conductivity of the thin films was then calculated by combining the 4-
point-probe conductance data with the film thicknesses estimated by XRF:

σ ¼ ln2
π

´
dI
dV

´ t�1; ð1Þ

where dI/dV is the conductance from the 4-point-probe measurement, t is
estimated film thickness from the XRF measurements, and σ is conductivity.

Due to the poor morphology of the drop-cast films, a robust conductivity
estimation scheme was employed. First, conductance data was excluded for any
measurement positions with zero conductance. Next, outliers were excluded from
the remaining conductance data using a kernel density exclusion method (see
below). Outliers were also excluded from the XRF film thickness estimates using
the same exclusion method. Conductivities were calculated for each position on the
sample for which neither conductance nor XRF data was excluded. The mean of
these conductivities was returned to the optimizer (see below). In cases where all
points were discarded, a mean conductivity of 0 was reported.

The outlier kernel density exclusion method was performed by calculating
Gaussian kernel density estimates for the conductance and XRF data, normalizing
the density between 0 and 1, and rejecting data points with a kernel density below
0.3. Bandwidths of 5 × 10−3 μΩ−1 m−1 and 5 × 103 cps were used for the
conductance and XRF data, respectively.

Autonomous workflow step 8: algorithmic experiment planning. The experi-
ment parameters for each optimization experiment performed on the autonomous
laboratory were determined by the qEHVI55 multiobjective Bayesian optimization
algorithm. In brief, this algorithm proposes experiments expected to increase the
area underneath the Pareto front by the largest amount. More formally, the
algorithm proposes a batch of q experiments (q = 1 here, but q could be increased
to exploit parallelized experimentation), which are collectively expected to increase
the hypervolume between the Pareto front and a reference point by the largest
amount. The hypervolume is a generalization of volume to an arbitrary number of
dimensions; this generalization supports optimization with more than two objec-
tives. The reference point must be specified prior to the optimization and specifies a
minimum value of interest for each objective.

The algorithm involves two major conceptual steps: modeling the objectives
from data and proposing the next experiment. In the configuration used here, each
objective is assumed to be independent and is modeled with an independent
gaussian process (see Supplementary Figs. 5 and 6). Based on the models for each
objective, the expectation value of the hypervolume improvement associated with
any candidate experiment can be computed; the candidate experiment with the
largest expected hypervolume improvement is selected. We ran the qEHVI
algorithm using the implementation available in the open-source BoTorch
Bayesian optimization library68,69. We used a temperature reference point at the
upper limit of the experiment (280 °C) so that any outcome with a processing
temperature below this upper limit would be targeted. We used a dynamic
conductivity reference point set to 5% of the running observed maximum
conductivity. This dynamic reference point ensured that the optimization would
identify Pareto-optimal outcomes over a wide range of conductivity values and did
not require prior knowledge of the scale of conductivity values expected. We used
heteroskedastic Gaussian processes to model both the conductivity and the
temperature68. We assigned each conductivity point an uncertainty equal to 20% of
its value, which is comparable to the repeatability of the experiment
(Supplementary Fig. 13). Zero uncertainty was assigned to the temperature values,
which were manipulated rather than responding variables and were trivial
to model.

Calibration of XRF signal against reference samples. To enable palladium film
thickness to be estimated from the XRF signal, a calibration procedure was per-
formed on sputtered palladium reference samples having four different nominal
thicknesses (10, 50, 100, and 250 nm). These samples were characterized by pro-
filometry and XRF. A linear relationship between the film thickness and the XRF
counts was observed (see Supplementary Fig. 2). This relationship was used to
estimate the thickness of each sample from the XRF data.

The reference samples were sputtered onto clean glass microscope slides (see
cleaning procedure above) using a Univex 250 sputter deposition system with a DC
magnetron source at 100W and an argon working pressure of 5 × 10−6 bar. The
deposition chamber base pressure is 5 × 10−9 bar. Films were deposited after 1 min
of pre-sputtering. The substrate holder rotated at 10 rpm. Nominal film thickness
was monitored using a quartz crystal microbalance mounted in the sputter

chamber. A 2-inch diameter palladium sputter target was used (99.99%, ACI
Alloys). Step edges for profilometry were obtained by placing strips of Kapton™
tape onto the substrates prior to sputtering and removing these after sputtering.
The substrates were rinsed with acetone and IPA to remove any Kapton™ tape
residue prior to performing profilometry.

Profilometry was performed on the reference samples using a Bruker DektakXT
stylus profilometer. XRF was performed on the reference samples using the same
settings used for the drop-casted samples during the optimization campaigns (see
above).

Deposition and characterization of spray-coated samples. The spray coater was
built from an ultrasonic nozzle (Microspray, USA) mounted to a custom motorized
XYZ gantry system (Zaber Technologies Inc., Canada) above a hot plate (PC-420D,
Corning, USA). Precursor ink was fed to the nozzle by a syringe pump (cavro
centris pump PN: 30098790-B, Tecan Trading AG, Switzerland). The ultrasonic
spray nozzle was operated at 3W and 120 kHz. For each recipe, a total of 700 µL of
precursor was sprayed onto a glass substrate (75 mm × 25mm × 1mm microscope
slides; VWR catalog no. 16004-430) placed on a custom aluminum fixture
mounted to the hotplate. Approximate substrate temperatures were measured
using a thermocouple attached to a glass substrate with thermal cement. This
instrumented substrate was placed at a position on the hotplate fixture symmetrical
to the position where the substrates to be coated were placed. The hotplate power
was adjusted until the steady-state temperature of the instrumented substrate was
within 4 °C of the desired temperature before spray coating each of the recipes
reported here. To achieve consistent thermal contact between the substrates and
the hotplate fixture, both the instrumented substrate and substrate to be coated
were affixed to the hotplate with thermal paste (TG-7, Thermaltake Technology
Co., Taiwan). The spray coater nozzle speed was 5.1 mm s−1, the nozzle-to-
substrate distance was 15 mm, the spray flow rate was 2 µL s−1, and the carrier gas
flow rate was 7 L min−1. When spraying, the nozzle moved in a serpentine pattern
consisting of twelve 50 mm lines with 25 mm spacing (see an illustration of the
pattern in Supplementary Fig. 14). The coating on each sample was produced by
repeating this spray pattern three times with no delay between passes. After spray
coating, the samples were left to anneal on the hot plate for 5 min.

The spray-coated palladium films were characterized at 26 locations on a 2 × 13
grid within an 8 × 20 mm region of interest at the center of the film (see
Supplementary Fig. 14). The amount of palladium at each location was measured
using the XRF microscope and converted to a film thickness estimate by applying
the same calibration method used for the drop-cast films. The film conductance at
each location was measured using the 4-point probe system on the robot described
above. The film conductivity was calculated at each of the 26 measurement
locations by combining the 4-point probe conductance and XRF film thickness
values for that location using Eq. (1). The mean and standard deviations of the 26
resulting thickness and conductivity values are reported for each film in
Supplementary Table 3.

Computer simulations of optimization algorithm performance. Computer
simulations were used to study the performance of the qEHVI algorithm for
optimizing the combustion synthesis experiments. A model of the experimental
response surface was built from the experimental data. Experimental optimizations
were then simulated by sampling the model using grid search, random search,
Sobol sampling, and the qEHVI and qParEGO algorithms. Optimization perfor-
mance was quantified with and without simulated experimental noise. The per-
formance of qEHVI relative to random sampling was quantified using the
acceleration factor (AF) and enhancement factor (EF) metrics59. These simulation
procedures are described in more detail below.

Models of the experimental response surface and noise. Gaussian process
regression was used to create a model of the experimental response surface using
the combined data from all four optimization campaigns. This model predicts the
experimental outputs (i.e., annealing temperature and conductivity) from the
experimental inputs (i.e., fuel-to-oxidizer ratio, fuel blend, total concentration, and
annealing temperature). Our model is composed of two separate Gaussian pro-
cesses, as implemented by the scikit-learn Python package67. Each Gaussian pro-
cess is regressed on a single experimental output (i.e., either temperature or
conductivity) and all four of the experimental inputs. The kernels used for the
conductivity (kcond) and temperature (ktemp) models are:

kcond x; x0ð Þ ¼ klin x; x0ð Þ ´ kSE x; x0ð Þ þ knoise x; x
0ð Þ; ð2Þ

ktemp x; x0ð Þ ¼ klin x; x0ð Þ� ´ kSE x; x0ð Þ�; ð3Þ

knoise x; x
0ð Þ ¼ noise if x ¼ x0else 0; ð4Þ

where klin is a constant kernel, kSE is a squared exponential kernel, and knoise is a
white noise kernel, and * indicates that the lengthscale of the kernel is fixed to 1.

The four types of input data and two types of output data were each normalized
prior to training the model. To simplify the optimization to be strictly a
maximization problem, the temperature values (which must be minimized) were
multiplied by negative one. The leave-one-out cross-validation residuals (LOOCV;

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28580-6 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:995 | https://doi.org/10.1038/s41467-022-28580-6 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Supplementary Figs. 4, 9, and 10 and Supplementary Table 4) are comparable to
the measured experimental uncertainties (Supplementary Table 1). We also plotted
the LOOCV residuals as a function of each input (Supplementary Fig. 6), each
modeled output (Supplementary Fig. 7), and sampling order (Supplementary
Fig. 8) and observed that the distribution of the residuals was largely random.

For the simulations with no noise, the model posterior means were used directly
to represent the experiment. For simulations with experimental noise, noisy
conductivity values were simulated by randomly sampling a modified
Maxwell–Boltzmann distribution. First, the Maxwell–Boltzmann distribution was
flipped across the y-axis by negating the x term. Second, the mean of this
Maxwell–Boltzmann distribution was set to the noiseless model posterior mean.
Finally, the variance of the Maxwell–Boltzmann distribution was set to be equal to
the noise level (or variance) of the white noise kernel. We chose to employ
Maxwell–Boltzmann noise to model the experimental noise because of the
tendency of drop-casted samples to exhibit a wide range of downwards deviations
in the apparent conductivity due to the poor sample morphology.

The Maxwell–Boltzmann probability density function is

PB xð Þ ¼
ffiffiffi

π

2

r

x2exp �x2
2a2

� �

a3
; ð5Þ

where a is the distribution parameter. Since we set the variance of
Maxwell–Boltzmann distribution (σ2B) equal to the white noise kernel noise level
(σ2noise)

σ2noise ¼ σ2B ¼ a2ð3π � 8Þ
π

: ð6Þ

We computed the distribution parameter for the Maxwell–Boltzmann-
distributed simulated experimental noise as:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πσnoise
3π � 8

r

: ð7Þ

If subtracting the Maxwell–Boltzmann noise from the posterior mean resulted
in a value less than zero, the noisy model value was set to zero.

Sampling strategies. To compare the performance of closed-loop and open-loop
approaches, several sampling strategies (grid search, random search, Sobol sam-
pling, and the qEHVI and qParEGO algorithms) were used to sample both the
noise-free and noisy experimental models. Random sampling was performed by
generating samples from a uniform distribution across the entire normalized input
space. Sobol sampling was performed with a scrambling technique such that each
Sobol sequence is unique to yield a statistically meaningful distribution of
optimizations70. qEHVI and qParEGO are initiated with ten scrambled Sobol
points. The qEHVI algorithm was configured as it was for the physical experiments
detailed above. The qParEGO algorithm was configured using the default settings,
except for the reference point which was configured in the same way done for
qEHVI. The complete benchmarking results are shown in Supplementary Fig. 11.

Simulated optimization campaigns. The performance of each sampling strategy
(grid, random, Sobol, qParEGO, and qEHVI) was determined both with and
without experimental noise. Each simulated optimization campaign was performed
for 1000 replicates and 100 experimental iterations, except for random which was
performed for 100,000 iterations for use in the acceleration calculations (shown in
Fig. 4b). If an optimization algorithm produced an error during optimization, then
that replicate was removed and repeated.

Pareto front and hypervolume. The Pareto front is defined by the set of samples
for which no other sample simultaneously improves all the objectives. When
assessing the performance of a simulation, the hypervolume was computed using
the least desirable value of each objective function (the nadir objective vector) as
the reference point (i.e., zero conductivity and 280 °C temperature). This reference
point was held constant for evaluating all of the simulated optimization campaigns.
We assessed the performance of the noisy optimizations such that the only dif-
ference between the noisy and noise-free optimizations was the information pro-
vided to the optimization algorithm. To perform this assessment, we followed the
procedure described by Bakshy and coworkers58 wherein the hypervolume for
optimizations using the noisy experimental model were calculated from the
equivalent point from the noiseless model. Since each objective of the model is
normalized to the range [0, 1], the hypervolume of the model is in the range [0, 1].
For each simulated optimization campaign, the normalized hypervolume was
calculated at each iteration. When calculating acceleration and enhancement fac-
tors, each of the 1000 simulated qEHVI campaigns was compared to each of the
1000 simulated random campaigns, resulting in 1,000,000 comparisons.

Calculation of acceleration and enhancement factor. The acceleration factor
quantifies how much faster one sampling technique is than another (Eq. 5). For
example, if sampling technique B requires 40 samples to reach the performance
attained by technique A after 20 samples, the acceleration factor of A relative to B

at 20 samples is 2.

AFA:B na
� � ¼ nb

na
;

s:t: PB nb
� �

≥ PA na
� �

;min nb; ð8Þ
where AFA:B na

� �

is the acceleration of technique A with respect to B at na samples,
and PiðnÞ is the performance of technique i at n samples. Note that it is possible for
sampling technique A to outperform B such that there exists no value of nb where
PB ≥ PA. In these cases, more samples with technique B are required to make the
comparison, otherwise AFA:B is not calculable. If AFA:B is not calculable, then a
lower bound acceleration factor is calculated by assuming that the slow sampling
technique would beat the fast sampling technique if it observed one more sample.
The acceleration factor in Fig. 4b was reported until these lower bound estimates
compose more than 25% of all of the acceleration comparisons.

The enhancement factor of one sampling technique with respect to another for
a given number of samples is defined as the ratio of their performance values for
the same number of observations (Eq. 6). For example, if sampling technique A
reaches a performance value of 7 after 20 samples, and technique B reaches a
performance value of 2 after 20 samples, the enhancement of technique A is 3.5 at
20 samples.

EFA:B nð Þ ¼ PAðnÞ
PBðnÞ

; ð9Þ

where EFA:BðnÞ is the acceleration factor of sampling technique A with respect to B
after n samples. When PA nð Þ ¼ 0 and PB nð Þ ¼ 0, then EFA:B nð Þ ¼ 1. When
PA nð Þ> 0 and PB nð Þ> 0, then EFA:B nð Þ is not calculable. To compare the AF and EF
from the repeated simulations, the median, geometric mean and interquartile range
were calculated.

Data availability
The raw and processed data generated by the self-driving laboratory in this study is
available at https://github.com/berlinguette/ada. All other data related to this paper is
available from the corresponding author upon request.

Code availability
All code used in this study was based on open-source Python packages listed in the
supplementary information.
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